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1 INTRODUCTION 

Composite shells are widely used in various industries, 

such as aerospace, marine and oil industries. In most 

cases these shells are under dynamic loads. In addition 

to fatigue failure, dynamic loads can lead to resonance 

and sudden structural failure. Hence; it is necessary to 

determine the natural frequencies of composite shells. 

Frequency of composite structures is directly affected by 

the mass and stiffness. If the circumferential rings are 

used for structural reinforcements, these rings influence 

the stiffness and mass of the entire structure and 

consequently came the natural frequencies of the 

structure to be changed. Therefore, it is necessary to 

study the effect of reinforcement rings on the shell 

frequencies. 

There are two methods to determine the natural 

frequencies of such structures. First, shell and 

reinforcements can be considered as a unit construction 

and then the natural frequencies are determined based on 

the average stiffness and mass. This method is 

applicable when the number of reinforcements is high 

and the distance between two adjacent rings is less than 

a longitudinal half-wave of mode shape of the 

cylindrical shell. In the second method which is more 

common, shell and reinforcements are considered as 

separate elements so stiffness and mass of 

reinforcements are locally entered into the Equations of 

motion of the system. Heretofore, several papers have 

been published on the vibration of composite shells 

which is mentioned below. 

Marco Amabili [1] investigated nonlinear forced 

vibration of composite cylindrical shells for simply 

supported boundary condition at both ends, using 

various theories. He compared the results from 

Novazhilov classical theory (neglecting the effects of 

shear deformation and rotary inertia), higher order shear 

deformation theory and Amabili-Reddy shear 

deformation theory. The results showed that Amabili-

Reddy theory and Novazhilov theory have good 

convergence for thin shells. 

Hiruki Matsunaga [2] calculated the natural frequency 

and buckling load for a composite cylindrical shell with 

cross-ply layup and simply supported boundary 

condition at both ends using higher order theory. The 

displacement Equation of shell is expressed using power 

series. The study showed that the vibrational and 

buckling properties of composite shells are independent 

of the number of layers. 

Jafari et al. [3] studied transient dynamic response of a 

composite cylindrical shell under axial compressive 

load. Their research showed that increasing the axial 

load reduces the natural frequencies. As the axial 

compressive load increases up to the critical buckling 

load, the natural frequency corresponding to mode shape 

in which the critical load occurs becomes zero. 

Hafenbach et al. [4] studied the vibration and damping 

behaviour of composite cylindrical shell made of 

carbon-epoxy using analytical method. They 

investigated the effect of geometrical parameters such as 

the ratio of L/(R ) and h/(R ). 

Lam et al. [5] studied the vibration of laminated 

composite cylindrical shell. In addition to the 

geometrical parameters such as L/(R ) and R/(h ), the 

effect of number of layers and lamination angle is 

investigated. Also, the natural frequencies for both 

angle-ply and cross-ply laminations are compared. The 

results showed that increasing the number of layers have 

a small effect on the frequency parameter. But changing 

layup from angle-ply to cross-ply can have a large 

impact on the frequency parameter. 

Lam and Loy [6] derived the Equations of motion of the 

composite cylindrical shells using love theory. The 

composite layup is considered to be cross-ply and for all 

boundary conditions, except for the free-free boundary 

condition. The cylindrical shell is analysed and the 

Equations are solved by Galerkin method. The results 

show that the boundary conditions have a significant 

impact on the natural frequencies of composite 

cylindrical shell. 

Cianssio et al. [7] studied free vibration of composite 

plate carrying a concentrated mass. The plate is made of 

boron-epoxy with a clamped edge and the other edges 

have free boundary conditions. Also concentrated mass 

is attached at the midpoint of the plate. They showed that 

in the first six frequencies, increasing the attached mass 

leads to reducing the natural frequencies. 

Nallim et al [8] studied the natural frequencies of 

composite circular plate carrying concentrated mass 

with various boundary conditions. They investigated the 

effects of the ratio of the concentrated point mass to the 

total mass of the plate and also the effect of distance of 

the point mass from the centre of plate. The results show 

that increasing the concentrated mass led to reduce the 

natural frequencies also increasing the distance of 

concentrated mass from the fulcrum decreased the 

frequencies. 

Amabili et al [9] investigated vibration of rectangular 

plate with effects of concentrated mass using analytical 

and experimental methods. They assumed the boundary 

conditions as elastic foundation and considered the 

rotary inertia of concentrated mass. They showed that 

placing a small mass on the diameter of a thin plate can 

change the mode shape from longitudinal to diagonal 

mode. In addition to reducing the natural frequencies, 

rotary inertia of the concentrated mass can create new 

structural mode shapes. 
Khalili et al [10] studied free vibration of composite 

shells carrying concentrated masses considering the 

effect of stiffness of the concentrated masses. Composite 

shells with cross-ply layup and simply supported 

boundary conditions are analysed using shear 
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deformation theory. The effect of the various parameters 

such as shell thickness, thickness of the attached mass, 

variations of shell curvature and variations of elasticity 

modulus of the attached mass are studied. The results 

showed that increasing the thickness of the shell, 

decreases the effect of stiffness of the attached mass on 

the fundamental frequency. 

Jafari and Bagheri [11] studied the free vibration of 

isotropic cylindrical shell reinforced with 

circumferential rings with non-uniform intervals. They 

used analytical Ritz method, finite element method and 

experimental approach. Finally, the results of these three 

methods are compared with each other. 

Kim and Lee [12] carried out the vibration analysis and 

transient response of a composite cylindrical shell with 

circumferential rings. In their analysis, they considered 

the composite cylindrical shell made of graphite / epoxy 

with stacking sequence of  [(±45/0/90)2]𝑠 with clamped 

boundary conditions at both ends. They investigated the 

effect of number of stiffeners and their cross-sectional 

dimensions on the natural frequencies. The results 

showed that sufficient number of reinforcement rings 

with suitable cross-sectional area can increase the 

natural frequency and decrease the amplitude of 

deformations. However, the excessive increase of the 

number of rings and ratio of width to height of the 

section of rings lead to decreasing the natural 

frequencies. 

In this paper the natural frequencies of composite 

cylindrical shell with various boundary conditions are 

calculated using theoretical, experimental and finite 

element methods. The effect of reinforcement rings on 

the frequencies is studied. 

2 GOVERNING EQUATIONS 

Figure 1 shows a laminated composite cylindrical shell 

of radius R, Length L and thickness h. Parameters u, v 

and w, are displacement components along x, θ and z 

directions, respectively. 
 

 
Fig. 1 Composite cylindrical shell with reference 

coordinate system. 

 
Strain and curvature components in the curvilinear 

coordinate system are as follows [13]: 

εα
0 =

∂u

∂α
  

(1) 

εβ
0 =

∂v

∂β
+

w

R
  

γαβ
0 =

∂v

∂α
+

∂u

∂β
  

kα = −
∂2w

∂α2
  

kβ =
∂

∂β
(
v

R
) −

∂2w

∂β2
  

τ =
∂

∂α
(
v

R
) − 2

∂2w

∂β∂α
  

 

Also, the relationship between the force and moment 

resultants and the midpoint strain and curvature 

components are as follows [14]: 

 

{
 𝑁
 𝑀
} = [

 𝐴 𝐵 
 𝐵 𝐷 

] {
 𝜀
 𝑘
}  (2) 

 

In “Eq. (2)”, A, B and D are extensional, coupling and 

bending stiffness matrices respectively and are defined 

as follows: 

 

{
 
 

 
 𝐴𝑖𝑗 = ∑ (�̅�𝑖𝑗)𝑘

𝑁
𝑘=1 (ℎ𝑘 − ℎ𝑘−1)
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1

2
∑ (�̅�𝑖𝑗)𝑘
𝑁
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2
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1

3
∑ (�̅�𝑖𝑗)𝑘
𝑁
𝑘=1 (ℎ3𝑘 − ℎ

3
𝑘−1)

  𝑖, 𝑗 =

1,2,6  

(3) 

 

Where, hk is the distance of kth layer from the shell 

midplane, N is the total number of layers and �̅� is the 

transferred stiffness matrix and it is calculated from the 

following Equation: 

 

Q̅ij = [T]
−1[Qij][T]

−T                i, j =

1,2,6     
(4) 

 

In the above Equation, Qij is the reduced stiffness matrix 

defined as follows: 

 

Q11 =
E11

1−ν12ν21
  

(5) 

Q22 =
E22

1−ν12ν21
  

Q12 = Q21 =
ν21E11

1−ν12ν21
=

ν12E22

1−ν12ν21
  

Q16 = Q26 = Q61 = Q62 = 0  

Q66 = G12  
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T is the transfer matrix and calculated for each layer with 

fibre angle θ with respect to x axis: 

 

T =

[
cos2θ sin2θ 2sinθcosθ
sin2θ cos2θ −2sinθcosθ

−sinθcosθ sinθcosθ cos2θ − sin2θ

]  (6) 

 

The equilibrium Equations based on the classical shell 

theory are expressed as follows [15]: 

 

∂Nα

∂α
+

1

R

∂Nαβ

∂α
= −I0̅

∂2u

∂t2
  

(7) 
∂Nβ

∂β
+

∂Nαβ

∂α
+

1

R
[
∂Mβ

∂β
+

∂Mαβ

∂α
] = −I0̅

∂2v

∂t2
  

−
Nβ

R
+

∂2Mα

∂α2
+ 2

∂2Mαβ
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+

∂2Mβ

∂β2
== −I0̅

∂2w

∂t2
  

 

In “Eq. (7)”, 𝐼0̅ is the mass moment of inertia as follows: 

 

I0̅ = ∑ ρ(k)(hk − hk−1)
N
k=1   (8) 

 

Where, 𝜌(𝑘) is the density of the kth layer. By substituting 

“Eqs. (1 and 2)” in “Eq. (7)”, the following sets of 

differential Equations are obtained: 

 

[

L11 L12 L13
L12 L22 L23
L13 L23 L33

] [
u
v
w
] = [

0
0
0
]  (9) 

 
Components of differential Equations (Lij) are as 

follows: 

 

L11 = A11
∂2
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R
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R
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R
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R
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R
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R
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L33 = {D11
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+ 4D16
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∂4
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R
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𝐿𝑖𝑗  operators in above Equations are defined in the 

curvilinear coordinate system. In order to convert 

curvilinear coordinate system to the special cylindrical 

coordinate system, the following relations are used: 

 

∂

∂α
=

∂

∂x
  

(11) 
∂

∂β
=

1

R

∂

∂θ
  

 

The displacement components u, v and w should be 

chosen so as to satisfy the boundary conditions of the 

problem. For this purpose, these functions are expressed 

as a double Fourier series: 
 

u =∑∑Uf11(x , θ)f(t)

nm

 

(12) v =∑∑Vf21(x , θ)f(t)

nm

 

w =∑∑Wf31(x , θ)f(t)

nm

 

 

Where, m and n respectively are the number of 

longitudinal half-waves and circumferential waves of 

vibrational mode shape of the structure. U, V and W are 

the coefficients of the natural mode shapes which are 

obtained by solving the free vibration. In order to solve 

the free vibration eigenvalue problem, 𝑓(𝑡) is considered 

to be a periodic function of time as  𝑓(𝑡) = 𝑒
𝑖𝜔𝑡 . Also 

𝑓11, 𝑓21 and 𝑓31 are modal beam functions along 

longitudinal direction and trigonometric functions along 

circumferential direction, defined as follows: 

 

f11(x, θ) = Ψ′(x). Φu(θ) 

(13) f21(x, θ) = Ψ(x). Φv(θ) 

f31(x, θ) = Ψ(x). Φw(θ) 

 

In “Eq. (13)”, the trigonometric functions along 

circumferential direction are as follows [3]: 
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Φu = Φw = cos (nθ)  (14) 
Φv = sin(nθ)  

 

The modal beam function along longitudinal direction is 

as follows [12]: 

 

Ψ(x) = α1 cosh
λmx

L
+ α2 cos

λmx

L
−

σm (α3 sinh
λmx

L
− α4 sin

λmx

L
)  

(15) 

 

In the above Equations 𝛼𝑖 is a constant coefficient, 𝜆𝑚 is 

a root of a nonlinear Equation and the parameter 𝜎𝑚 is 

related to 𝜆𝑚. All of them are determined according to 

the type of the boundary conditions. 

In case of Clamped-Free boundary conditions [6]: 

 

cos λm . cosh λm = −1  

(16) 

σm =
sinh λm−sin λm

cosh λm+cos λm
  

at x = 0 ∶  
∂Ψ(x)

∂x
= Ψ(x) = 0  

at x = L ∶  
∂2Ψ(x)

∂x2
= 

∂3Ψ(x)

∂x3
= 0  

 

In case of Clamped-Clamped boundary condition [6]: 

 

cos λm . cosh λm = 1 

(17) σm =
cosh λm − cos λm
sinh λm − sin λm

 

at x = 0, x = L ∶  
∂Ψ(x)

∂x
= Ψ(x) = 0 

 

Now the effect of reinforcement rings should be entered 

into the Equations. Reinforcement ring directly affects 

the system stiffness and mass matrices. However, it 

should be applied to the governing Equations. For this 

purpose, the Heaviside function is applied as follows 

[10]: 

 

H(x − x0) = {
1    at  x ≥ x0
0    at  x < x0

  (18) 

 

Thus, the Equations of motion are modified as follows 

[10]: 

 

[

L11 L12 L13
L12 L22 L23
L13 L23 L33

]

s

[
u
v
w
] +

H∗(x, x0, c) [

L11 L12 L13
L12 L22 L23
L13 L23 L33

]

r

[
u
v
w
] = [

0
0
0
]  

(19) 

 

Where, subscript s refers to the shell and subscript r 

refers to the rings, 𝑥0 is the distance between location of 

reinforcement ring and constrained end of the cylinder. 

The parameter c is width of the section of the ring and 

𝐻∗ is a combination of Heaviside functions defined as 

follows: 

 

H∗(x, x0, c) = [ H(x − x0) − H(x − x0 −
c)]  

(20) 

 

Analytical Galerkin method is used to solve the problem. 

By replacing “Eqs. (10 and 11)” in “Eq. (19)” and 

simplifying, the following Equations are obtained: 

 

([

k11 k12 k13
k12 k22 k23
k13 k23 k33

]

s

+

H∗(x, x0, c) [

k11 k12 k13
k12 k22 k23
k13 k23 k33

]

r

) [
u
v
w
] = [

0
0
0
]  

(21) 

 

Where the components 𝑘𝑖𝑗 are obtained from the 

following Equation [16]: 

 

kij =
∫ ∫ Lijuifi1dxdθ

2π
0

l
0

∫ ∫ fi1
2 dxdθ

2π
0

l
0

  (22) 

 

After determining the modified stiffness components 

𝑘𝑖𝑗, to solve the characteristic Equation of the system, 

the determinant of the coefficients matrix is set to be 

zero, leading to a sixth order polynomial Equation in 

terms of 𝜔 as follows: 

 

β1ω
6 + β2ω

4 + β3ω
2 + β4 = 0  (23) 

3 EXPERIMENTAL METHOD 

In order to provide the clamped boundary conditions at 

one or both ends of the composite cylindrical shell, first 

two steel disks are produced. Then a circular groove of 

15 mm depth and same diameter of the shell is cut on 

each of these disks. The cylindrical shell is then placed 

inside the groove. Finally the groove is filled with 

plaster. Also, two steel rings with the section dimensions 

of 10 × 10 𝑚𝑚 are produced. The inner diameter of the 

rings is equal to the outer diameter of the cylindrical 

shell. The rings are attached on the outside of the 

cylindrical shell using suitable binder. 

A piezoelectric accelerometer is used to carry out the 

modal tests. Accelerometer is attached to the cylindrical 

shell by a suitable adhesive. Structure is stimulated by a 

hammer and the data is transmitted to an analyser device. 
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Analyser device is connected to a computer and the 

Frequency Response Function (FRF) is plotted in the 

computer. The peaks in the FRF curve represent the 

natural frequencies. In “Figs. 2, 3, 4 and 5”, the 

equipment and specimens used in the modal analysis 

tests are shown. 

 

 
Fig. 2 Clamped-free composite cylindrical shell with 

hammer and piezoelectric accelerometer. 

 

 
Fig. 3 Clamped-clamped composite cylindrical shell. 

 
Fig. 4 Ring-stiffened clamped-free composite cylindrical 

shell 

 

 
Fig. 5 Modal analyser device 

4 FINITE ELEMENT METHOD 

 In order to ensure the accuracy of the analytical and 

experimental method and further verification of the 

results, finite element analysis is performed. For this 

purpose, dynamic and frequency analysis are achieved 

on the cylindrical shell and reinforcement rings using 

ABAQUS software. Natural frequencies and frequency 

response functions are obtained and compared with 

analytical and experimental results. Figure 6 shows the 
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finite element model of the cylindrical shell with 

reinforcement ring. 

 

 
Fig. 6 Finite element model of the ring-stiffened 

cylindrical shell.  

5 RESULTS AND DISCUSSION 

5.1. Verifying the Results 

In order to validate the analytical method, the results are 

compared with those of other references. “Table 1” 

presents the natural frequencies of an isotropic 

cylindrical shell with clamped-free boundary conditions 

at its ends [6]. Mechanical and geometrical properties of 

this shell are as follows: 

 

E = 210 GPa           v = 0.28           ρ = 7800 kg/m3  

 

L = 502 mm        R = 63.5 mm          h = 1.63 mm  

 
Table 1 Natural frequencies of isotropic cylindrical shell with 

clamped-free boundary condition (Hz) 

Discrepanc

y % 

Lam & 

Loy [6] 
Present n m 

0.5% 759.9 759.81 3 1 

0.3% 1459.3 1458.49 4 1 

0.9% 2360.9 2369.88 5 1 

3.7% 3463.9 3489.67 6 1 

 

The natural frequencies of a composite cylindrical shell 

with clamped-clamped boundary conditions at its ends 

[13] are presented in “Table 2”.  

 
Table 2 Natural frequencies of composite cylindrical shell 

with clamped-clamped boundary condition (Hz) 

Discrepancy 

% 

Kim & 

Lee [13] 
Present n m 

0.3 587.23 589.19 5 1 

0.15 594.13 595.02 6 1 

0.09 691.71 692.37 7 1 

0. 3 701.68 703.66 4 1 

0.5 848.47 853.21 8 1 

Mechanical and geometrical properties of this shell are 

as follows: 

 

E1 = 139.4 GPa     𝐸2 = 8.7 GPa       𝐺12 = 3.1 GPa  

𝑣12 = 0.268      𝑆𝑡𝑎𝑐𝑘𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒: [(±45°/0°/
90°)2]𝑆  

L/R = 2.5     R = 200 mm       h = 2 mm  

 

As can be seen in “Tables 1 and 2”, in both cases the 

results of the present analytical analysis are in good 

agreement with the results presented in the references. 

5.2. Effects of B.C on Non-Stiffened Composite 

Cylindrical Shell 

In the following, the natural frequencies of a non-

stiffened composite cylindrical shell made of 

glass/epoxy with clamped-free and clamped-clamped 

boundary conditions are obtained. Mechanical and 

geometrical properties of this shell are as follows: 

 
E1 = 29.561 GPa     𝐸2 = 8.77 GPa       𝐺12 =
2.81 GPa  

 

𝑣12 = 0.26         Stacking Sequence: [0°/90°/90°/0°]   
 

L = 500 mm     R = 100 mm       h = 2 mm  

 

Figure 7 presents FRF of this cylindrical shell with 

clamped-free boundary conditions which is obtained 

from experimental tests. In “Fig. 8”, the same graph is 

plotted using finite element analysis. As can be seen, by 

comparing “Figs. 7 and 8”, there is a high 

correspondence between experimental and finite 

element results. Also, in “Figs. 9 and 10”, FRF of the 

cylindrical shell with clamped-clamped boundary 

conditions using experimental and finite element 

methods respectively is plotted. The results are also in 

good agreement. 

 

 
Fig. 7 FRF of clamped-free composite cylindrical shell 

obtained from experimental method. 
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Fig. 8 FRF of clamped-free composite cylindrical shell 

obtained from FEM. 

 

 
Fig. 9 FRF of clamped-clamped composite cylindrical 

shell obtained from experimental method. 

 

 
Fig. 10 FRF of clamped-clamped composite cylindrical 

shell obtained from FEM. 

5.3. Effect of Attached Rings on Frequency of 

Composite Cylindrical Shell with Clamped-Free B.C 

In this part, the steel reinforcement rings are attached on 

the cylindrical shell and the effect of rings on the natural 

frequencies is investigated. “Tables 3 and 4” present the 

effects of reinforcement rings on the natural frequencies 

of the composite cylindrical shell with clamped-free 

boundary conditions for mode numbers (m=1, n=2) and 

(m=1, n=1), respectively. 

 
Table 3 Effect of attached rings on the natural frequencies of 

the clamped-free composite cylindrical shell for mode 

number (m=1, n=2) 

Experimental FEM Theoretical  
Ring(s) 

Position 

165 170.5 
172.6 

(4.6%) 

Non stiffened 

shell 

255 267.9 
274.23 

(7.5%) 

𝑥0
𝐿
= 0.5 

395 382.2 
401.37 

(1.6%) 

𝑥0
𝐿
= 1 

425 428.7 
433.79 

(2.1%) 

𝑥0
𝐿
= 0.5, 1 

 The numbers in the parenthesis show the discrepancies with 

respect to experimental method 

 
Table 4 Effect of attached rings on the natural frequency of 

clamped-free composite cylindrical shell for mode number 

(m=1, n=1) 

Experimental FEM Theoretical  
Ring(s) 

Position 

340 366.8 
357.8 

(5.2%) 

Non 

stiffened 

shell 

290 312.2 
314.86 

(8.5%) 

𝑥0
𝐿
= 0.5 

205 230.4 
230.44 

(12.3%) 

𝑥0
𝐿
= 1 

200 219.5 
220.51 

(10.2%) 

𝑥0
𝐿
= 0.5, 1 

 The numbers in the parenthesis show the discrepancies with 

respect to experimental method 

 
According to “Tables 3 and 4” for mode number (m=1, 

n=2), the natural frequency increased thereby attach 

reinforcement rings but for mode number (m=1, n=1) the 

rings lead to decrease the frequency. The reason is that 

the rings are structural reinforcements which increase 

the stiffness in the circumferential direction but have no 

effect on the longitudinal stiffness of the cylindrical 

shell. In other words, in case of longitudinal bending 

modes, the mass of reinforcement rings reduces the 

natural frequencies however the stiffness of the rings 
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cause the circumferential bending frequencies to 

increase. In order to better assess this point, the natural 

frequencies of the composite cylindrical shell for 

circumferential and longitudinal bending modes are 

given in “Figs 5 and 6”, respectively. In these figures, 

the natural frequencies are obtained using analytical 

method. The values are compared with the case that a 

reinforcement ring is attached at the position
𝑥0

𝐿
= 1. 

The results in “Fig. 11” show that the frequencies of 

circumferential bending modes can be increased by 

adding reinforcement rings however, by increasing n the 

effect of reinforcement rings on the circumferential 

bending frequencies is decreased. Also, the results in 

“Fig. 12” indicate that reinforcement rings reduced the 

frequencies of longitudinal bending modes consistently. 

 

 
Fig. 11 Effect of attached rings on the natural frequencies 

of clamped-free composite cylindrical shell in circumferential 

mode shapes (m=1) that the ring is attached at the position 
𝒙𝟎

𝑳
= 𝟏. 

 

 
Fig. 12 Effect of attached rings on the natural frequencies 

of clamped-free composite cylindrical shell in longitudinal 

mode shapes (n=1) that the ring is attached at the position 
𝒙𝟎

𝑳
= 𝟏. 

5.4. Effect of Attached Rings on Frequency of 

Composite Cylindrical Shell with Clamped-Clamped 

B.C 

Similarly, for clamped-clamped boundary conditions, 

the effect of adding a steel ring on the first natural 

frequency of circumferential and longitudinal bending 

mode is given in “Table 5”. In this case the 

reinforcement ring is installed at the position 
𝑥0

𝐿
= 0.5. 

 
Table5. Effect of attaching reinforcement ring on the natural 

frequencies of clamped-clamped composite cylindrical shell 

in mode shapes (m=1, n=3) and (m=1.n=1) 

Experimenta

l 
FEM Theoretical  

Ring(s) 

Position 

Mode 

No. 

395 407.4 
411.2(4.1%)

 

Non 

stiffene

d shell 

(m=1

, 

n=3) 

785 
801.0

4 

810.36(3.2%

) 

𝑥0
𝐿
= 0.5 

(m=1

, 

n=3) 

940 
950.9

0 

941.38(0.1%

) 

Non 

stiffene

d shell 

(m=1

, 

n=1) 

635 
644.1

8 

639.12(0.6%

) 

𝑥0
𝐿
= 0.5 

(m=1

, 

n=1) 
 

The numbers in the parenthesis show the discrepancies with 

respect to experimental method 

 

According to “Table 5”, for clamped-clamped boundary 

conditions, adding reinforcement ring can affect the 

natural frequencies. In “Figs. 13 and 14”, this subject is 

investigated for circumferential and longitudinal 

bending frequencies using analytical method. 

 

 
Fig. 13 Effect of attached rings on the natural frequencies 

of clamped-clamped composite cylindrical shell in 

circumferential mode shapes (m=1) that the ring is attached at 

the position 
𝒙𝟎

𝑳
= 0.5. 
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Fig. 14 Effect of attached rings on the natural frequencies 

of clamped-clamped composite cylindrical shell in 

longitudinal mode shapes (m=1) that the ring is attached at 

the position 
𝒙𝟎

𝑳
= 0.5. 

 

Similarly, as clamped-free boundary conditions, in case 

of the clamped-clamped boundary conditions, 

reinforcement rings increase the circumferential bending 

frequencies and decrease the longitudinal bending 

frequencies. Also, the results in “Fig. 14” show that for 

even values of m, the reinforcement ring has no effect 

on the longitudinal bending frequencies. The reason is 

that, the reinforcement ring is placed on the position 
𝑥0

𝐿
= 0.5 where for even values of m, it is located on the 

node of the longitudinal bending mode shapes. 

6 CONCLUSION 

In this paper, the natural frequencies of a composite 

cylindrical shell with clamped-free and clamped-

clamped boundary conditions are determined using 

analytical, experimental and finite element methods. A 

good agreement achieved between the results of these 

three methods. Also, the effect of attaching 

reinforcement rings on the natural frequencies is 

investigated. 

The results show that the reinforcement rings increase 

the circumferential bending frequencies and decrease the 

longitudinal bending frequencies. It is because of that 

the reinforcement rings increase the stiffness of the 

structure in the circumferential direction, but in the 

longitudinal direction, the rings have no effect on the 

stiffness of the structure even the mass of the rings leads 

to decrease the frequencies. 

Another point is that for the circumferential bending 

mode shapes, the effect of attaching the reinforcement 

rings is decreased by increasing the value of n. 

Also, for the longitudinal bending mode shapes, the 

reinforcement ring has no effect on the natural frequency 

if it is located on the node of the mode shape.  
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