
Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 1/ March – 2021                                         19 

 

Research paper                                                                                                                         © 2021 IAU, Majlesi Branch 
 

Comparative Study of LS-SVM, RVM 

and ELM for Modelling of Electro-

Discharge Coating Process 
Morteza Taheri* 
Department of Mechanical Engineering, 

Birjand University of Technology, Birjand, Iran 

E-mail: morteza.taheri72@yahoo.com 

*Corresponding author 

Nader Mollayi 

Department of Computer Engineering, 

Birjand University of Technology, Birjand, Iran 

E-mail: mollayi@birjandut.ac.ir 

Seyyed Amin Seyyedbarzani, Abolfazl Foorginejad 

Department of Mechanical Engineering, 

Birjand University of Technology, Birjand, Iran 

E-mail: barzani.amin@gmail.com, foorginejad@birjandut.ac.ir 

Vahide Babaiyan 

Department of Computer Engineering, 

Birjand University of Technology, Birjand, Iran 

E-mail: babaiyan@birjandut.ac.ir 

Received: 11 April 2020, Revised: 19 August 2020, Accepted: 1 October 2020 

Abstract: The Electro-discharge coating process is an efficient method for improvement of the surface 
quality of the parts used in molds. In this process, Material Transfer Rate (MTR), an average Layer 
Thickness (LT) are important factors, and tuning the input process parameters to obtain the desired value 
of them is a crucial issue. Due to the wide range of the input parameters and nonlinearity of this system, 
the establishment of a mathematical model is a complicated mathematical problem. Although many efforts 
have been made to model this process, research is still ongoing to improve the modeling of this process. To 
this end, in the present study, three powerful machine learning algorithms, namely, Relevance Vector 
Machine (RVM), Extreme Learning Machine (ELM) and the Least Squares Support Vector Machine (LS-
SVM) that have not been used to model this process, have been used. The values R2 above 0.99 for the 
training data and above 0.97 for the test data show the high accuracy and generalization capability degree 
related to the LS-SVM models, which can be applied for the input parameters tuning in order to attain a 
preferred value of the outputs. 
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1 INTRODUCTION 

Electro-Discharge Machining (EDM) is a non-

traditional electrical-thermal machining process which 

is operated by precise control of sparks between an 

electrode and a workpiece in presence of a dielectric 

liquid, while the electrode is considered as the cutting 

tool. This process is widely used for machining hard 

materials [1]. In this process, contrary to other 

machining methods, there is no physical contact between 

tool and workpiece for removal of the material and 

therefore there is no tool force. Hence, the EDM process 

has found widespread application in molding industry 

during the recent decades [2]. The main disadvantages 

of this process are tool wear and the formation of a thin 

brittle coating on the machined surfaces [3]. The tool 

wear is controllable to some extent. However, achieving 

a condition with no tool wear seems to be impossible. 

Scholars have introduced a novel method which makes 

it possible to improve the workpiece surface quality with 

the use of electro-discharge process and hydrocarbon 

dielectric liquid. In this method which is referred to as 

Electro-Discharge Coating (EDC), the tool is made by 

powder metallurgy and a hard carbide surface is formed 

on the workpiece in presence of a dielectric fluid of 

hydrocarbons [4-5]. The schematic view of EDC process 

is depicted in “Fig. 1ˮ [6]. The EDC process begins with 

the wear of tool which follows the formation of hard 

carbides via a chemical reaction between the materials 

produced from corrosion of electrode and carbon 

particles generated from decomposition of hydrocarbon 

in high temperature, and the carbide coating is created 

on the workpiece surface in a few minutes. In this 

process, the properties of powder metallurgy tool can be 

determined by controlling the concentration pressure 

and sintering temperature [7-8]. 

 

 
Fig. 1 Schematic diagram of process principle of EDC [6]. 

 

In the EDC process, the Material Transfer Rate (MTR) 

as an index of the processing speed, and average Layer 

Thickness (LT) as an index of the surface quality, are 

important factors, which are influenced by input process 

parameters such as Concentration Pressure (CP), 

Sintering Temperature (ST), Electric Current Intensity 

(lp), Pulse-on Time (Ton), Pulse-off Time (Toff), and 

appropriate choosing of these parameters to obtain a 

preferred value of MTR and LT is considered as a 

critical issue in this process. For this goal, it is very 

important to establish a mathematical predictive model 

for these factors globally, in terms of the input process 

parameters. On the other hand, the EDC process is a 

highly nonlinear coupled multivariable system with a 

complex and stochastic nature, in which a small change 

in one variable can abruptly change the output [9]. 

Moreover, the output parameters are also in a wide 

numerical range. Therefore, the establishment of the 

predictive models is a complicated mathematical 

problem. In recent decades, advances in machine 

learning have provided the possibility of solving many 

practical complex problems easier. Regarding this field 

of computer science, investigation and construction of 

algorithms, which have the capability of learning, and 

predicting with respect to a limited set of obtained data, 

is discovered [1], [4-10]. A model, in these algorithms, 

is constructed from example inputs to create data-driven 

predictions or decisions. Supervised learning is the 

learning task machine that infers a function from a 

labeled training data set [11], and it is possible to 

develop a predictive model of a function based on 

supervised learning algorithms, with respect to a limited 

number of observations. For example, Tyagi et al. [12] 

investigated the effect of duty factor, peak current, and 

powder mixing ratio, on tool wear rate, mass transfer 

rate, microhardness, and coating thickness. Also, they 

applied an artificial neural network for the prediction of 

output parameters response. The results showed good 

agreement between experimental and predicted data 

using the Artificial Neural Network (ANN). Sahu et al. 

[13] investigated in the EDC process, the effect of 

process parameters on the surface finish properties of the 

coated specimen. Their goal was to reduce the number 

of experiments, optimize the surface properties of the 

specimen by Taguchi based VIKOR method combined 

with Harmony search algorithm and the best parametric 

setting is selected. In this regard, in this research, an 

attempt has been made to use powerful machine learning 

algorithms that have not been used to improve the EDC 

process in order to improve process prediction. In a 

scholar by Patowari et al. [9], for modeling and 

predicting the MTR and LT in an EDC process by 

applying the Artificial Neural Networks (ANN), as a 

basic supervised learning algorithm and also by using a 

worldwide database of process parameters, has been 

recommended. The database was attained, with respect 

to the experiments carried out by a Victor-I EDM set 

prepared by Electronica Machine Tools Ltd, Pune. In 

these experiments, the electrode was made from powder 

metallurgy constituting 75% tungsten and 25% copper. 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Machine_learning
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The difference between workpiece weights before and 

after the process was measured by an electronic scale for 

the determination of the MTR value. For measurement 

of the LT, the workpiece was sectioned by wire cut and 

after the preparation of the sectioned surface, the layer 

thickness was measured by an optical micrometer. The 

input process parameters and the corresponding values 

of MTR and LT are listed in “Table 1ˮ.  

Today, scholars have presented novel machine learning 

algorithms which are of valuable advantage over the 

traditional artificial neural networks, and regarding the 

complex nature of the EDC process, a wide numerical 

range of the parameters and importance of modelling 

accuracy and application of these algorithms in this 

problem can be beneficial to obtain a higher degree of 

accuracy. In this paper, this problem has been 

investigated based on three powerful machine learning 

algorithms, namely, Relevance Vector Machine (RVM), 

Extreme Learning Machine (ELM), and the Least 

Squares Support Vector Machine (LS-SVM). Based on 

the modeling results, the LS-SVM models benefit from 

a greater accuracy and generalization capability degree 

in these method, and also compared to the ANN-based 

method. 
 

Table 1 Input parameters of the EDC process and the corresponding values of MTR and LT [9] 

Expt. 

no. 

Compt. pressure 

(CP), MPa 

Sintering temp. 

(ST), °C 

Peak current 

(Ip), A 

On time 

(Ton), µs 

Off time 

(Toff), µs 

MTR, 

mg/min 

LT, 

µm 

1 120 700 8 19 19 4.91 30.4 

2 180 700 8 19 19 5.05 23.9 

3 240 700 8 19 19 3.04 24.5 

4 300 700 8 19 19 0.93 16.7 

5 120 700 8 28 29 6.30 24.9 

6 180 700 8 28 29 8.52 31.1 

7 240 700 8 28 29 7.13 24.3 

8 300 700 8 28 29 3.12 22.8 

9 120 700 8 38 39 5.43 33.8 

10 180 700 8 38 39 9.46 40.2 

11 240 700 8 38 39 6.86 36.2 

12 300 700 8 38 39 1.11 14.5 

13 120 700 8 58 59 8.14 41.4 

14 180 700 8 58 59 10.86 30.2 

15 240 700 8 58 59 4.92 26.1 

16 300 700 8 58 59 6.02 37.4 

17 120 700 8 126 54 56.37 229.6 

18 180 700 8 126 54 38.27 166 

19 240 700 8 126 54 22.54 105.7 

20 300 700 8 126 54 13.61 67.2 

21 120 700 8 256 108 127.73 521.9 

22 180 700 8 256 108 87.74 318.5 

23 240 700 8 256 108 60.4 206.5 

24 300 700 8 256 108 27.94 123.3 

25 120 700 8 386 162 172.56 739 

26 180 700 8 386 162 107.46 446.2 

27 240 700 8 386 162 104.59 437.3 

28 300 700 8 386 162 68.57 229.9 

29 120 700 4 126 54 7.95 30.4 

30 180 700 4 126 54 6.08 25 

31 240 700 4 126 54 6.17 24.4 

32 300 700 4 126 54 6.14 24 

33 120 700 4 256 108 11.46 36 

34 180 700 4 256 108 7.4 24.7 

35 240 700 4 256 108 6.6 18.9 

36 300 700 4 256 108 2.45 19.6 

37 120 700 4 386 162 58.54 223.4 

38 180 700 4 386 162 34.18 110.4 

39 240 700 4 386 162 27.72 112.4 

40 300 700 4 386 162 20.41 75 

41 120 700 12 19 19 3.94 32.5 

42 180 700 12 19 19 3.2 15.6 

43 240 700 12 19 19 1.47 9.3 
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44 300 700 12 19 19 -0.4 14.6 

45 120 700 12 28 29 7.61 34.2 

46 180 700 12 28 29 5.41 39.1 

47 240 700 12 28 29 0.24 15.1 

48 300 700 12 28 29 -0.47 14.3 

49 120 700 12 38 39 5.39 29.2 

50 180 700 12 38 39 6.34 32.1 

51 240 700 12 38 39 1.77 23.5 

52 300 700 12 38 39 0.1 19.1 

53 120 700 12 58 59 9.87 41.6 

54 180 700 12 58 59 3.73 32 

55 240 700 12 58 59 1.25 19.5 

56 300 700 12 58 59 0.37 6.2 

57 120 700 6 126 54 51.76 183.6 

58 120 700 6 256 108 89.95 348 

59 120 700 10 126 54 102.91 420.1 

60 120 700 10 256 108 190.84 785.2 

61 120 900 8 19 19 4.98 31.5 

62 180 900 8 19 19 1.77 12.3 

63 240 900 8 19 19 1.4 12.6 

64 300 900 8 19 19 1.08 13.6 

65 120 900 8 28 29 4.85 35.2 

66 180 900 8 28 29 1.38 13.3 

67 240 900 8 28 29 0.27 8.2 

68 300 900 8 28 29 -0.5 8.8 

69 120 900 8 38 39 6.65 29.9 

70 180 900 8 38 39 0.78 9 

71 240 900 8 38 39 -0.76 3.1 

72 300 900 8 38 39 -1.52 16.8 

73 120 900 8 58 59 5.77 34.4 

74 180 900 8 58 59 0.89 13 

75 240 900 8 58 59 -1.52 13.4 

76 300 900 8 58 59 -5.08 17.4 

77 120 900 8 126 54 6.17 35.2 

78 180 900 8 126 54 -1.11 20.9 

79 240 900 8 126 54 -5.07 19.2 

80 300 900 8 126 54 -5.77 21 

81 120 900 12 19 19 13.16 81.6 

82 180 900 12 19 19 6.14 33.6 

83 240 900 12 19 19 1.23 14.7 

84 300 900 12 19 19 0.37 10.6 

85 120 900 12 28 29 16.94 69.5 

86 180 900 12 28 29 2.57 15.7 

87 240 900 12 28 29 -3.13 6.8 

88 300 900 12 28 29 -1.65 15.7 

89 120 900 12 38 39 16.98 71.3 

90 180 900 12 38 39 5.36 31.6 

91 240 900 12 38 39 -4.29 7.5 

92 300 900 12 38 39 -3.09 12.6 

93 120 900 12 58 59 12.51 72.6 

94 180 900 12 58 59 2.01 18.8 

95 240 900 12 58 59 -3.14 11.4 

96 300 900 12 58 59 -0.53 13.2 

97 120 900 12 126 54 15.09 55.2 

98 180 900 12 126 54 -5.67 26.8 

99 240 900 12 126 54 -13.84 25.2 

100 300 900 12 126 54 -11.89 22.2 

101 120 700 12 126 54 74.47 - 

102 300 700 12 126 54 21.71 - 
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2 SUPPORT VECTOR MACHINES 

Support Vector Machines (SVMs) are supervised 

learning models with associated learning algorithms that 

analyze data and recognize patterns, used for 

classification and regression analysis. The initial form of 

the support vector machines was a generalization of the 

Generalized Portrait algorithm developed in the 1960s 

[14]. However, the present form of the SVMs was 

developed by Vapnik and his coworkers at the AT&T 

Bell Laboratories in the 1990s [15]. Reducing the 

Structural risk as well as reducing the empirical risk is 

the key benefit of the SVMs compared to the neural 

networks that, in many practical applications, leads to a 

better generalization capability [16]. 

As shown in “Fig. 2ˮ, In SVM-based categorization, a 

hyper-plane is obtained, which results in an equivalent 

maximum margin between these two classes samples in 

the training dataset. Accordingly, such a classifier can be 

explained by “Eq. (1)ˮ, where w and b are the weights 

and bias vector, respectively. 

 

 
Fig. 2 SVM-based maximum margin classification. 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛( 𝑤𝑇  𝑥 + 𝑏 ) (1) 
 

Increasing the margin between these two classes is 

accomplished through reducing the risk function R(w) 

that is expressed in “Eq. (2)ˮ, exposed to the “Eq. (3)ˮ 

constraints, for the N samples of the (xi, yi) in the 

training dataset: 

 

𝑅(𝑤) =
1

2
𝑤𝑇𝑤 =

1

2
‖𝑤‖2 (2) 

  
𝑦𝑖  (𝑤𝑇  𝑥𝑖 + 𝑏) ≥ 1,   𝑖 = 1, … , 𝑁 (3) 

 

The closest samples to the hyper-plane are the support 

vectors, as depicted in “Fig. 2ˮ. The support vectors lay 

on a hyper-plane satisfying the condition of: 

 

𝑦𝑠𝑝 (𝑤𝑇  𝑥𝑠𝑝 + 𝑏) = 1 (4) 

If the samples of two classes in the training database are 

not linearly separable, another factor must be added to 

the risk function in “Eq. (2)ˮ for the inevitable error in 

the case of the samples which lay outside the permitted 

borders. Therefore, the optimization problem is 

converted for reducing the risk function that is described 

in “Eq. (5)ˮ exposed to the “Eq. (6)ˮ restrictions. As 

shown in “Fig. 3ˮ, in “Eq. (5)ˮ, 𝜉𝑖 stands for the distance 

of the support vectors' hyper-plane from the samples that 

lay outside it. Parameter C is identified as the 

regularization factor, which trades off the associated 

importance of enhancing the margin and training error-

i.e., the structural and empirical risks. 
 

R(𝑤) =
1

2
‖𝑤‖2 + 𝐶  ∑ 𝜉𝑖

𝑁

𝑖=1

 (5) 

  
𝑦𝑖  (𝑤𝑇  𝑥𝑖 + 𝑏) ≥ 1 −  𝜉𝑖 , 𝑖

= 1, … , 𝑁 

(6) 

 

 
Fig. 3 SVM classification in case of samples which are 

not linearly separable. 

 

This method, however useful, does not lead to 

acceptable classification error in the case of feature 

space, in which the orientation of the border between the 

two classes' samples is non-linear. As shown in “Fig. 4ˮ, 

in such a condition, the original feature space can be 

mapped to some feature spaces that have higher 

dimensional where the training set can be separated, via 

a nonlinear function considered as the kernel function 

[17]. 

 

 
Fig. 4 The feature space with a kernel function Mapping. 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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In this case, the SVM-based classifier system can be 

explained as: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛( 𝑤𝑇  𝜙(𝑥) + 𝑏 ) (7) 
 

Where, w and b are attained by reducing the risk function 

R (w) in “Eq. (5)ˮ exposed to the constraints of: 

 

𝑦𝑖  (𝑤𝑇  𝜙(𝑥𝑖) + 𝑏) ≥ 1 −  𝜉𝑖 ,    (8) 
 

In the training database, for the N samples, the 

regression problem can be described as a function 

approximating according to a limited number of 

observations of cases that were not observed. A margin 

of tolerance is usually considered for approximating a 

function in practical applications. For example, if the 

function to be approximated is expressed in Euro’s, the 

permitted margin of tolerance will be 0.01 in order to 

consider the Eurocent, as shown in “Fig. 5ˮ. Due to a 

limited number of observations on the function f(x), 

along with the tolerance ε permitted margin and also a 

few numbers of its values, SVM-based categorization 

between f(x) + ε and f(x) - ε can be considered as 

approximating f(x) in the tolerance permitted margin 

[18]. Consequently, formulating support vector 

machines can be generalized in order to perform 

regression as: 

 

𝑦 = 𝑓(𝑥) = ∑ 𝑤𝑖𝜙𝑖(𝑥) + 𝑏𝑖

𝑚

𝑖=1

=  𝑤𝑇𝜙(𝑥) + 𝑏 

(9) 

 

The purpose is to compute the w and b values, with 

respect to a set of available training data, therefore the 

difference is reduced between the original function and 

the estimated function. 

 

 
Fig. 5 Generalizing SVM-based categorization to SVM-

based regression [18]. 

3 LEAST SQUARES SUPPORT VECTOR 

MACHINES 

In classical SVMs, the optimization problem is solved 

via quadratic programming [19]. However, this method 

has a high computational burden shortcoming to plan 

constrained optimization. This weakness has been 

overcome using LS-SVMs that solve a linear equation 

set as a substitute for a quadratic programming difficulty 

[20]. 

The LS-SVMs optimization problem to estimate the 

function is expressed as:  

 

min     R(𝑤) =
1

2
‖𝑤‖2  +

𝐶

2
∑ 𝑒𝑖

2𝑁
𝑖=1 , 

s.t.       𝑦𝑖 = 〈𝑤, 𝜑(𝑥𝑖)〉 + 𝑏 + 𝑒𝑖  , (i =
1, … , 𝑁) 

(10) 

 

Where, ei is the regression error of the i-th training data, 

as shown in “Fig. 6ˮ, C≥0 is the regularization constant 

and N is the number of the training samples. This 

optimization problem can be regarded as a typical 

convex optimization problem that can be solved by the 

application of the Lagrange multipliers method. The 

Lagrangian is expressed by “Eq. (11)ˮ, with the 

Lagrange multipliers, 𝛼𝑖 ∈ 𝑅. 

 

𝐿𝛼(𝑤, 𝑏, 𝑒) =
1

2
‖𝑤‖2  +

𝐶

2
∑ 𝑒𝑖

2
𝑁

𝑖=1
 

                 − ∑ 𝛼𝑖{〈𝑤, 𝜑(𝑥𝑖)〉 + 𝑏 + 𝑒𝑖 − 𝑦𝑖}

𝑁

𝑖=1

 

(11) 

 

 
Fig. 6 The approximation error in LS-SVM along with 

eight samples of the training data set [20]. 

 

Differentiating the Lagrangian, the optimality 

conditions are obtained as: 

 

𝜕𝐿𝛼(𝑤, 𝑏, 𝑒)

𝜕𝑤
= 0 → 𝑤 = ∑ 𝛼𝑖𝜑(𝑥𝑖)

𝑁

𝑖=1

 

𝜕𝐿𝛼(𝑤, 𝑏, 𝑒)

𝜕𝑏
= 0  →  ∑ 𝛼𝑖 = 0    

𝑁

𝑖=1

 

(12) 

http://en.wikipedia.org/wiki/Quadratic_programming
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𝜕𝐿𝛼(𝑤, 𝑏, 𝑒)

𝜕𝑒𝑖

= 0 →  𝛼𝑖

= 𝐶 .  𝑒𝑖  , (𝑖 = 1 , … , 𝑁) 
𝜕𝐿𝛼(𝑤, 𝑏, 𝑒)

𝜕𝛼𝑖

= 0 → 〈𝑤, 𝜑(𝑥𝑖)〉 + 𝑏 + 𝑒𝑖 – 𝑦𝑖

= 0 

 

Replacement of w and e in the Lagrangian results in the 

subsequent linear Karush–Kuhn–Tucker (KKT) system: 

 

[
0 1𝑣

𝑇

1𝑣 Ω + 𝐼
𝐶⁄

] [
𝑏
𝛼

] = [
0
𝑦

] (13) 

 

In this equation, I stands the size N identity matrix, 

and  𝑦 = [𝑦1, … , 𝑦𝑁]𝑇, 1𝑣 = [1, … ,1]𝑇; 𝛼 =
[𝛼1, … , 𝛼𝑁]𝑇 are N by 1 vector. Furthermore, the element 

in row 𝑘 and column 𝑖 of Ω is computed in terms of the 

subsequent equation [21]. 

 

Ω𝑘𝑖 =  〈𝜑(𝑥𝑘), 𝜑(𝑥𝑖)〉     (𝑘 , 𝑖
= 1, … , 𝑁)   

(14) 

 

According to Mercer’s theorem [17], the inner product 
〈𝜑(𝑥), 𝜑(𝑥𝑖)〉 can be defined through a kernel K(x, xi), 

so Ω𝑘𝑖  can be expressed as “Eq. (16)ˮ. The most frequent 

formulations for the kernel function are tabulated in 

“Table 2ˮ. 

 

Ω𝑘𝑖 =  〈𝜑(𝑥𝑘), 𝜑(𝑥𝑖)〉 = 𝐾(𝑥𝑘 , 𝑥𝑖), ( 𝑘, 𝑖
= 1, … , 𝑁)     

(15) 

 

The Gaussian radial basis (RBF) function is mainly 

preferred in regression problems. Estimating the LS-

SVM-based function as well as the RBF kernel is 

described in “Eq. (14)ˮ, where 𝜎2 stands for the kernel 

parameter, and 𝛼𝑖 and 𝑏 are the solutions to “Eq. (11)ˮ. 

 

𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏
𝑁

𝑖=1
 

          = ∑ 𝛼𝑖𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖2

2𝜎2
) + 𝑏

𝑁

𝑖=1
 

(16) 

 
Table 2 Most common formulations for the kernel function 

Kernel type Formulation 

Linear 𝐾(𝑥, 𝑥𝑖) =  〈𝑥, 𝑥𝑖〉 

Gaussian radial 

basis (RBF) 𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖2

2𝜎2 ) 

Polynomial of 

degree d 

𝐾(𝑥, 𝑥𝑖) = (〈𝑥, 𝑥𝑖〉 + 𝑝)𝑑 , 𝑑 ∈ 𝑁 , 𝑝
> 0 

Multi-Layer 

Perceptron 

(MLP) 

𝐾(𝑥, 𝑥𝑖) = 𝑡𝑎𝑛ℎ(𝑘. 〈𝑥, 𝑥𝑖〉 + 𝜃), 𝑘, 𝜃
> 0 

4 EXTREME LEARNING MACHINE 

ELM is a machine learning method used in classification 

and regression for single-layer neural networks. In the 

learning process of this type of neural network, the 

number of nodes in the hidden layer can be set and 

randomly determines the weight of the inputs and hidden 

layers. The output layer weight is determined using the 

least square method. The learning process evolves 

through math changes without repetition [22]. This 

algorithm has a very fast learning speed. Experimental 

results show that this algorithm can often produce a good 

overall performance and act thousands of times faster 

than popular learning algorithms for feed-forward neural 

networks in the learning process [23]. 
In practical applications, the model should be trained 

based on a set of existing observations and then used in 

the prediction phase. Through iteration, in order to 

complete the learning process during the training period, 

the influential factors and related outcomes are put in the 

ELM model. This algorithm only requires a number of 

hidden layer nodes and in the implementation phase, the 

algorithm does not need to adjust the weight of network 

inputs and hidden biases. 
For N arbitrary distinct samples (xi , ti ), that xi = 

[xi1, xi2, . . . , xin]T ∈ Rn and ti =[ti1, ti2, . . . , tin]T ∈Rm, 

what’s more (xi, ti ) ∈Rn ×Rm (i = 1, 2, . . . , N), standard 

single hidden layer feed forward networks (SLFN) with 

Ñ hidden nodes and f(x) as an activation function, 

mathematically are modeled as below [22-24]: 

 

∑ βifi(xj)

N̅

i=1

= ∑ βif(ai. xj + bi) = tj , j

N̅

i=1

= 1, … , N 

(17) 

 

Here ai = [ai1, ai2, . . . , ain]T is the weight vector relating 

the ith hidden node with the input nodes, and bi is the 

threshold of the ith hidden node. βi = [βi1, βi2, . . . , βim]T 

is the weight vector connecting the ith hidden node and 

the output nodes ai. x j Indicates the inner product of ai 

and xi, and the activation function usually chooses 

“Sigmoid”, “Sine”, “RBF”. The above “Eq. (17)ˮ can be 

written succinctly as: 

 

Hβ = T 
H(a1, . . . , a Ñ, b1, . . . , b Ñ, x1, . . . xN )= 

[
f(a1. x1 + b1) ⋯ f(aÑ. x1 + bÑ)

⋮ ⋱ ⋮
f(a1. xN + b1) ⋯ f(aÑ. xN + bÑ)

]

N×Ñ

 

 β = [
β1

T

⋮
βÑ

T
]

N×m

, T = [
t1

T

⋮
tÑ

T
]

N×m

 

(18) 

 



26                                          Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 1/ March – 2021 

 

© 2021 IAU, Majlesi Branch 
 

H is named the hidden layer output matrix of the neural 

network; the ith column of H is the ith hidden node 

output according to inputs x1, x2, . . ., xN.  

It can be proven that network parameters do not need to 

be set up when the number of hidden nodes is sufficient, 

and the activation function f(x) is an infinite distinction 

in each interval [25]. At the start of the training phase, 

the SLFN randomly appoint input connection weights a 

and hidden layer node biases b. In addition, while the 

training process remains unchanged, any continuous 

function can be estimated approximately. In general, to 

obtain a good disposition, take Ñ ≪ N. 
After the input weights and hidden layer biases are 

specified by random assignment, the hidden layer of the 

output matrix H can be obtained using the input samples. 

So, SFLN training turns into solving linear equations Hβ 

= T least-squares solution. 

 

‖H(a1, . . . , a Ñ , b1, . . . , b Ñ)β̂ − T‖ 

  = ‖H(a1, . . . , a Ñ , b1, . . . , b Ñ)β − T‖β
min  

(19) 

 

“Eq. (19)ˮ least-squares solution of the above liner 

system is: 

 

β̂ = H†T (20) 
 

In “Eq. (20)ˮ, H† stands for Moore-Penrose [26], which 

is generalized in opposition of the matrix H hidden layer 

output. Generally, the optimal solution β̂ comprises the 

next characteristics: 

(1) According to β̂, the least training error is attained by 

the algorithm; 

(2) The minimum Pattern capability in optimal 

generalization, which is related to the output connection 

weights and the network could be performed. 

(3) β̂ is unique so that we do not need a locally optimal 

solution. 

In short, we can say, given a training set (xi , ti ) ∈ Rn × 

Rm (i = 1, 2, . . . , N), the activation function f (x) and 

hidden node number Ñ, and after that the ELM algorithm  

as followings at 3 stages: 

Stage 1: Describing the hidden layer node number Ñ, 

randomly dedicate input weights ai and concealed layer 

biasesbi, (i = 1, 2,… ,  Ñ ). 

Stage 2: calculating the matrix H hidden layer output. 

Stage 3: in terms of Eq. (20), determining the output 

weight β. 

The benefits of the ELM algorithm are significant. 

Without iterative gradient-based training, many of the 

limitations of conventional algorithms based on regular 

gradients such as local minima, overtraining, and high 

computing are avoided. For each active infinite 

differentiation function, the ELM with hidden layer 

neurons can learn distinct samples with exactly zero 

error. Also, ELM training can always guarantee the best 

results with respect to the designated input weight In 

addition, ELM training can always guarantee the best 

results according to the assigned input weights. ELM 

also distinguishes it from traditional NNs in superior 

generalization capability without the overtraining issue 

[27]. 

5 RELEVANCE VECTOR MACHINE (RVM) 

RVM is a specific case of a sparse kernel model, which 

indicates a Bayesian treatment of a generalized linear 

model of identical functional form to Support Vector 

Machine (SVM). RVM workflow and solution are 

different from SVM, which provides a possible 

interpretation of its output. This algorithm reduces 

complexity by creating models with a parametric 

structure and process which, together, is suitable for the 

content of data information [28].    

Initially, the RVM has been derived and tested based on 

binary classification where it was expected to predict the 

membership in one of the classes given the input x. This 

statistical convention follows and promotes the 

generalization of the linear model. It follows the 

statistical convention and generalizes the linear model 

using the sigmoid logistic function σ(y) = 1/(1 + e−y) 

to y(x) and adopting the Bernoulli distribution for 

P(t|x), the probability is written as [29]: 

 

P(t|x) = ∏ σ{y(Xn; W)}tn[1

N

n=1

− σ{y(Xn; W)}]1−tn 

(21) 

 

Nevertheless, unlike the regression case, weight is not 

integrative analytically, and so the closed-form 

expression for either the weight posterior P(w|t, α) or 

the marginal likelihood P(t|α), with α a vector N + 1 

hyper-parameters are denied. based on Laplace’s 

method, The approximation approach  is used as  next 

[29-30]: 

1. The most feasible maximum posterior weights (WMP) 

are found for a constant value of α, due to the location of 

the posterior distribution mode. Since P(w|t, α) ∝ 

P(t|w) P(w|α), this is equal to find the maximum, over 

w, of: 

 

log{P(t|w)p(w|α)}

= ∑[tn

N

n=1

log 𝑦𝑛

+ (1 − tn) × 

                                        log (1 − yn)]

−
1

2
wTAW 

(22) 
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2. Laplace’s method is known as an easily quadratic 

approximation to the log-posterior around its state. “Eq. 

(22)ˮ is twice discriminated, and after that provides: 

 

∇w∇wlogp(p(w|t, α)|WMP
= −(φTBφ + A) (23) 

 

Where, B = diag (β1, … , βN) is a diagonal matrix with βn 

= σ{y (Xn)}[1 _ σ(Xn)]. 

 

3. The hyper-parameters is updated by the use of: 

 

αi
new =

γi

μi
2 (24) 

 

Where, γi ≡ 1 − αi ∑ ;ii  ∑  ii  stands for the ith diagonal 

element of the covariance ∑ = (φTBφ + A)−1 and μ is 

as same as the WMP =∑ φTBt. during presenting an 

extension to the multi-class issue, the chief RVM 

formulation fundamentally handles the K multi-class 

problem as a series on n one-against-all binary 

categorization problem. Accordingly, this would be 

interpreted into independently training n binary 

classifiers. The possibility in eq. (21) can be generalized 

to regular multinomial form as following: 

 

P(t|w) = ∏ ∏ σ{yK(Xn; Wk)}tnk

K

k=1

N

n=1

 (25) 

 

Where,  tnk stands for the index variable of observing n 

to be in class k; yk stands for the predictor of class k. At 

this point, a true multi-class probability can be described 

as P (t|w) =∏ ∏ σ{yK; y1, y2, … , yk}tnkK
k=1

N
n=1  , where 

each class of ykpredictors   is coupled in the multinomial 

logic function. 

 

σ(yK; y1, y2, … , yk) =
eyk

(ey1 + ey2 + ⋯ + eyk)
 (26) 

5.1 RVM REGRESSION MODEL 

The regression model of RVM begins with the idea of 

linear models, which are commonly utilized in a variety 

of regression issues. Given a data set of input target 

pair {𝑥𝑛 , 𝑡𝑛}𝑛=1
𝑁 , considering scalar-valued target 

functions only, we follow the standard probabilistic 

formulation and presume that the targets are samples 

from the model with increasable noise [31]: 

 

𝑡𝑛 = 𝑦(𝑥𝑛; 𝜔) +∈𝑛 (27) 
 

Where, ∈𝑛 are independent samples from some noise 

process which is further considered to be mean-zero 

Gaussian with variance 𝜎2. So the notation determines a 

Gaussian distribution over 𝑡𝑛with mean 𝑦(𝑥𝑛) and 

variance 𝜎2. Given the assumption of independence of 

the 𝑡𝑛, the probability of the complete data set can be 

written as: 

𝑝(𝑡|𝜔, 𝜎2) = ∏ 𝑁(𝑡𝑖|𝜙𝑖𝜔𝑖 , 𝜎2)
𝑁

𝑖=1
 

                      = (2𝜋𝜎2)−𝑁 2⁄ 𝑒𝑥𝑝{−
1

2𝜎2
||𝑡

− 𝜙𝜔||2} 

(28) 

 

Where, = (𝑡1, . . . 𝑡𝑁)𝑇 , 𝜔 = (𝜔1, . . . 𝜔𝑁)𝑇 , 𝜙𝑁×𝛭 =
[𝜙1, . . . , 𝜙𝑀] is a general N×M design matrix with 

column vectors 𝜙𝑚 =
[1, 𝐾(𝑥𝑚, 𝑥1), 𝐾(𝑥𝑚, 𝑥2), . . . , 𝐾(𝑥𝑚, 𝑥𝑚)] and which 

𝐾(𝑥𝑚 , 𝑥1) is a kernel function. 

With as many parameters in the model as training 

examples, we would look for maximum-likelihood 

calculation of 𝜔 and 𝜎2 from eq. (28) to induce 

considerable over-fitting. To avoid this, we should add 

the penalty to the likelihood; we encode a priority for 

less complex functions by making the popular choice of 

a zero-mean Gaussian prior distribution over 𝜔: 

𝑝(𝜔|𝛼) = ∏ 𝑁(

𝑁

𝑖=0

𝜔𝑖|0, 𝛼𝑖
−1) (29) 

Here 𝛼 is a vector of 𝑀 hyperparameters. To full-out the 

characteristics of this hierarchical prior, we must explain 

hyper priors over 𝛼, as well as over the final remaining 

parameter in the model, the noise variance 𝜎2. The 

appropriate priors are Gamma distributions since it is the 

Gauss distribution variance reciprocal conjugate 

distribution. 

 

𝑝(𝛼) = ∏ 𝐺𝑎𝑚𝑚𝑎(

𝑁

𝑖=0

𝛼𝑖|𝑎, 𝑏) (30) 

  
𝑝𝑝(𝛽) = 𝐺𝑎𝑚𝑚𝑎(𝛽|𝑐, 𝑑) (31) 

 

With 𝛽 ≡ 𝜎2 and where: 

 

𝐺𝑎𝑚𝑚𝑎 (𝛼|𝑎, 𝑏) = 𝛤(𝑎)−1𝑏𝑎𝛼𝑎−1𝑒−𝑏𝑎 (32) 
  

𝛤(𝑎) = ∫ 𝑡𝑎−1

+∞

0

𝑒−𝑡𝑑𝑡 (33) 

 

Where, 𝛤(𝑎) is the gamma function and to make these 

priors non-informative, we might fix their parameters to 

small values, such as 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0, and then: 

 

𝑝(𝜔𝑖|0, 𝛼𝑖
−1)𝐺𝑎𝑚𝑚𝑎(𝛼𝑖|𝑎, 𝑏)𝑑𝛼𝑖 (34) 
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Since this prior distribution is Automatic Relevance 

Determination (ARD) prior distribution, the sample 

vectors matching to nonzero weights of the basic 

functions are named relevance vectors after the training 

is completed and this training model is named relevance 

vector machine. Having defined the prior, Bayesian 

inference is obtained by calculating the posterior on all 

unknowns according to the data: 

 

𝑝(𝜔, 𝛼, 𝜎2|𝑡) =
𝑝(𝑡|𝜔, 𝛼, 𝜎2)𝑝(𝜔, 𝛼, 𝜎2)

𝑝(𝑡)
 (35) 

 

Nevertheless, we cannot work out the solution of the 

posterior immediately because we cannot carry out the 

normalizing integral 𝑝(𝑡) =

∫ 𝑝(𝑡|𝜔, 𝛼, 𝜎2)𝑝(𝜔, 𝛼, 𝜎2)𝑑𝜔𝑑𝛼𝑑𝜎2. Alternatively, we 

analyze the posterior and then the posterior distribution 

of weights is gained from Bayes rule: 

 

𝑝(𝜔|𝑡, 𝛼, 𝜎2) = 𝑁(𝜔|𝜇, 𝛴) (36) 
 

Where the posterior covariance and mean are: 

 

𝛴 = (𝐴 + 𝜎−2𝜙𝑇𝜙)−1 (37) 
  

𝜇 = 𝜎−2𝛴𝜙𝑇𝑡 (38) 
 

We have defined 𝐴 = 𝑑𝑖𝑎𝑔(𝛼0, 𝛼1, . . . , 𝛼𝑁). So, 

machine learning becomes a search for the 

hyperparameters posterior-most probable. Predictions 

for new data are constructed with respect to the 

integration of the weights to take the marginal likelihood 

for the hyperparameters, which can be identified as the 

type-II maximum likelihood method. 

 

𝑝(𝑡|𝛼, 𝜎2) = ∫ 𝑝(𝑡|𝜔, 𝜎2)(𝜔|𝛼)𝑑𝜔

= (2𝜋)− 
𝑁
2 |𝜎2𝐼 + 

                    𝜙𝐴−1𝜙𝑇|− 
1
2exp{−

1

2
𝑡𝑇(𝜎2

+ 𝜙𝐴−1𝜙𝑇)−1𝑡} 

(39) 

 

For regression, the type-II maximum probability issue 

usually solved by three methods, which include MacKay 

iteration estimation, the expectation-maximization 

iteration estimation, and the fast marginal likelihood 

maximization method. The ultimate hyper-parameters 

upgrade outcomes of these three methods are as follows:  

(1) MacKay iteration estimation [32]: 

 

𝛼𝑖
𝑛𝑒𝑤 =

𝛾𝑖

𝜇𝑖
2 (40) 

  
𝛾𝑖 = 1 − 𝛼𝑖𝛴𝑖𝑖 (41) 

(𝜎2)𝑛𝑒𝑤 =
||𝑡 − 𝜙𝜇||2

𝑁 − 𝛴𝑖𝛾𝑖

 (42) 

 

(2) The expectation maximization iteration estimation 

[33]: 

 

𝛼𝑖
𝑛𝑒𝑤 =

1 + 2𝑎

[𝜔𝑖
2] + 2𝑏

 (43) 

  

(𝜎2)𝑛𝑒𝑤 = ||𝑡 − 𝜙𝜇||2 +
(𝜎2)𝑜𝑙𝑑

𝑁
𝛴𝑖𝛾𝑖 

(44) 

 

(3) Fast marginal likelihood maximization method [34]: 

 

(a) If 𝑄𝑖
2 > 𝑆𝑖  and 𝛼𝑖 < ∞, then 𝛼𝑖

𝑛𝑒𝑤 =
𝑆𝑖

2

𝑄𝑖
2−𝑆𝑖

  

 

Where:  

 

𝑄𝑖 ≜ 𝜙𝑖
𝑇𝑐−𝑖

−1𝑡, 𝑠𝑖 ≜ 𝜙𝑖
𝑇𝑐−𝑖

−1𝜙𝑖 and 𝐶 = 𝜎2𝐼 + 𝜙𝐴−1𝜙𝑇.  

 

(b) If 𝑄𝑖
2 < 𝑆𝑖 then 𝛼𝑖

𝑛𝑒𝑤 = ∞. 

6 RESULTS AND DISCUSSION 

The database of measurements of the LT and MTR and 

the corresponding input parameters, listed in “Table 1ˮ 

[9] was used to develop the ELM, RVM and, LS-SVM 

models. From this database, shown in “Table 1ˮ, thirty-

three samples marked in bold, were used for evaluating 

the accuracy of the models, which were trained by the 

rest of the samples.  

For purpose of normalization, we scaled all of the input 

and target values within the range of [-1 +1] as: 

 

𝑝𝑛 = 2 ∗
𝑝 − (

𝑚𝑎𝑥 + 𝑚𝑖𝑛
2

)

(𝑚𝑎𝑥 − 𝑚𝑖𝑛)
 (45) 

 

Where, max and min stand for the maximum and 

minimum input or the output values in the entire dataset, 

respectively, 𝑝 stands for the input or output and 𝑝𝑛 

signifies the corresponding normalized value. 

With respect to the normalized dataset, free-source 

MATLAB implemented the ELM and RVM models, and 

implementations were prepared by [35]. Moreover, LS-

SVM models were o\ implemented using the LS-SVM 

lab toolbox version 1.8 for MATLAB. Also, The toolbox 

offers a function for the kernel parameters and 

regularization constant tuning [36]. The ELM and RVM 

models’ best parameters were also obtained through a 

wide numerical search, as listed in “Table 3ˮ. In 

progress, based on the trained models, the outputs were 

predicted and scaled to their original range as: 
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�̂� = 𝑦𝑛 ∗ (
𝑚𝑎𝑥 − 𝑚𝑖𝑛

2
) + (

𝑚𝑎𝑥 + 𝑚𝑖𝑛

2
) (46) 

 

In which, �̂� is the predicted output and 𝑦𝑛 is its 

normalized value. 

 
Table 3 The LS-SVM, ELM and, RVM parameters 

Model Parameter MTR LT 

LS-

SVM 

RBF Kernel 

parameter (𝜎2) 
0.2 1 

Regularization factor 

(C) 
10000 6.061*104 

RVM Kernel parameter 1.64 1.4 

ELM 

kernel parameter 9 40 

Regularization 

coefficient 
1700000 1000000 

 

For comparison purposes, the models' predictive 

accuracy was evaluated based on the normalized. 

Outputs using the Mean Square Error (MSE), are 

defined as: 

 

𝑀𝑆𝐸 =  
∑ ( 𝑦𝑛𝑖

 −  𝑦𝑛�̂�
  )2𝑁

𝑖=1

𝑁
 (47) 

 

In this equation, the measured and the predicted 

normalized outputs are signified by 𝑦𝑛𝑖
 and𝑦𝑛�̂�

, 

respectively, and N stands for the training samples 

number. The calculated MSE value together with the 

MSE of the ANN method proposed by [9] are listed in 

“Table 4ˮ. As it can be observed, the LS-SVM method 

benefits from better accuracy for both the test and 

training and therefore a better generalization capability 

than the ANN method. 

For further evaluation of the LS-SVM models’ accuracy, 

the coefficient of determination (R2), defined as “Eq. 

(48)ˮ is also calculated. 

 

𝑅2 = 1 − 
∑ ( 𝑦𝑖  −  𝑦�̂�   )

2𝑁
𝑖=1

∑ ( 𝑦𝑖  −  𝑀 )2𝑁
𝑖=1

 (48) 

 

In this equation, 𝑦𝑖  and 𝑦î denote the measured and the 

predicted outputs, respectively, and M stands for the 

measured outputs mean value. The computed values of 

R2 are tabulated in “Table 5ˮ indicating the high degree 

of LS-SVM models' precision. The predicted outputs 

alongside their corresponding target values are depicted 

in “Figs. 7, 8ˮ. It can be observed that despite the 

outputs' wide numerical range, the LS-SVM models are 

able to predict them within a satisfactory level of 

accuracy. 
 

Table 4 Comparisons of various models' mean square error 

Database Method MSE 

Output  MTR LT 

Training 

LS-SVM 8.875*10-5 1.808*10-4 

ANN [9] 1.4*10-3 1.6*10-3 

ELM 4.45 * 10-5 8.78 * 10-4 

RVM 5.05 * 10-4 1.695 * 10-4 

Testing 

LS-SVM 9.544* 10-4 6.69*10-4 

ANN [9] 3.8*10-3 2*10-3 

ELM 2.299 * 10-3 3.04 * 10-3 

RVM 2* 10-3 2.286 * 10-3 

 

Table 5 The LS-SVM predictive models' coefficient of 

determination (R2) 

Database Output R2 

Training 
MTR 0.9983 

LT 0.9943 

Testing 
MTR 0.9728 

LT 0.9794 

7 CONCLUSION 

One of the novel methods to improve the surface quality 

of materials is electro-discharge coating. In this process, 

the material removal rate as an index of the processing 

speed, and the average coated layer thickness as an index 

of the surface quality are important parameters and 

tuning the input parameters, which are pulse-on time, 

pulse-off time, current intensity, concentration pressure, 

and sintering temperature, so as attaining the desired 

value of them is an important task in this process. Two 

independent models are established for the two outputs 

and therefore, the models do not have any relation with 

each other. As a result of the nonlinearity of the effect of 

the input parameters on the outputs and the wide 

numerical range of them, the development of a precise 

predictive model of the outputs based on the input 

parameters can be beneficial. In this research, a 

comparative study of three powerful machine learning 

algorithms, RVM, ELM and LS-SVM for this purpose 

has been investigated. Error analysis of the three models 

suggested that the highest degree of accuracy can be 

obtained by the LS-SVM models, even in comparison 

with the previous ANN-based models. The values R2 

above 0.99 for the training data and above 0.97 for the 

test data show the high accuracy and generalization 

capability degree related to the LS-SVM models, which 

can be applied for the input parameters tuning in order 

to attain a preferred value of the outputs.  
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Fig. 7. The predicted values of MTR alongside with the corresponding targets. 

 

 

 
Fig. 8. The predicted values of LT alongside with the corresponding targets. 
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