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Abstract: Damage mechanics is one of the most important parts of mechanical 
engineering that determines the time life for different mechanical elements. The 
most various models that have been provided so far in damage mechanics, are related 
to ductile or brittle damage. Nowadays, the investigation of materials by ductile-
brittle damage behavior has been considered by researchers. Kintzel quasi-brittle 
damage model is one of the best damage models in this field. Therefore, in this paper, 
due to the application of 2024 Al alloy in different industries especially aerospace 
and the ductile-brittle damage behavior of this alloy, the implementation of the 
Kintzel quasi-brittle damage model is presented. For this purpose, by writing an 
explicit user subroutine VUMAT in finite element software (ABAQUS), a test 
sample under periodic loading has been modeled. The results of this research showed 
that the complete failure occurs after the 12th cycle under a periodic loading. Also, 
2024 Al alloy showed a good ultimate tensile strength (about 400 MPa) under 
periodic loading. The magnitude of ductile and brittle damage variables are 0.23 and 
0.38, respectively. 
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1 INTRODUCTION 

Damage mechanics is one of the branches of mechanical 

engineering that predict and model the occurrence of 

cracks in the materials or predict failure during industrial 

processes. Damage mechanics researches can be 

classified into four general categories of ductile, brittle, 

creep, and fatigue damages. Ductile damage occurs 

when the failure is along with the significant plastic 

deformation. The damage phenomenon can be called 

brittle, whenever it occurs on a mesoscale, no significant 

plastic strain occurs. At high temperatures (above one-

third of the melting temperature), which is important for 

the creep phenomenon, the material may be deformed 

under constant stress.  

In addition, in this case, if the strain is large enough, 

separation occurs within the grain that could lead to 

creep damage. When the material is affected by 

repetitive loading, the damage develops with the 

repeating plastic strain which leads to fatigue damage. 

Some materials show ductile and brittle damage 

behavior at the same time in different directions. These 

materials can be called ductile-brittle. These materials 

will first show plastic strain under different loading 

conditions. The micro-porosity is created in the piece 

and they are joined together to make micro-cracks, and 

afterwards, due to the growth of the micro-cracks and 

voids, the brittle damage will be activated.  

Ultimately, the overall damage will be caused as quasi-

brittle damage or ductile-brittle damage. One of these 

materials is the 2024 aluminum alloy, which is largely 

used in the aerospace industry. Figure 1 shows the 

fracture cross sections of the 2024 Al alloy in various 

directions. As in the “Fig.1” is shown, the samples along 

the longitudinal and transversal direction have a 45 

degree break cross section (ductile damage), while the 

prepared sample from small transversal direction had 90 

degrees break cross section (brittle damage). Therefore, 

it can be said that the 2024 Al alloy will show ductile-

brittle damage behaviour. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1 2024 Al alloy fracture cross-section along different 

direction [16]. 

 

At first, the damage patterns such as Chabanet activities 

were defined by the growth of voids in the volumetric 

elements of the material [1]. Then, the basic principles 

of damage mechanics were established by Kachanov [2]. 

In the following, the finite element models such as 

Verhoosel et al were considered [3]. Lemaitre is among 

the people who have done a lot of work in the field of 

damage mechanics. Lemaitre damage model is the most 

famous ductile damage model. In this model, the damage 

is associated with a high plastic strain. In the Lemaitre 

damage model, a thermomechanical variable, which 

indicates load tolerance reduction in an irreversible 

process, is introduced as the damage variable [4-6].  

In addition to the Lemaitre who used the equivalent 

strain principle to present a model for ductile damage, 

another model for the ductile damage was presented 

based on the equivalent energy. Gurson could be 

mentioned among other people who worked in damage 

mechanics [7]. The plastic flow analysis is carried out in 

the Gurson model in a porous medium assuming that the 

behaviour of the material is continuous. In this model, 

voids are presented indirectly and only affect the overall 

behaviour of the material. This effect is averaged in the 

material and its effect on the yield condition of the 

material is considered. The initial formulation of this 

model was presented by Gurson and was then modified 

by Tvergaard and Needleman [8].  

Rice and Tracey [9] defined material failure in cases 

where the damage variable grows and reaches a certain 

threshold. However, over the past three decades, the 

study of materials with a dual ductile and brittle 

behaviour has been highly considered. In this regard, 

Quan et al. [10] first studied the microstructure of the 

2024 Al alloy. Steglich et al. [11] investigated the 

behaviour of the 2024 aluminium alloy under uniform 

vertical loading. Vyshnevskyy et al. [12-13] used the 

continuum damage mechanics Lemaitre model for 

predicting of cyclic lifetime 2024 Al alloy. Finally, 

Kintzel examined it to provide a model for quasi-brittle 

materials and succeeded in providing a homogeneous 

elastoplastic damage model based on minimizing stress 

intensity integral [14-16].  

Berto and Lazzarin [17] reviewed some local applicable 

approaches near the stress raisers in the notched 

components. Afterwards, they developed a new 

approach based on the volume strain energy density 

(SED), which has been applied to assess the brittle 

failure of a large number of materials. Ren et al. [18] 

proposed a rate-dependent model for the simulation of 

quasi-brittle materials. They developed an explicit 

integration algorithm to implement the proposed model 

in the structural simulation. Finally, the results were 

validated by a series of numerical tests that cover a wide 

variety of stress conditions and loading rates.  
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Wang and Waisman [19] proposed a coupled 

continuous/discontinuous approach to model two failure 

phases of quasi-brittle materials in a coherent way. Their 

approach involved an integral-type nonlocal continuum 

damage model coupled with an extrinsic discrete 

interface model. Riccardi et al. [20] obtained a numerical 

simulation of two-dimensional fracture processes of 

quasi-brittle materials by means of the Embedded Finite 

Element Method. They presented a modified crack-

tracking algorithm, considering the evolution of the root 

for the identification of the crack path. Pereira et al. [21] 

presented a numerical study towards the propagation and 

branching of the cracks in the quasi-brittle materials, 

using a new effective rate-dependent damage model.  

As it can be seen in the literature review, most of past 

researches in damage mechanics are based on single 

damage mechanisms like ductile or the brittle one. In 

new researches for ductile-brittle material like 2024 Al 

alloy, fewer numerical studies based on FEM by writing 

a user subroutine to show the ductile-brittle behaviour of 

this material under periodic loading have been 

conducted. Therefore, in this paper, the Kintzel quasi-

brittle damage model was implemented by writing an 

explicit user subroutine VUMAT. After that, the 

behaviour of 2024 Al alloy round bar was obtained 

under periodic loading in ABAQUS software. Finally, 

by computing ductile and brittle damage variables, the 

effect of ductile part and brittle part on total damage of 

material was investigated. 

2 CONTINUUM DAMAGE MECHANICS 

Damage mechanics is suitable in the fields of modeling 

and material damage expression in order to predict the 

onset or growth of material degradation, whereas it is 

very complicated for practical engineering analysis. 

Damage mechanics is broadly related to continuum 

mechanics. In most researches in damage mechanics, a 

series of state variables have been used to study the 

influence of damage resulting from the 

thermomechanical loading on the engineering 

component lifetime. From the physical point of view, the 

damage can be defined in terms of the reduction of the 

effective cross-sectional area due to the cracks and voids 

in a volumetric element of the material (“Eq. (1)ˮ). 
 

  , 0 1DA
D D

A
                                                          (1) 

 

Where, AD represents the cross-section of the cracks and 

voids and A  is the total cross-section. According to this 

definition, the quantity variable of damage is between 

zero and one, where 0D   indicates no-damage state 

and 1D   indicates a breakdown of the cross section. In 

experimental works, critical damage variable crD will 

be less than one. 

2.1. Kintzel Quasi-brittle Model 

In this section, the Kintzel quasi-brittle model will be 

briefly described along with the governing relationships 

[15]. At first, the ductile and brittle damage models are 

presented separately and then the composite damage 

model is expressed. For ductile damage, a model that is 

essentially similar to the model proposed by Lemaitre is 

used. In this model, the damage growth is based on the 

amount of energy released by Y in accordance with “Eq. 

(2)ˮ [15]. 
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In this equation, Y is a scalar as the amount of released 

energy. Also, k  and i are strain internal variables, 

which are strain due to the kinematic hardening and the 

isotropic hardening, respectively. kH  is the kinematic 

hardening modules and iH  is the isotropic hardening 

modules. C  is an elastic stiffness tensor, which is based 

on the lame’s constants and (:) is expressed double 

product multiply. D  is the damage variable which has 

been already described it (a quantity that is always 

between zero and one). Eq. (3) expresses the relationship 

between the stresses caused by hardening and the 

Cauchy’s stress tensor. 
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Where σ  is the Cauchy’s stress tensor of the material 

without damage. Qk  and Qi  are stress variables due to 

the kinematic and isotropic hardenings that are 

conjugate to the internal strains k  and i , respectively. 

Accordingly, the effective stress levels of the damaged 

materials are given in “Eq. (3)ˮ. p , yield function 

surface, which indicates the space of allowed stresses, 

will be introduced in accordance with “Eq. (4)ˮ. In this 

model, the type of von-Mises function is considered as 

follows: 

 

     3
  :   0

2

p eq
k k i odev Q dev Q Q Q               (4) 

 

In “Eq. (4)ˮ, dev is the abbreviation of the deviatoric part 

of each tensor. 
eq
oQ  is the initial yield threshold. By 

making some corrections to consider the damage and 
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hardening on the model, the new form of the yield 

function will be in the form of “Eq. (5)ˮ. 
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In this equation, the parameters 1S  and M  have constant 

values and will be obtained from the matching of the 

experimental and simulation results. 𝐵𝑘 and 𝐵𝑖  are also 

defined as the saturation values of hardening stresses kQ  

and iQ , respectively. By applying this yield function, 

we can express the growth rate of damage variable based 

on a differential equation, which p  is a plastic 

multiplier (“Eq. (6)ˮ). 
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In addition to ductile damage that is caused by the 

growth of vacancy in the sample, the brittle damage will 

also affect the material failure. To describe this 

phenomenon, a new model is presented, which in this 

model also a function called energy released is initially 

defined in the form of “Eq. (7)ˮ [15]. 
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Where 𝑌 is the amount of released energy. Also,   and 

b  are internal strain variables that are related to 

damage. It should be noted that H  and bH  are the 

relative modulus of hardening. 
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  is so-called shift tensor which has been introduced for 

describing cyclic loading effects (similar to Armstrong-

Frederick-type hardening) [15]. Based on these 

variables, the b  function is similar to the stress 

permissible space defined in the ductile damage part and 

is introduced in “Eq. (9)ˮ. 
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In “Eq. (9)ˮ, N and S2 are constant parameters of the 

material. Like the yield function presented in the ductile 

damage part, the brittle damage function can also be 

corrected by adding new terms in the form of “Eq. (10)ˮ. 
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Where bB  and B  are the parameters of the material. 

Based on the above equations, the differential equation 

for the development of brittle damage variable can be 

written similar to the ductile damage part (“Eq. (11)ˮ). 
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Where, b  is similar to the plastic multiplier of the 

ductile part and it is used to solve the differential 

equation. Finally, the overall damage is achieved by a 

combination of variables of ductile pD  and brittle 

damage bD . In the Kintzel quasi-brittle damage model, 

the overall damage variable is obtained from the linear 

combination of ductile and brittle damage variables 

according to “Eq. (12)ˮ [15]. p and b  are the 

coefficient of the ductile and brittle damage variable, 

respectively. 
 

p p b bD D D   ,          1b p                        (12) 

3 IMPLEMENTATION OF THE KINTZEL QUASI-

BRITTLE DAMAGE MODEL 

In this section, a flowchart for an implementation of the 

Kintzel quasi-brittle damage model will be shown based 

on the equations presented in Section 2. According to 

this flowchart, this model can be used in ABAQUS by 

writing a user subroutine VUMAT. The Kintzel quasi-

brittle damage algorithm is shown in “Fig. 2ˮ.  

As discussed before, the problem can be broken to 

ductile and brittle parts. For solving this numerical 

problem, the computational plasticity approach should 

be used. In this approach, the first-order forward Euler 

explicit integration scheme has been used. At first, the 

elastic predictor should be defined as the trial stress in 

(“Eq. (13)ˮ). After that, by using the effective stress 

(“Eq. (14)ˮ), the Von-Mises yield surface should be 

calculated (“Eq. (4)ˮ). In order to find the plastic strain, 

the plastic flow direction (“Eq. (15)ˮ) and the plastic 

multiplier (“Eq. (16)ˮ) are needed. Then, by having a 

plastic strain, the ductile state variables can be obtained 

(“Eq. (18)ˮ). Finally, the ductile damage variable (“Eq. 

(19)ˮ) could be fined by solving the differential equation 

(“Eq. (6)ˮ). The same method was used for solving the 

brittle part to find brittle damage variable. In the end, the 
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linear combination of these two damage variable made 

the total damage variables. By having total damage 

variable, the new effective stresses and the new yield 

surface could be calculated to run the flowchart again. 

 

 

Fig. 2 The Kintzel quasi brittle damage model algorithm. 
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4 RESULT 

In this section, the results of the implementation of the 

Kintzel quasi-brittle damage model are presented for the 

2024 Al alloy under periodic loading in ABAQUS. In 

order to implement the quasi-brittle damage model in 

this software, the finite element coding as a user 

subroutine VUMAT has been used. As shown in “Fig. 

3ˮ, this sample is used for numerical simulation.  

All sample dimensions shown in this figure are in mm. 

The mechanical properties of the alloy related to elastic 

and plastic part, ductile and brittle damage are presented 

in “Table 1ˮ, which will be used as inputs. The sample 

is subjected to a periodic loading in term of 

displacement. The value of this displacement is 0.0625 

mm and will be applied along the axis to the upper edge 

of the sample. So that at a time, the sample will be under 

tension and after that it will be under compression.  

 

Fig. 3 Geometrical dimension of simulation sample [16]. 

 

One of the most important factors affecting the analysis 

of mechanical problems by finite element software is the 

structural elements.  
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In this modelling and for the analysis, an 4CAX R  

element that represents a 4-node bilinear axisymmetric 

element has been used. With the repetition of modelling 

in finite element software and having about 200 to 300 

elements in the sample, a good convergence is achieved 

in the results. In this section, the results of using the 

Kintzel quasi-brittle damage model under periodic 

loading are presented and the results are compared with 

the results of Kintzel’s experimental work. 
 

 

Table 1 Mechanical & Damage properties of Al 2024 [16] 

Parameter Value 

E 6700 (MPa) 

v 0.30 

eq
oQ 225 (MPa) 

iH 501.252 (MPa) 

kH 180000 (MPa) 

iB 6.84 (MPa) 

kB 3050 (MPa) 

M 1.6 

1S 1.5 

N 1.25 

2S 1.25 

H 0.992 (MPa) 

B 121.50 (MPa) 

d 0.86 

b 0.14 

 

At first, to verify the results, the stress-strain curve 

obtained through the experimental works is compared to 

the curve obtained from the simulation in “Fig. 4ˮ.  
 

 
Fig. 4 Comparison of the stress-strain curve for 

experimental data [16] & simulation data for 2024 Al alloy 

under cyclic loading. 

It can be said that with starting from the zero load and 

stretching the sample, the stress values will increase up 

to about 250 MPa. Then, by changing the type of loading 

into compression state, the stress values will gain 

negative amounts. Finally, in a tensile state, the ultimate 

tensile stress will be about 400 MPa, and in compression 

mode it will be a little more than that, which eventually 

will fracture through the repetition. In “Fig. 4ˮ, in order 

to make it easier to display, only a comparison of a cycle 

is shown. An appropriate validation between the 

experimental and the numerical results was observed. 

The reason for the slight difference between the 

numerical and experimental data can be seen in the 

difference between the values of ductile and brittle 

damage coefficients. 

 

 
 

Fig. 5 Ductile damage variable versus the number of the 

cycle for 2024 Al alloy under strain 0.04. 

 

The variations in the ductile damage, the brittle damage 

and the total damage in terms of the number of cycles 

for the strain range of 0.04 are shown in “Fig. 5 up to 

Fig. 7ˮ, respectively.  

 

Fig. 6 Brittle damage variable versus the number of the 

cycle for 2024 Al alloy under strain 0.04. 
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Fig. 7 Total damage variable versus the number of the 

cycle for 2024 Al alloy under strain 0.04. 
 

As shown in these figures, the values of the damage 

variable increase with a slight gradient from zero and the 

damage growth continued until the twelfth cycle. By 

increasing the load on the sample, the micro-voids and 

the micro-cracks are created in the sample; thus the 

plastic strain in the material is increasing. In this way, 

the ductile damage begins to occur and at the same time, 

with the creation of micro-cracks in the material and 

their interconnection based on the amount of energy, the 

brittle damage begins to be activated. Finally, due to the 

strain range of the sample, a complete failure occurs in 

the 12th cycle. The value of the ductile damage variables 

will increase to 0.23, but the brittle damage variable 

increased up to 0.38. The reason for the stress values will 

gain the negative amounts value of variations can be 

found in the dependence of these two variables on the 

amount of released energy. 

As shown in the equations related to definition of the 

brittle and ductile damage variables, the slope of energy 

released changes in the brittle damage are more than the 

ductile one, which causes the differences in the values of 

these two variables. Also, since the 2024 Al alloy has a 

high strength to weight ratio, it can be said that in the 

uniaxial tensile test, this aluminium alloy has less 

elongation compared to other aluminium alloys. 

Therefore, the most aluminium alloys failure occurs 

slowly with rupture, but the 2024 Al alloy has more 

sudden breakdown rather than other Al alloys. 

According to “Fig. 5ˮ, the value of 0.23 can be identified 

as the critical value of the ductile damage variable. After 

that, the increase in the ductile damage variable, and 

ultimately the total damage variable and inducing the 

high stresses to the sample, cause a sudden failure of the 

sample.  

The critical value of the total damage variable is also 

determined by “Eq. (12)ˮ, which according to “Fig. 7ˮ, 

this value will be about 0.22. In “Fig. 8ˮ, the effect of 

strain on the total damage variable is observed in one 

cycle. As expected, with the increase of strain due to the 

plastic deformation in the material, the amount of energy 

released should be increased.  

 

 
Fig. 8 Total damage variable versus induce strain for 2024 

Al alloy. 

 

It is clear that the contribution of the ductile damage 

variable was greater than the brittle damage variable 

because of the difference between their happening 

mechanisms. As discussed before (section 1), the plastic 

strain causes the ductile damage by creating micro-

voids, micro-cracks and joining together until failure. 

5 CONCLUSION 

As shown in this study, a quasi-brittle damage model can 

be used to describe the behavior of 2024 aluminum alloy 

as a ductile-brittle material under periodic loading. 

Additionally, one can note that the 2024 Al alloy 

exhibits an acceptable resistance to periodic loading. 

The following can be generalized for damage variables 

of this model: 

 Higher brittle damage variable rather than 

ductile damage variable under periodic loading until 

failure. 

 Significant impact of applied strain on the 

ductile damage in comparison to brittle damage. 

 Efficiency of the Kintzel quasi-brittle damage 

model for estimating the life of mechanical components 

under periodic loading. 
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