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Abstract: Neural networks can be used in various subjects, such as the discovery of 
relationships, identification, system modelling, optimization and nonlinear pattern 
recognition. One of the interesting applications of this algorithm is heat transfer 
estimation between contacting surfaces. In the current investigation, a comparison 
study is done for temperature transfer function estimation between contacting 
surfaces using Group Method of Data Handling (GMDH) neural networks and 
ANFIS (Adaptive Neuro Fuzzy Inference System) algorithm. Different algorithms 
are trained and tested by means of input–output data set taken from the experimental 
study and the inverse solution using the Conjugate Gradient Method (CGM) with 
the adjoint problem. Eventually, the optimal model has been chosen based on the 
common error criteria of root mean square error. According to the obtained results 
among different models, ANFIS with gaussmf membership function has the best 
algorithm for identification of TCC between two contacting surfaces with 0.1283 
error. Also, the inverse method has the lowest error for thermal contact conductance 
estimation between fixed contacting surfaces with root mean square error of 0.211.    
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1 INTRODUCTION 

Exact estimation of thermal contact conductance has 

been become a significant issue in the critical 

engineering applications such as major fields like 

cooling purposes in nuclear reactors and spaceship heat 

transfer management and other fields including 

electronic packaging, heat exchangers, gas turbines, 

machine tools, internal combustion engines particularly 

between exhaust valve and its seat, metal forming and 

forging applications [1-7]. Because of the undeniable 

role of thermal contact resistance in various modern 

industries, many investigations in recent years have been 

done around this issue. However, the exact computation 

of TCC between two contacting surfaces is still a major 

complicated problem. The material and geometry of two 

contacting solids, the fractions of contacting surface, 

heat conduction of two contacting materials, the 

interface medium filling material, contacting pressure, 

and heat flux are the most important effective parameters 

on TCC [8-9]. Modelling and system identification is 

one of the most helpful methods that can be applied in 

many fields to identify unknown complex systems from 

input-output data [17]. One of the fields that system 

identification can be applied, is estimating the 

temperature transfer function or thermal contact among 

flat-flat and curvilinear contacts [18]. 

Thermal contact conductance approximation (TCC) 

between flat-flat contacts under different conditions and 

parameters have been investigated broadly during recent 

years. [4-10]. Different methods have been proposed in 

order to estimate thermal contact conductance between 

flat and curvilinear contacts. To illustrate, the lumped 

parameter method, a transient non-contact manner, has 

been proposed to determine TCR between two 

contacting solids [11]. Kumar et al. studied 

experimentally TCC for cylindrical contacts. 

Furthermore, a new method according to the Monte-

Carlo simulation model, grew for flat conforming 

surfaces in touch. This method was rectified and 

developed to estimate TCC among curvilinear surfaces 

[12].  

In addition, Kumar et al. investigated experimental 

thermal contact conductance in steady state condition 

among curvilinear contacts using liquid crystal 

thermography. They presented steady state thermal 

contact conductance analysis on two solid bodies of 

brass, carrying flat and curvilinear contact combinations, 

under variable loading conditions. They used liquid 

crystal thermography (LCT) to determine the TCC for 

varieties configurations [13]. Increasingly, McGee et al. 

studied experimentally thermal resistance of cylinder-

flat contacts according to theoretical analysis and 

experimental investigations of a line-contact model. 

Also, the effect of contact pressure on thermal contact 

conductance was investigated [14]. Meanwhile, Asif et 

al. studied the relation of TCC for a flat metal contact in 

a vacuum. Various heat transfer experiments were 

performed in a vacuum ambience to discover solid spot 

contact conductance for aforementioned copper, brass, 

and stainless steel contacts with several surface 

roughness.  

Finally, a particular relation for TCC was offered for 

different materials [15]. Moreover, a kind of thermal 

joint resistance modelling for sphere-flat contacts in a 

vacuum condition was studied by Bahrami. In this 

regard, a new method was chosen to consider thermal 

joint resistance and finally a model was suggested which 

was able to predict the TCR of conforming rough 

contacts using scale analysis methods [16]. According to 

the literature review, available theoretical and numerical 

models are unable to predict thermal contact 

conductance (TCC) accurately for the majority of the 

other impressive parameters, so experiments are mostly 

used for this purpose.  

Some scholars have applied traditional back propagation 

neural (BPN) network for determination of contact heat 

transfer rate. Based on the outcomes, the LM algorithm 

supplies the most appropriate performance [19]. 

Motahari-Nezhad et al. applied an Adaptive Neuro-

Fuzzy Inference System (ANFIS) model for prediction 

of thermal contact conductance between the exhaust 

valve and its seat. In their paper, the capabilities of the 

ANFIS method has been studied for estimating heat 

transfer rate between the exhaust valve and its seat. It is 

shown that the ANFIS architecture estimates the heat 

transfer rate between the exhaust valve and its seat very 

accurately [20]. 

By literature review it is shown that the Group Method 

of Data Handling (GMDH) method that uses 

evolutionary methods for system identification, has not 

been used for thermal contact identification yet [21-23]. 

Also, there are a few studies on the application of ANFIS 

(adaptive neuro fuzzy inference system) for thermal 

contact estimation. For the first time, a comparison of 

GMDH and ANFIS methods for TCC estimation 

between fixed contacts are presented in the present 

study. In this study, firstly, GMDH method is used to 

identify a system of multi-input-single-output data pairs 

of TCC experiment. Then, the ANFIS method is used for 

the same problem and two algorithms are compared. The 

primary aim of the study is to estimate the TCC between 

fixed contacting surfaces using these two algorithms 

according to the achieved data from the experimental 

investigation and the inverse method. The structure of 

GMDH-type networks and ANFIS method is 

investigated and the most efficient structure is chosen. 

The temperature of the fixed contacting surfaces is used 

from an experimental investigation.  

Furthermore, the thermal contact conductance is 

calculated by applying the inverse method. Afterwards, 

the obtained data is considered as input and output 

https://www.researchgate.net/profile/S_Sunil_Kumar
https://www.sciencedirect.com/science/article/pii/S1359431116303465#!
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parameters to the present methods. Firstly, the transient 

heat conduction problem has been solved by using the 

continuous-time GMDH network and ANFIS method 

and the accuracy of the two methods has been compared 

with each other. The acquired model can be used at the 

contact surfaces for heat transfer rate estimation. 

2 EXPERIMENTAL PROCEDURE 

In this study, an experimental setup has been considered 

and the actual data is taken from a thermal contact 

conductance experiment conducted by Shojaeefard et al. 

[27] as an input-output data set. The experimental test 

setup consists of two contacting rods. The experimental 

setup is shown in “Fig. 1” and it consists of two test rods, 

with one of the non-contacting ends located in an ice-

water reservoir. Constant heat flux was imposed on the 

non-contacting end of the other rod. The surfaces of the 

adjacent ends were brought into contact. The data was 

measured using thermocouples inserted in the hot 

specimen and cold specimen. The measured contact 

surface temperatures of cold (Tc1) and hot (Tc2) 

specimen during operation condition is used for 

determining thermal contact conductance between the 

two contacting surfaces. The properties of the specimens 

and detailed description of the experiment can be found 

in [27]. 

 

 

Fig. 1 The test setup [27]. 

 
Also, the schematic of flat-flat contacting surfaces is 

shown in “Fig. 2". The inverse heat transfer problem is 

used to estimate the TCC between surfaces. 

Experimental data of contacting surfaces temperatures 

which has been taken by thermocouples inserted in two 

contacting specimens are considered as input data for 

simulation. Figure 3 shows the contacting surface 

temperatures [27]. 

 
Fig. 2 Schematic of flat-flat contacting surfaces [27]. 

 

 
Fig. 3 Contacting surface temperatures [27]. 

3 PROBLEM FORMULATION 

In this study, as it was mentioned, the TCC between 

fixed contacting surfaces is estimated using GMDH and 

ANFIS algorithm based on the data calculated from the 

inverse method. As it has been shown in “Fig. 2”, in the 

present study, the basic geometry of the problem and the 

coordinate system for the one dimensional problem is 

assumed. Two contacting surfaces are in contact with a 

TCC of hc (t) at the interface. Constant temperatures and 

constant heat flux are governed at one side of the down 

sample and at the end of the upper specimen respectively 

[27]. Heat transfer equations between two contacting 

specimens are expressed as follows: 

For upper specimen: 

 
∂2Tup

∂x2 =
1

αup

∂Tup

∂t
inL1 < x < L2fort > 0;

∂2Tup

∂x2 =

1

αup

∂Tup

∂t
inL1 < x < L2fort > 0;

𝜕2𝑇𝑢𝑝

𝜕𝑥2 =

 
1

𝛼𝑢𝑝
 
𝜕𝑇𝑢𝑝

𝜕𝑡
 𝑖𝑛    𝐿1 < 𝑥 < 𝐿2𝑓𝑜𝑟  𝑡 > 0;                       (1) 

 

𝑘𝑥
𝜕𝑇𝑢𝑝

𝜕𝑥
= 𝑞 𝑎𝑡 𝑥 = 𝐿2 𝑓𝑜𝑟  𝑡 > 0;                             (2) 

 

𝑘𝑢𝑝
𝜕𝑇𝑢𝑝

𝜕𝑥
= ℎ𝑐(𝑡)[𝑇𝑢𝑝 − 𝑇𝑑𝑜𝑤𝑛] 𝑎𝑡  𝑥 = 𝐿1 𝑓𝑜𝑟  𝑡 > 0;   

                                                                                    (3) 

𝑇𝑢𝑝(𝑥, 0) =  𝑇𝑖  0 < 𝑥 < 𝐿1                                           (4) 
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For down specimen:  

𝜕2𝑇𝑑𝑜𝑤𝑛

𝜕𝑥2 = 
1

𝛼𝑑𝑜𝑤𝑛
 
𝜕𝑇𝑑𝑜𝑤𝑛

𝜕𝑡
 𝑖𝑛 0 < 𝑥 < 𝐿1 𝑓𝑜𝑟  𝑡 > 0  (5) 

 

𝑇𝑑𝑜𝑤𝑛 = 𝑇0𝑎𝑡 𝑥 = 0𝑓𝑜𝑟  𝑡 > 0                                     (6) 

 

𝑘𝑑𝑜𝑤𝑛
𝜕𝑇𝑑𝑜𝑤𝑛

𝜕𝑥
= ℎ𝑐(𝑡)[𝑇𝑢𝑝 − 𝑇𝑑𝑜𝑤𝑛]   𝑎𝑡 𝑥 =

𝐿1    𝑓𝑜𝑟 𝑡 > 0                                                             (7) 

 

𝑇𝑑𝑜𝑤𝑛(𝑥, 0) =  𝑇𝑖                                                             (8) 

 

3.1. Inverse Method 

In the inverse method, all parameters except thermal 

contact conductance, ℎc, are known in this problem. The 

temperature of the considered points in the two 

mentioned samples will be calculated by solving the 

inverse problem. Figure 2 shows the location of 

thermocouples inserted in the two specimens. The 

measurements are done at different times i (i=1, 2,…,I). 

Suppose N1 and N2 are the numbers of thermocouples 

which are located on two specimens. Then, the 

temperatures are calculated as: 

  

𝑌1𝑗(𝑡) = 𝑌1𝑗 , 𝑗 = 1,2,3, … , 𝑁1                              (9) 

 

𝑌2𝑘(𝑡) = 𝑌2𝑘 , 𝑘 = 1,2,3, … , 𝑁2                             (10) 
 

Considering the inverse method, it is regarded that the 

previous data about the TCC and ℎc (t) amounts have not 

been clarified. Consequently, the amount of ℎc (t) in a 

period of time is desired. Also, it is supposed that ℎc (t) 

belongs to the Hilbert space of square integrable 

functions as: 

 

∫ [ℎ𝑐(𝑡)]
2𝑑𝑡 < ∞

𝑡𝑓
0

                                                   (11) 

 

The inverse method is solved upon minimization of the 

Equation (12). 

 

𝑆[ℎ𝑐(𝑡)] = ∑ (𝑇1𝑗 − 𝑌1𝑗)
2 + ∑ (𝑇2𝑘 − 𝑌2𝑘)

2𝑁2
𝑘=1

𝑁1
𝑗=1    (12) 

 
Where 𝑇1𝑗 and 𝑇2𝑘 represent the approximated 

temperatures in the mentioned samples, respectively. 

The details of the conjugate gradient method with the 

Adjoint problem is available in Ref. [24-26]. 

3.2. The Extrapolation Method 

This method is applied for inverse method validation 

which is used to measure TCC according to the 

temperature difference and heat flux between contacting 

surfaces. The TCC in this method is calculated as:  

 

ℎ𝑐 =
𝑞

∆𝑇
                                                                      (13) 

Where q represents the heat fluxes average among two 

mentioned samples and also ∆T presents the temperature 

drop in the interface that is measured by extrapolation of 

temperature profiles of each contact surfaces [27].  

3.3. GMDH-type Networks 

Neural networks are defined as a stage of generalized 

nonlinear models which affected by numerous 

investigations of the human brain. One of the most 

important points of the mentioned method is that it will 

be able to estimate all nonlinear functions to any degrees 

of accuracy with a proper number of hidden units [28]. 

The GMDH-type neural networks which include 

multilayered neural network architectures [29-31] are 

able to form the neural network design spontaneously by 

applying a heuristic self-organization method and the 

main parameters like, number of layers, useful input 

variables, number of neurons in a hidden layer and 

optimized design of the neurons in a hidden layer [32- 

34]. Heuristic self-organization method is categorized as 

an evolutional calculation.  

GMDH algorithm has been introduced by Ivakhnenko 

[35-36] for modelling complex systems as a learning 

method. It has a multi-layered and forwards network 

structure. Each layer is composed of one or more 

processor units, which each has two inputs and one 

output. The units that play the role of model components 

are considered in the form of a 2-D polynomial as 

followings: 

 
𝑧 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥1𝑥2 + 𝑎4𝑥1

2 + 𝑎5𝑥2
2      (14) 

 

𝑥1 and 𝑥2 are inputs, z is output, 𝑎𝑖 are the coefficients. 

The structure of a 3 layers GMDH model including 4-

inputs has been shown in “Fig. 4”. 

 

 
Fig. 4 The neural networks structure of a 3-layer GMDH 

model. 

 

To start with the GMDH algorithm, two problems exist: 

1- recognizing the relationship between the output 

variables based on the input variables of 𝑥𝑖.  

2- The prediction of y for known values of 𝑥𝑖. In another 

word, we need to recognize the relationship between the 

variables (modelling). Then, the prediction of future 

target variables according to the model will be possible. 
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The identification problem is described as a method to 

achieve a function 𝑓 which is able to be used 

approximately rather actual one,𝑓, in order to predict 

output �̂� for a given input vector 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 

as close as possible to its real output 𝑦 [37-39]. GMDH 

algorithm is a process for the production of a higher 

order polynomial namely Volterra functional series 

presented as follows: 

 
𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 +𝑚

𝑗=1
𝑚
𝑖=1

𝑚
𝑖=1

∑ ∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 + 𝐾𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1                                 (15) 

 

This complex discrete form of the Volterra function is 

represented by quadratic polynomials as follows: 

                                                                                   (16) 

 

Where 𝑎𝑖 are calculated by regression equations as the 

discrepancy between the real output, y, and measured 

output,�̂�, for each of 𝑥𝑖 and 𝑥𝑗 as input variables become 

minimized [34-36]. As a reformulation, each quadratic 

function coefficients are measured to fit the output in the 

entire set of input-output data. It is shown as:  

   

𝑟2 =
∑ (𝑦𝑖−�̂�)2𝑀

𝑖=1

∑ 𝑦𝑖
2𝑀

𝑖=1

→ 𝑚𝑖𝑛.                                            (17) 

 

By GMDH algorithm method, the whole binary 

compounds have been formed from 'n' input variables. 

Additionally, unknown coefficients of whole neurons 

are achieved using the least squares method. 

Consequently, (𝑛
2
) =

𝑛(𝑛−1)

2
 neurons are made in the 

second layer that it can be demonstrated as [34-36]: 

 

{(𝑦𝑖 , 𝑥𝑖𝑝 , 𝑥𝑖𝑞)│(𝑖 = 1,2, … ,𝑀) & 𝑝, 𝑞 ∊ (1,2, … ,𝑀)}                                                                                     

(18) 

 

Using from the quadratic function of Eq. (18) for all of 

the M data triples, these equations will be represented in 

the matrix form as [34-36]: 

 
𝐴𝑎 = 𝑌                                                                                (19) 

 

Where 'a' is unknown coefficients of the quadratic 

equation, such as [34-36]: 

 
𝑎 = {𝑎0, 𝑎1, … , 𝑎5}                                                             (20) 

 

And: 

 

𝑌 = {𝑦1 , 𝑦2, 𝑦3, … , 𝑦𝑀}𝑇                                                  (21) 

 
Where Y is vector of output’s value. Based on amount 

of input vectors, it is easily visible that: 
 

𝐴 =

[
 
 
 
 
1 𝑥1𝑝 𝑥1𝑞 𝑥1𝑝

2 𝑥1𝑞
2 𝑥1𝑝𝑥1𝑞

1
⋮

𝑥2𝑝

⋮

𝑥2𝑞

⋮
𝑥2𝑝

2

⋮

𝑥2𝑞
2 𝑥2𝑝𝑥2𝑞

⋮          ⋮
1 𝑥𝑀𝑝 𝑥𝑀𝑞 𝑥𝑀𝑝

2 𝑥𝑀𝑞
2 𝑥𝑀𝑝𝑥𝑀𝑞]

 
 
 
 

           (22) 

 
Using the method of least squares, Eq. (19) will be 

solved as [34-38]: 

 

a = (ATA)−1ATY                                                       (23) 
 

Two methods are used for solving equation (19), which 

are Solving Normal Equations (SNE) method and 

Singular Value Decomposition (SVD) method. In the 

SNE method, by solving normal equations, the vector of 

the optimal coefficient of quadratic polynomials in      

Eq. (19) is calculated as [34-38]: 

 
a = (ATA)−1ATY                                                                       (24) 

 
In SVD method, matrix 𝐴 ∊ 𝑅𝑁×6 is decomposed to the 

product of three matrices: column orthogonal matrix of 

U∊ 𝑅𝑁×6, the diagonal matrix of 𝑊 ∊ 𝑅6×6 with non-

negative elements, and the orthogonal matrix of 𝑉 ∊
𝑅6×6 so that:  

 
A = U.W. VT                                                                        (25) 

 
Then the vector of optimized coefficients 'a' in equation 

(20) is calculated as 
 

a = V. [𝑑𝑖𝑎𝑔(
1

Wj
)] . UT. Y                                                 (26) 

 

The use of SVD in the structure of the GMDH algorithm 

is a factor to optimize the algorithm and enhance the 

performance of GMDH method [31-33].  

3.3.1. Designing the structure of GMDH-type networks 

In the design of GMDH–type network, target is to 

prevent the growth of divergence related to the network 

and to link the network structure to one or more numeric 

parameters which by changing of them, the network 

structure will also be changed. Generally, in the design 

of various structures of networks, two general issues are 

considered: 

1- Finding the number of layers and number of neurons in 

each layer and providing a way to control and picking them 

up. 

2- Finding communication patterns of neurons with each 

other and providing a way to create an optimal connection 

between them. 

Therefore, considering these two issues, we propose an 

evolutionary design of neural networks as described 

following: 

jijijiji xxaxaxaxaxaaxxGy 5

2

1

2

3210),(ˆ 
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 Pre-specified-network (PSD) method 
In this method, the main parameters of the network 

structure, including the layer and neuron numbers are 

predetermined directly and completely optional with no 

limits. The plan of this method is to select the main 

parameters repeatedly and to create different structures, 

so that the optimal parameters be identified. In fact, the 

performance of this method is somewhat similar to the 

practice of trial and error that the ideal structure of the 

network is identified as the result of this practice. The 

details of this method can be found in [34-36]. Structure 

of GMDH-type network obtained by PSD is shown in 

“Fig. 5”. 

 

 
Fig. 5 Structure of GMDH-type network obtained by 

PSD. 

 

 Design of Neural Network by Genetic 

Algorithm 
In this method, a genetic algorithm is used for neural 

network convergence. Genetic algorithms (GAs) are 

more efficient than traditional gradient methods and are 

utilized to train neural networks with coefficients and 

associated weights. Classical GMDH algorithm can be 

in the form of a set of neurons, whereby in each layer 

various neuron pairs are connected and associated with 

a quadratic polynomial, thus creating new neurons in the 

next layer. Therefore, it is possible to produce a simple 

and novel encoding scheme applicable to the 

evolutionary design of the generalized structure GMDH 

(GS-GMDH) where the connectivity configuration is 

not limited to adjacent layers. GS-GMDH encoding 

scheme involves GA and two objective functions, i.e. 

Training Error (TE) and Prediction Error (PE), and 

presents accurate solutions. This kind of GMDH must 

exhibit the ability to specify different sizes and lengths 

of such neural networks. GS-GMDH is summarized 

below. Neuron 14 in the first hidden layer is connected 

to the output layer directly and passes to the second 

layer. Hence, the output layer neuron is denoted by 

12231414 (with 14 twice). In fact, a neuron 1223 in the 

second hidden layer is used to induce output neuron 

12231414 by constructing a virtual neuron 1414 created 

in the second hidden layer (“Fig. 6ˮ).  

If a neuron traverses many adjacent layers and connects 

to another neuron in the next second, third, fourth or 

following hidden layers, the above iteration takes place. 

The number of neuron iterations depends on the number 

of hidden layers traversed, n˜, which is computed as 2n˜. 

It is also notable that chromosome 1212 2323 (not the 

same as chromosome 1212 1323) is not valid and should 

be rewritten as 1223. The crossover and mutation 

genetic operators are utilized to induce two offsprings 

from the parents.  

 

 
Fig. 6 GS-GMDH network chromosome structure. 

 

The crossover of two chosen individuals, substitutes two 

chromosomes’ tails by a random point selected 

according to “Fig. 7ˮ. The building block information of 

GS-GMDH can be substituted by crossovers, as seen in 

“Fig. 8”. Different length of chromosomes created via 

such crossover operation lead to varying GS-GMDH 

network structure sizes. The population diversity is 

related to the mutation operation, which is easily 

substituted by different chromosome genes to other 

possible symbols, e.g. 12231414 to 12233414. These 

operations are repeated until a valid chromosome is 

created.  

 

 
Fig. 7 Crossover operation of two individuals in the GS-

GMDH model. 

 

In the evolutionary design method, the limits caused by 

setting the error as the criterion for determining network 

structure is removed and the same chance to all neurons 

for establishing the neural network is considered. In fact, 

there will not be any restrictions on the establishment of 

the network and all operations will be done randomly. 

The only two criteria of the neuron numbers in the 

network and the output error of the network are 

considered for selection. Combining the genetic 

algorithm into the GMDH-type neural networks 

structure begins with organizing each network to a series 

of alphabetical numerals linked together. The fitness, 

(φ), of each whole series of representative numerals that 

shows a GMDH-type neural network is measured as: 
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Φ=1/E                                                                                       (27) 

 
Where E, the mean square of error (MSE), is minimized 

through the progressive process by increasing the fitness 

φ. The progressive process begins with accidentally 

creating an initial population of symbolic numerals each 

as a desired answer. Afterwards, the whole community 

of symbolic numerals improves regularly. Figures 7 and 

8 show the structure of GMDH-type network obtained 

by Genetic>SNE and Genetic>SVD, respectively [35-

37]. 

 

 
Fig. 8 Crossover operation in two GS-GMDH networks. 

 

3.4. ANFIS Network 

In neuro-fuzzy models, a network structure 

compromises fuzzy if-then rules are used to represent 

systems and these models apply algorithms from the area 

of neural networks. The adaptive network based fuzzy 

inference system, which is a fuzzy inference system and 

first proposed by Jang [43], produces a Fuzzy Inference 

System (FIS) by means of a given input/output data set. 

The membership function parameters of FIS are adjusted 

by either a back-propagation algorithm solely, or using 

a combination of back-propagation algorithm and a 

method of least squares type [44]. For describing the 

ANFIS architecture, the system with two inputs (x1 and 

x2), two fuzzy if then rules based on Takagi and 

Sugeno’s type [44] and one output (y) are considered as 

follows: 

  

Rule 1: If (x1 is A1) and (x2 is B1) then 𝑓1 = 𝑝1𝑥1 +
𝑞1𝑥2 + 𝑟1                                                                                    (28) 

 

Rule 2: If (x1 is A2) and (x2 is B2) then 𝑓2 = 𝑝2𝑥1 +
𝑞2𝑥2 + 𝑟2                                                                                         (29) 

Where A and B are the fuzzy sets, p, q and r are 

consequent parameters of the model determined during 

the training process. The architecture of ANFIS is shown 

in “Fig. 9”. 

 

 
Fig. 9 Structure of ANFIS. 

 

It is constructed from 5 layers. The firs layer is the input 

layer and contains adaptive nodes and every node in this 

layer is a square node. Every node in the second layer is 

a fixed square node demonstrated by a circle and labeled 

Π which multiplies the input signals and produces the 

output. Every node in layer 3 is a fixed node, marked by 

a square and labeled N. The itℎ  node calculates the ratio 

of the itℎ  rule’s firing strength to the sum of all rules’ 

firing strengths [45]. The consequence is produced in 

layer 4. Every node in this layer is an adaptive square 

node. The fifth layer is the summation layer. It 

compromises a single fixed node labeled ∑, which sums 

up all of the input signals and computes the overall 

output. 

3.4.1. Membership Functions 

A Membership Function (MF) is a curve that determines 

how each point in the input space is mapped to a 

membership value (or degree of membership) between 0 

and 1. Different membership functions are construct base 

on several basic functions: piecewise linear functions, the 

Gaussian distribution function, the sigmoid curve, and 

quadratic and cubic polynomial curves. Different input 

membership functions for ANFIS and their purpose that 

have been used in this study are shown in “Fig. 10” and 

also are tabulated in “Table 1ˮ [27-28]. 
 

 
Fig. 10 Membership functions: gauss2mf and gausmf. 

Table 1 Input membership functions 

Membership 

Functions 
Purpose 

gauss2mf 
Two-sided Gaussian curve 

membership function. 

gaussmf Gaussian curve membership function. 
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4 RESULTS AND DISCUSSION 

In the present study, the thermal contact conductance 

approximation between two fixed contacting surfaces 

using GMDH-type neural network and ANFIS method 

with respect to the input data which are taken by using 

the inverse method has been investigated. Two cases 

have been considered for these purposes. In both cases, 

using the experimental data, the temperatures of four 

specified points in the hot specimen are considered as 

input. In case one, using the experimental, the 

temperature of one point on cold specimen is considered 

as output (“Fig. 3”). Then, the network is trained based 

on these set of input-output data and the best algorithm 

is selected based on the root mean square error. In case 

2, using the experimental data and the inverse method, 

TCC of two contacting specimens is calculated and 

considered as the output parameter. Again, the network 

is trained and the best algorithm is chosen according to 

the achieved results.  

The performance of each two algorithms has been 

compared according to the root mean square error. A 

GMDH-type neural network with Genetic and PSD 

structure is applied in this regard. Also, the ANFIS 

algorithm with gaussmf and gauss2mf membership 

functions are studied. The inverse method was used for 

determining the TCC by applying the contact surface 

temperatures of two fixed contacts (“Fig. 3”). The 

experimental data and the inverse method are used to 

calculate the TCC of two contacting specimens. Then, 

for case 2 the calculated TCC is considered as the output 

parameter. Afterwards, for case 2, the GMDH network 

and ANFIS method are trained using the input-output 

data. The algorithms are designed and the most 

appropriate algorithm is chosen according to the 

achieved results.  

To determine the integrity and reliability of the proposed 

models for estimating TCC and to evaluate the 

performance of GMDH network and ANFIS method, 

Root Mean Square Error (RMSE) is used, and expressed 

as follows [38–42]: 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑚𝑜𝑑𝑒𝑙−𝑌𝑒𝑥𝑝)𝑀
𝑖=0

2

𝑀
                                    (30) 

 
Where M is the number of observations, 𝑌𝑚𝑜𝑑𝑒𝑙 and 𝑌𝑒𝑥𝑝  

are the modelled and experimental data respectively. 

“Tables 2 & 3ˮ tabulate the prediction error of different 

methods for case 1 and 2. As it has been shown, the 

ANFIS algorithm with gaussmf membership function 

produces the lowest error compared with other methods 

for fixed contacts and the performance of ANFIS 

algorithm with gaussmf membership function is 

remarkably more powerful than other methods by 

regarding the root mean squares of errors related to 

different methods. So, it is precise enough to contact 

heat transfer rate estimation between fixed contacts and 

it is reliable enough to be chosen as the most accurate 

algorithm for thermal contact prediction among these 

types of contacts.  

 
Table 2 The errors and prediction accuracy of TCC for 

different methods for the fixed contacts in case 1 

RSME  Structure 

0.2794 GMDH>Genetic 

0.2648 GMDH>PSD 

0.1283 ANFIS>gaussmf 

0.2983 ANFIS>gauss2mf 

 
Table 3 The errors and prediction accuracy for TCC for 

different methods for the fixed contacts in case 2 

RSME  Structure 

0.3441 GMDH>Genetic 

0.3007 GMDH>PSD 

0.2676 ANFIS>gaussmf 

0.3932 ANFIS>gauss2mf 

 

The behaviour of GMDH-type and ANFIS network 

when they were used for modelling experimental data in 

conjunction with different algorithms for case 1 is 

depicted in “Fig. 11”.  

 

 
Fig. 11 Comparison of Experimental and Modelled data 

obtained by different algorithms for fixed contacts for case 1. 

 

 
Fig. 12 Comparison of Actual and Modelled data obtained 

by different algorithms for fixed contacts for case 2.  
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It can be seen that the ANFIS algorithm produces the 

best results. Also, the behaviour of GMDH-type and 

ANFIS network when it was used for modelling of the 

experimental data in conjunction with different 

algorithms for case 2 is depicted in “Fig. 12”. This 

figures also show ANFIS proper accuracy with gaussmf 

membership function. 

Figure 13 shows root mean square error changes based 

on time in inverse method and extrapolation method in 

the prediction of thermal contact for fixed contacts. Also, 

the root mean square error which was achieved from two 

variant methods is shown in Table 4. According to “Fig. 

13” and “Table 4ˮ, the error of the inverse method and 

extrapolation method for thermal contact prediction 

between fixed are 0.211 and 0.283, respectively. The 

rate of errors shows that the inverse method produces 

less error than the extrapolation method in TCC 

estimation between fixed contacts. Also, from “Fig. 13” 

it can be seen that the error for both inverse and 

extrapolation methods increases over time. 

 

 
Fig. 13 The variation of RMSE versus time for different 

methods for fixed contact. 

 
Table 4 The root mean square error obtained from two 

different method 

Method RMSE error 

Inverse Method (CGM method) 0.211 

Linear Extrapolation  0.283 

5 CONCLUSION 

Identification and prediction of TCC between fixed 

contacts are two of the most important and crucial issues 

to control the temperature rate in many industrial 

applications. Because of this fact, it seems providing an 

appropriate and accurate model with the ability to 

estimate contact heat transfer rate between fixed 

contacts is necessary and required. In the present study, 

firstly, the TCC rate has been calculated by using the 

inverse method. Then, the GMDH and ANFIS models 

were presented to estimate the TCC between fixed 

contacts acquired by benefiting empirical data on the 

geometries of fixed contacting surfaces. Two different 

models of GMDH networks and two different 

membership functions of ANFIS algorithm were 

suggested to predict the contact heat transfer between 

fixed contacts. Two different cases also have been 

considered. In both cases, using the experimental, the 

temperature of two points on the hot specimen is 

considered as input. In case 1, the temperature of the cold 

specimen is considered as the algorithm output. For case 

2, TCC obtained by inverse method is considered as 

output. According to the results, the inverse method is 

accurate enough to predict TCC between fixed contacts 

with the root mean square error of 0.211. Also, it has 

been shown that among the different models of GMDH 

and ANFIS algorithms, ANFIS algorithm with gaussmf 

membership function, makes the best algorithm for TCC 

identification in fixed contacting surfaces. Meanwhile, 

the computed Root Mean Square Error (RMSE) of the 

ANFIS algorithm obtained by gaussmf membership 

function compared with the experimental results for 

fixed contact for case 1 and case 2 are 0.1283 and 

0.2676, respectively. ANFIS network is an accurate and 

powerful tool to identify the contact heat transfer 

between fixed contacts. The proposed algorithm can be 

used as an accurate method for the TCC approximation 

between fixed contacts. 

NOMENCLATURE 

CGM         : Conjugate gradient method 

hc              : Thermal contact conductance  

k                : Thermal conductivity 

q                : Heat flux 

T                : Temperature 

R                : Result function 

x : Cartesian spatial coordinate 

RMSE : Root mean square error 

L : Length 

t : Time 

Y : Measured temperatures 

T0 : Constant temperature at x = 0 (K) 

Ti : Initial temperature (K) 

α : Thermal diffusivity 

β : Search step size 

γ : Conjugation coefficient 

λ : Lagrange multiplier satisfying the Adjoint 

problem 
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