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Abstract: In the present work, two low-dimensional models are presented and used 
for vibration simulation of the linear and non-linear beam models. These models 
help to compute the dynamical responses of the beam with fast computation speed 
and under the effects of different conditions. Also the obtained results can be used 
in the conceptual and detailed design stages of an engineering system overall design. 
First, a finite element analysis based on Euler-Bernoulli beam elements with two 
primary variables (deflection and slope) at each node is used to find static and 
dynamic responses of the considered linear and non-linear beams. Responses to 
three different static load cases are obtained and applying them as initial conditions, 
the time responses of the beam are calculated by the Newmark's time approximation 
scheme. A low-dimensional POD model which was extracted from the ensemble 
under the effect of an arbitrary loading is reconstructed. To apply the model to 
simulate the response of beam under the effect of other loads, POD modal 
coefficients are updated due to change of initial condition. This modification is 
performed based on the recalculation of the eigenvalues due to a new initial 
condition. Also, another low-dimensional model is constructed which is developed 
based on an ensemble under the effect of several parameters. To apply the model to 
simulate the response of the beam under the effect of other loads and variations of 
beam thickness, POD-HOSVD modal coefficients are updated due to the change of 
desired parameters. The results obtained from the low-dimensional model are 
showing good agreement to the benchmark data and proving high level accuracy of 
the model.  
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1 INTRODUCTION 

Proper orthogonal decomposition (POD) is a method for 

extracting the dominant structures of a dynamical 

system by modal decomposition of an ensemble.  This 

assembly contains system responses with respect to 

some parameters such as time. A significant property of 

the POD method is its optimality for identification of the 

most energetic structures of a problem. Although POD 

has been regularly applied to non-linear problems, it is 

essential to underline that it is a linear technique and that 

is optimal only with respect to other linear 

representations. Reduced order models help scientist and 

engineers to test and examine their new ideas and 

experiments in a low cost computational environment. 

POD method is one of the most interesting approaches 

for construction of the engineering problems’ reduced 

order models. The Low dimensional POD models have 

prepared new foundations in computational simulations 

of the engineering problems. In this research, POD 

method has been used for both low-order descriptions of 

the linear and non-linear beam vibration. 

A historical review of POD was demonstrated in 

reference [1]. This method was firstly used by Karhunen 

& Loeve for statistical data analysis [2]. In 1967, 

Lumley used this method for extracting large-scale 

structures of turbulent flows [3]. Then, due to the 

limitations of computer hardware and that of numerical 

methods, its usage was stopped. The snapshots method 

proposed by Sirovich, demonstrated that the POD 

method could be a useful tool in developing the reduced 

order models for complex dynamical systems. The 

required data for these models are obtained through 

experimental tests or direct numerical simulation [4]. 

Due to the POD ability in extracting the high-level 

energy modes, this method can be used for the fluid and 

structure interactions, the structures response and the 

flow control problems [5], [6]. Feeny and Kappagantu 

showed the possibility of using POD as the model 

analysis supplement when response measurements are 

available [7].  

Han used an approach which was based on linking POD 

and structural normal modes to extract the structures’ 

mode shapes without measuring a series of frequency 

response functions [8]. Kereschen et al. studied the 

application of POD approach for physical interpretation 

of structural dynamics problems [9]. Han et al. 

investigated the POD method application for the mode 

shapes extraction of free vibration of a beam using 

experimental response data. They showed that the 

degree of deviation of the other extracted proper 

orthogonal modes from the true normal modes of the 

structure depends on the spatial resolution [10]. Amabili 

et al. studied the nonlinear response of perfect and 

imperfect, simply supported circular cylindrical shells 

completely contain an incompressible and inviscid fluid 

at rest. The reduced-order models (ROM) are 

reconstructed using Galerkin POD method. They used 

different proper orthogonal modes which have been 

computed from time series at different excitation 

frequencies [11]. Lieu and Farhat used POD method to 

produce accurate ROMs for the aeroelastic analysis of 

complete aircraft configurations at fixed flight 

conditions. They applied a new ROM adaptation scheme 

and evaluated for varying Mach number and angle of 

attack. Good correlations are observed in their results 

[12]. Gonçalves et al. used Galerkin POD low-

Dimensional model for Non-linear vibration analysis of 

cylindrical thin shells. The outcome model has been 

applied for analysis of non-linear vibrations and 

dynamic stability of a circular cylindrical shell subjected 

to dynamic axial loads [13]. 

Development of ROM for the dynamics of geometrically 

exact planar rods based on the projection of the 

nonlinear equations of motion onto a subspace spanned 

by a set of proper orthogonal modes is studied by 

Georgiou. He reported that the POD-based reduced 

order system provides a potentially valuable tool to 

characterize the spatio-temporal complexity of the 

dynamics in order to elucidate connections between 

proper orthogonal modes and nonlinear normal modes 

of vibration [14]. Allison used the proper orthogonal 

decomposition of measured response data combined 

with the linear system theory to construct a model for 

predicting the response of an arbitrary linear or nonlinear 

system without any knowledge of the equations of 

motion [15].  

Gonçalves et al. investigated the development of the 

ROM for the nonlinear vibration analysis of cylindrical 

shells based on a perturbation procedure and proper 

orthogonal decomposition. They used this model for 

analysis of the nonlinear vibrations and dynamic 

stability of a circular cylindrical shell subjected to static 

and dynamic loads [16]. Paulo et al. studied the reduced 

order model construction for the nonlinear dynamic 

analysis of shells. They have been applied a perturbation 

analyses together with the Galerkin method which can 

be used to derive precise low order models for plates and 

shells, by capturing the influence of the modal couplings 

and interactions [17]. Speet studied about the reduced 

order frameworks for structural models using a manifold 

interpolation method. His methodology interpolated 

between the pre-calculated reduced order models and 

their corresponding reduced order basis [18].  

Ilbeigi developed a parametric form of reduced order 

models for simulation of complex non-linear dynamical 

systems under the effects of different parameters and 

signals [19]. A non-intrusive reduced basis method was 

used for parameterized nonlinear structural analysis 

undergoing large deformations by Guo and Hesthaven. 

In this method, principal mode shapes are calculated by 

the proper orthogonal decomposition (POD), and the 
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Gaussian process regression is used to approximate the 

projection coefficients [20]. 

Finally, in this research, a reduced order model is 

developed using two approaches. In the first method, the 

model is constructed based on data which is obtained for 

specified conditions and in the second, a low-order 

framework using the HOSVD method is developed. 

Therefore, the first model can be used for any set of 

initial conditions to simulate the dynamical behavior of 

linear and non-linear beam models. Also, the second 

model, which is constructed using a tensor- based data 

set, can be used to simulate the response of the linear and 

non-linear beams under the effects of important related 

parameters. 

In the sequel, the principal concepts of the POD are 

presented. In the next section, the mathematical 

formulation and numerical algorithm of finite element 

model are presented. Then, the low order proper 

orthogonal decomposition and HOSVD models are 

discussed. The order reduction criterion and our results 

are discussed in the next sections.  

2 PROPER ORTHOGONAL DECOMPOSITION 

The POD Reduced-order modelling begins by finding 

the empirical Eigen functions using the Karhunen-Loève 

decomposition. Then the flow variables are 

approximated using expansions of these eigenmodes. 

The governing equations are projected into the 

eigenfunctions space to obtain the sets of equations for 

the coefficients of the expansions that can be solved to 

predict the behavior of the flow variables in space and 

time. POD is remarkable in that the selection of bases 

functions is not just appropriate, but optimal which is 

described further in the analysis section. The POD was 

introduced to the turbulence community by Lumley in 

1967. Before that, it was already known in statistics as 

the Karhunen-Loève expansion. Lumley proposed that a 

coherent structure can be defined with functions of the 

spatial variables that have maximum energy content. 

That is, coherent structures are linear combinations of 

's, which maximizes the following expression [2]: 

 
2( , )

max ,
,

u
  (1) 

 

Where, ( , )u  is the inner product of the basis vector  

with the field, u . Note is the time-averaging 

operation. It can be shown that the POD basis vectors are 

eigenfunctions of the Kernel K  given by: 

 

, ,K u u   (2) 

 

Where, u denotes the Hermitian of .u This equation is 

converted to the Fredholm’s second kind integral 

equation and its discretization leads to an eigenvalue 

problem. In this work, the SVD method has been used to 

solve this eigenvalue problem [5]. 

3 FINITE ELEMENT MODELLING 

A fourth-order differential equation known as the Euler-

Bernoulli beam equation is applied in FE modelling: 
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Where ( , )w x t  is the transverse deflection along the 

beam, E is the Young’s modulus, I is the moment of 

inertia of the beam section, A is the cross-section area 

and ( , )q q x t  is the distributed load along the beam 

[21]. The weak form of the integral equation over a 

typical element ( ex  to 1ex ) is then as follows (1): 
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Where v is some weight function and according to 

Galerkin’s method and is chosen equal to the 

interpolation function ,j  used in approximation: 

 
4

1

( , ) ( ) ( ),e e e
j j

j

w x t u t x   (5) 

 

Where 
e
ju are the time-dependent nodal variables of the 

beam element which are defined as: 1
e

eu w , 

deflection at the beginning node, 2
e

eu , the slope at 

the beginning node, 3 1
e

eu w , the deflection at the 

end node, and 4 1
e

eu , the slope at the end node. The 

functions ,ej  interpolating w as well as /dw dZ , are 

defined in the form of Hermite cubic functions as 

follows: 
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x x
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Where, eL is the element length. The element ODE is 

then derived by applying approximation (5) into the 

weak formulation (4) which in the absence of structural 

damping yields the matrix equation: 
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To perform time integration, the overall FE model to be 

solved at every instance t has a form of: 

 

,Mu Ku F   (9) 

 

Where M and K are the overall mass and stiffness 

matrices, respectively and F is the generalized load 

vector. According to the Newmark’s scheme, the 

following time approximation is applied: 

 

2
1 1

1
(1 ) ,

2s s s s su u t u t u u   
(10) 

1 1(1 ) ,s s s su u t u u
 

 

The subscripts s and s+1 refer to the times st t and 

1st t . A stable solution is obtained using constant-

average acceleration method, by setting 1a  

[21]. Simultaneous solution of (9) at the instance s+1 and 

(10) yields: 
 

1 1 1 12

1 2

2

2 2 1
,

s s s s

s s s s

K M u F
t

M u u u
tt

 (11) 

 

Knowing u and its time derivatives at the time s and 

using equations (10) and (11), those at the time s+1 

could be determined. 

4 LOW-DIMENSIONAL MODEL DESCRIPTION 

The main idea is to write the snapshots,
ku as linear 

combinations of the POD modes .k  Thus any 

snapshots may be written as: 
 

1

,
N

k k

k

u a   (12) 

 

Where, u is the solution in the time domain and the 

number of snapshots N is assumed large and the POD 

coefficients ka  must be determined as functions of time. 

These coefficients are computed using parts of the 

singular value decomposition.  The above equation can 

be rewritten as: 
 

1

( ) ,
N

k T k k

k

w Vu   (13) 

 

Where, kw is the singular values or orthogonal values 

and TV is the orthogonal coordinate. Any member of the 

snapshots ensemble can be reconstructed using “Eq. 

(12)ˮ. It means that the 1st snapshot which is the initial 

condition of our problem may be written as: 
 

0
0( ) .

T
T k

kV
w

u
  (14) 

 

If the dynamical system performs under a new initial 

condition, u , the above equation can be used to estimate 

relative orthogonal coordinate as: 
 

( ) ,
T

T k
kV
w

u
  (15) 
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Therefore, the POD temporal modes can be recalculated 

by considering these new orthogonal coordinate as: 
 

( ) ,k T kw Va   (16) 

 

And the resulting coefficients are used to reconstruct the 

response of the system due to the new initial condition 

using “Eq. (12)ˮ. 

5 HIGH ORDER SVD BASED LOW-DIMENSIONAL 

MODEL 

HOSVD is an extension to tensors of standard SVD, 

which only applies to matrices. For the first time, the 

SVD method provides an ability to use the POD for non-

square matrices. The SVD of an (M×N) matrix A can be 

shown by: 

 
TA U W V   (17) 

 

Where T stands for transpose, U and V are orthogonal 

matrices and W is a diagonal positive definite matrix 

with r nonzero arrays, called the singular values of A. 

the SVD of A is written as the following expression: 
 

1

N
T

ij il l jl
l

A U WV   (18) 

 

If A consider as a high order tensor, Aijk has to 

decompose to the matrices. Tensor decomposition is 

expressed by the following formulation: 
 

r

ijk i j kA u v w   (19) 

 

Figure 1 shows the tensor decomposition by HOSVD 

method. Where is the component of another third-

order tensor, called as core tensor, and , ,i j ku v w  are 

the elements of three vectors that are known as the 

HOSVD modes, where , ,i j ku v w  are the 

components of some orthonormal systems.  

 

 
Fig. 1 Tensor decomposition by HOSVD. 

The minimum value of r such that this decomposition is 

possible, is called the rank of the tensor A. To achieve 

the HOSVD modes first tensor A is decomposed to the 

symmetric matrices. On the following expression, any 

tensor can be decomposed to the symmetric matrices. 

The number of these symmetric matrices is referring to 

the number of variable parameters plus one. 
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The HOSVD modes are given by result of an 

eigenvalues solution such as following: 
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Where (ri ≤ mi) is the rank of the matrix Bi, the positive 

scalars αη, βμ and γζ will be referred to, as the high order 

singular values of the decomposition. Now after 

HOSVD modes calculated, the core tensor can be 

obtained: 
 

r

ijk i j k
ijk

A u v w   (22) 

 

And the field variables can be reconstructed by the 

equation (19). 

6 ORDER REDUCTION CRITERION 

Usually, when the number of modes is increased, the 

reconstruction is performed with better accuracy. It is 

required to use the optimal number of modes for data 

reconstruction. It is equivalent to capturing the highest 

level of energy and the least number of modes for model 

construction (“Fig. 1ˮ). In this manner, a fraction 

number is defined for automatic selection of modes as 

follow: 
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i
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N

i
i

  
(23) 

 

Where,  is about 99.9%  and rN  is the optimum 

number of modes for reduced order model construction 

[3]. 

7 RESULTS 

The results of this research will be presented in two 

parts. Firstly, the results obtained for an un-damped and 

damped linear cantilever beam under static loading are 

demonstrated using classic POD-ROM simulation 

framework. For validation of low-dimensional POD 

model, the outcome results, which are obtained POD-

ROM, are compared with the related FEM data. Two 

ensembles with 500 members in different times with 

equal increments and in a specific time span were used 

as an input ensemble for damped and un-damped free 

vibration of a linear beam model. The second problem is 

about the development of a reduced order model based 

on the combination of the POD and HOSVD 

approaches. The results were obtained for the linear 

beam model in un-damped and damped forms and 

different values of beam thickness. Results of POD-

HOSVD reduced order framework have been compared 

with the related FEM data. Two ensembles with 500 

members in different times with equal time increments 

and in a specific time span and five thickness values 

were considered as an input data set for the damped and 

un-damped free vibration of a linear beam model. 

 

7.1. Un-damped Vibration of Linear Beam Model 

Un-damped free vibration of a linear cantilever beam 

from steel ( 200E GPa and 38000 /kg m ) with 

dimensions of 24×1×0.75 (inch) was considered. The 

finite element model was created for the beam using 24 

beam elements. First, deflections of the beam due to the 

three static loads, as to be shown in “Table 1ˮ, were 

obtained. 

 
Table 1 Loading Specification of Linear Beam Model 

 Load, lbf Position, in 

1L 

 

300 17 

200 18 

-260 24 

2L 100 24 

3L -300 8 

 

After the solution of eigenvalues problem, the POD 

modes (spatial modes) and their weights (temporal 

modes), the effectiveness of each POD modes are 

calculated. By using approach presented in section 4.1., 

the number of modes to reconstruct data with the highest 

level of accuracy is calculated. In this problem, seven 

modes have been used to reconstruct field. Figure 2 

shows the spatial distribution of four strongest POD 

modes (high energy level) of an ensemble in response to 

L1. The relative energy distribution of the POD modes 

has been demonstrated in “Fig. 3ˮ. 

 

  

  

Fig. 2 Distribution of First Four Strongest POD Modes 

of the initial ensemble in response to loading L1. 

 

Figure 4 shows the distribution of estimated 

observations ensemble in response to L2 and L3. In “Figs. 

5-6” the time variations of the tip displacement in 

response to L2 and L3 from reduced order model 

(compared to FEM data) are shown. It is clear from these 

figures that the low-dimensional model has relatively 

good agreements compared to the FEM data. 

 

 
Fig. 3 Relative energy of POD modes, computed from 

the initial ensemble in response to loading L1. 



Int  J   Advanced Design and Manufacturing Technology, Vol. 11/ No. 4/ December – 2018                                  67 

  

© 2018 IAU, Majlesi Branch 
 

 
Fig. 4 Estimated eigenvalues distribution using low 

dimensional POD model in response to loading L2 and L3. 
 

 
Fig. 5 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD 

model (solid lines) and the FE model (points) in response 

to loading L2. 

 

 
Fig. 6 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD 

model (solid lines) and the FE model (points) in response 

to loading L3. 

7.2. Damped Vibration of Linear Beam Model 

Damped free vibration of a linear cantilever beam from 

steel ( 200E GPa and 38000 /kg m ) with 

dimensions of 24×1×0.75(inch) and with the damping 

coefficient 35 N.s/mC  was considered. Also, in this 

case, the number of beam elements is 24 and the 

deflections of the beam were obtained under the 

conditions similar to “Table 1ˮ. 

Figures 7 and 8 show the time variations of the tip 

displacement in response to L2 and L3 for the damped 

free vibration of the linear beam computed from the 

reduced order model (compared to FEM data). The 

outcome results show that the surrogate model can 

estimate relatively accurate results. In this case, due to 

the lack of damping, a limit cycle form of free vibration 

is seen. 

 

 
Fig. 7 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD 

model (solid lines) and the FE model (points) in response 

to loading L2. 

 

 
Fig. 8 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD 

model (solid lines) and the FE model (points) in response 

to loading L3. 
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7.3. Damped Vibration of Non-linear Beam Model 

The damped free vibration of a non-linear cantilever 

beam with a similar specification by linear beam test 

case was considered. For this test case, non-linear spring 

with the following forcing function is considered: 

 

Fs(x) = ax + bx2, 

(23) a = 1.75 × 103
N

m
 

b = 1.629 × 108
N

m3
 

 

The finite element model was created for the beam using 

24 beam elements. First, the deflections of the beam due 

to the three static loads, as reported in “Table 2ˮ, were 

obtained. 
 
Table 2 Loading Specification of the Non-Linear Beam Model 

 Load, lbf Position, in 

1L 

 

300 17 

200 18 

-260 24 

2L 100 24 

3L -300 8 

 

 

  

  

Fig. 9 Distribution of First Four Highest Energy Level 

POD Modes of the initial ensemble in response to loading 

L1 for the Non-linear beam model. 

The POD modes and their coefficients are calculated 

using singular value decomposition. For this problem 5 

modes have been used to reconstruct the related reduced 

order model. Figure 9 shows spatial distribution of the 

four strongest POD modes of an ensemble in response to 

L1. The relative energy distribution of the POD modes 

has been shown in the Fig. 10. 

Figure 11 shows a comparison between the time 

variations of the tip displacement in response to L2 from 

the reduced order model and FEM data. Also similar 

comparison between predictions of ROM and FEM data 

for time variations of tip displacement in response to L3 

has been shown in Fig. 12. It is clear from these figures 

that the reduced order model has relatively good 

agreements compared to the FEM data. 

 

 
Fig. 10 Relative energy of POD modes, computed from 

the initial ensemble in response to loading L1 for the Non-

linear beam model. 

 

 
Fig. 11 Time variations of tip displacement of the non-

linear beam, Reduced order model (solid lines) and the FE 

model (points) in response to loading L2. 
 

7.4. Un-damped Vibration Linear Beam Model 

under Variations of Thickness and Loading 

In this section, the un-damped free vibration of a 

linear cantilever beam from steel with the similar 

specification of beam model described in section 7-1 

and dimensions of 24×1×h (inch) was considered. 

The finite element model was applied for the beam 

using 24 elements. First, deflections of the beam due 

to the seven static loads from -300lb to 300lb, at the 
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end of the beam were obtained. Also, thickness (h) is 

changed between 0.25" to 1.5" for the present case and 

the damped vibration test case. After the solution of 

eigenvalues problem, the HOSVD modes (spatial 

modes) and their weights (temporal modes) and the 

related energy of each HOSVD modes are calculated. 

By using approach introduced previously, the number 

of modes for reconstruction of data with an 

appropriate level of accuracy is calculated. 

 

 
Fig. 12 Time variations of tip displacement of the non-

linear beam, Reduced order model (solid lines) and the FE 

model (points) in response to loading L3. 

 

  

  
Fig. 13 Distribution of first four highest energy level 

POD Modes of the initial ensemble in response to loading 

L1 for Non-linear beam model. 
 

For this problem, five modes have been used to 

reconstruct the related field. Figure 13 shows the 

distribution of the four strongest HOSVD modes (high 

energy level) of an ensemble in response to different 

loads and beam thickness. The relative energy 

distribution of the HOSVD modes via diverse beam 

thickness has been demonstrated in “Fig. 14ˮ. Figure 15 

shows the distribution of relative energy of HOSVD 

modes via variation of tip loading.  

 

 
Fig. 14 Relative energy of HOSVD modes, computed via 

beam thickness variations. 

 

 
Fig. 15 Relative energy of HOSVD modes, computed via 

variations of loading. 

 

 
Fig. 16 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD-

HOSVD model (solid lines) and the FE model (points) in 

response to loading L2 = -150 lb and h=0.75 in. 
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Fig. 17 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD 

model (solid lines) and the FE model (points) in response to 

loading L3 = 200 and h=1.25 in. 

 

In “Figs. 16-17”, the time variations of the tip 

displacement in response to L2= -150 lb and L3 = 200 lb 

loads, from reduced order model are shown. It is clear 

from the results of the reduced order model that this 

approach has good accuracy for predicting desired 

results compared to the FEM data. 

 

 
Fig. 18 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD-

HOSVD model (solid lines) and the FE model (points) in 

response to loading L2 = -120 lb and h=0.75 in. 
 

7.5. Damped Vibration of Linear Beam Model 

under Variations of Thickness and Loading 

For the case of damped free vibration, a linear 

cantilever beam with steel material and dimensions of 

24×1×h inch was considered. The beam has 

specification similar to un-damped model but it 

contains a damping coefficient as C = 35 N. s/m. So, 

in this case, the number of beam elements is 24 and 

the deflections of the beam were obtained due to the 

static loading similar to the un-damped test case. 

Figures 18 and 19 show the time variations of the tip 

displacement in response to L2 = -120 lb, and L3 = 120 

lb, for damped free vibration of linear beam computed 

from reduced order model (compared to FEM data). 

It is very evident that the ROM based on POD-

HOSVD has an excellent ability to predict accurate 

results even for a damped linear beam model. 
 

 
Fig. 19 Comparison between the prediction of tip 

displacement of the linear beam, Reduced order POD-

HOSVD model (solid lines) and the FE model (points) in 

response to loading L3 = 120 lb and h=1. 5 in. 

8 CONCLUSION 

In recent years, great improvements have been made in 

advancing the applications and upgrading accuracy of 

proper orthogonal decomposition (POD)-based reduced 

order models (ROM). Some of these improvements for 

more accurate prediction of the dynamical systems are 

often discussed in the literature. It is clear that the POD 

is a robust method for estimation and simulation of the 

steady and unsteady problems, respectively. In this 

work, a POD snapshots method was used for calculation 

of the POD modes. Then, a low-dimensional approach 

for simulation of free vibration of an un-damped and 

damped linear beam has been used to compute the 

response of beam to the different initial data.  

On the other hand, the HOSVD based POD method was 

used to build up a reduced order simulation framework. 

In particular, the work has focused on the ability of 

method for application in parametric spaces. Next, a low 

order model for simulation of free vibration of an un-

damped and damped linear beam has been used to 

compute the response of beam to the different values of 

loading and beam’s thickness. An order reduction 

manner was used to choose the minimum number of 

modes for reconstruction of the dynamical system and 

therefore it prepares a low-dimensional model for fast 

prediction of the problem and the current approach gives 

suitable results. 
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