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Abstract: The equilibrium position of a deformable bubble in a combined Couette-
Poiseuille flow is investigated numerically by solving the full Navier-Stokes 
equations using a finite-difference/front-tracking method. The present approach is 
examined to predict the migration of a bubble in a combined Couette-Poiseuille flow 
at finite Reynolds numbers of 5, 10, and 15. The related unsteady incompressible 
full Navier-Stokes equations are solved using a conventional finite-difference 
method with a structured staggered grid. The purpose of this study is to evaluate 
ANN and ANFIS methods in study of the lateral migration of the bubble. Evaluation 
criteria of accuracy in test set derived from ANFIS demonstrates that estimated 
values of correlation coefficient (r), Mean Absolute Error (MAE), and Root Mean 
Square Error (RMSE) are 0.97, 0.001, and 0.0014, respectively. The ANN model 
with RMSE of 0.0007, MAE of 0.0004 and r of 0.99, is better than ANFIS model. It 
is also demonstrated that the bubble position estimated by the ANN and ANFIS 
models closely follows the one achieved from front tracking method.  

Keywords: ANN, ANFIS, Bubble, Front-Tracking Method, Reynolds Number  

Reference: Morteza Bayareh, Amireh Nourbakhsh, “Evaluation of ANN and 
ANFIS Methods in Study of the Motion of a Bubble in A Combined Couette-
Poiseuille Flowˮ, Int J of Advanced Design and Manufacturing Technology, Vol. 
14/No. 1, 2021, pp. 33–42.  DOI:. 10.30495/admt.2021.1895407.1180 

Biographical notes: Morteza Bayareh received his PhD in Mechanical 
Engineering from Isfahan University of Technology. He is currently Associate 
Professor at the Department of Mechanical Engineering, Shahrekord University, 
Shahrekord, Iran. He was a postdoctoral researcher at University of Notre Dame, 
USA. His current research interest includes computational fluid dynamics, 
microfluidics and multiphase flows. He has published more than 50 journal papers 
and several conference ones. Amireh Nourbakhsh is Assistant Professor of 
Mechanical Engineering at Bu-Ali Sina University, Hamedan, Iran. She received her 
PhD in Mechanical engineering from Isfahan University of Technology. Her current 
research focuses on computational fluid dynamics and multiphase flows.  

mailto:m.bayareh@sku.ac.ir
mailto:nourbakhsh@basu.ac.ir


34                                         Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 1/ March – 2021 

 

© 2021 IAU, Majlesi Branch 
 

1 INTRODUCTION 

The problem of particle motion in Couette and Poiseuille 

flows has been the subject of many numerical and 

experimental investigations. The flow of slurries, the 

recovery of oil by chemical flooding, food processing, 

and micro fluidic systems are typical application of these 

flows. Taylor [1] appears to be the first to have 

experimentally studied this phenomenon. The migration 

of neutrally buoyant solid particles was observed by 

Segre and Silberberg [2]. Their experimental results 

showed that the particles migrate away from both the 

wall and the centerline and accumulate at a certain 

equilibrium position of about 0.6 of the tube radius from 

the axis.  

Karnis et al. [3] reported that neutrally buoyant particles 

stabilized midway between the centerline and the wall in 

a channel, closer to the wall for larger flow rates and 

closer to the center for larger particles. Halow and Wills 

[4] did experiments in a concentric cylindrical Couette 

device. They observed that when the inner cylinder 

rotates, a particle migrates from any initial position to 

equilibrium at a small distance inside the centerline of 

the gap. Zhou and Pozrikidis [5] studied the flow of 

periodic suspension of two dimensional viscous drops in 

a closed channel bounded by two parallel plane walls. 

Feng et al. [6] reported the results of a two-dimensional 

finite element simulation of the motion of a circular 

particle in Couette and Poiseuille flows. They showed 

that a neutrally buoyant particle migrates to the 

centerline in a Couette flow and exhibits the Segré-

Silberberg effect in Poiseuille flow.  

They discovered that several mechanisms are 

responsible for the lateral migration of rigid particles in 

shear flows: i) drift by the walls that mainly forces 

particles away from the walls, ii) migration of particles 

due to the effect of Inertia, provided that a slip velocity 

exists between the particle and the local undisturbed 

flow (the slip velocity is defined as the particle velocity 

minus the local undisturbed velocity at the center of the 

particle), and iii) migration due to the rotation of particle 

along with a slip velocity which is known as Magnus lift. 

In the Poiseuille flow, a lift force is caused by the 

velocity profile curvature. Saffman [7] found that, under 

creeping conditions, the inertial lift exerted on a 

spherical particle in an unbounded shear flow can be 

calculated as follows: 

 
2/12/12 Re4.6)(4.6 UaGUa  == (1) 

 

Where, ν is the kinematic viscosity, U is the slip velocity 

of the particle and Re = Ga2/ ν is the Reynolds number 

defined based on the shear rate (G) and particle radius 

(a). Li et al. [8] studied the motion of two dimensional 

doubly periodic emulsions and foams by numerical 

simulations. Mortazavi and Tryggvason [9] studied the 

motion of a single drop at finite Reynolds numbers in 

Poissuille flow. They reported their results as a function 

of the Reynolds number, the Weber number and the 

viscosity ratio. They stated that at a small Reynolds 

number, the motion of the drop depends strongly on the 

viscosity ratio. Binary collision of drops and migration 

of a single drop in shear and Poiseuille flows have been 

described previously [10-18].    

In recent years, new techniques such as Artificial Neural 

Network (ANN), Fuzzy Logic and Adaptive Neuro-

Fuzzy Inference System (ANFIS) models have been 

applied for predicting in different fields and have 

attained better results than the traditional approaches 

(Nayak et al. [19], Chaves and Kojiri [20], and 

Zoveidavianpoor [21]).      

In the present work, the flow is driven by a constant 

pressure gradient and constant velocity. Thus, the 

objective of this paper is to employ the finite 

difference/front tracking method to investigate the 

motion of a three-dimensional neutrally buoyant bubble 

between two parallel plates in a combined Couette-

Poiseuille flow at finite Reynolds numbers. The main 

scope is to develop the ANN and ANFIS methods for 

accurately prediction of the effect of Reynolds number 

on the migration of a bubble in this flow. The results of 

the finite difference/front tracking method are compared 

with those of ANN and ANFIS methods.  

2 GOVERNING EQUATIONS 

The geometry of the flow is shown in “Fig. 1ˮ. The 

motion of a bubble is studied in a channel that is bounded 

by two flat plates in the z-direction. The height and 

length of the channel are H. To decrease the computation 

time, the depth of the channel in the y-direction is taken 

to be 0.5H. In absence of the bubble, the undisturbed 

flow is a combined Couette-Poseuille flow. In Poiseuille 

flow, the flow is driven by a constant pressure gradient. 

For this problem [9]: 
 

ppp o
+=

 (2) 
 

Where, op  is the externally specified pressure gradient 

and p  is the perturbation pressure gradient to be 

computed as part of the solution. 

 

 

Fig. 1 The geometry for the simulation of a bubble in a 

combined Couette-Poiseuille flow. 
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The boundary condition on the plates is the no-slip 

boundary condition. The computational domain is 

periodic in the x- and y-directions. Normal stresses show 

the jump across the interface by surface tension and 

tangential stresses are continuous on the surface of the 

bubble 

The governing non-dimensional numbers are as follows: 

the ratio of the viscosity of the bubble fluid to the 

suspending medium λ = μi/μo, the density ratio α = ρi/ρo, 

and the ratio of the radius of the bubble to the height of 

the channel ξ = a/H. The viscosity and density of the 

bubble liquid are denoted by μi and ρi, respectively, and 

the suspending fluid has viscosity μo and density ρo. The 

bulk Reynolds number is defined in terms of the 

undisturbed channel centerline velocity Uc and the 

channel height, as Reb = ρoUcH/μo. A Reynolds number 

based on the centerline velocity and the bubble diameter 

(d) is defined by Red = ρoUcd/μo. A particle Reynolds 

number can be defined as Rep = ρoUca2/μoH. The 

capillary number, Ca = Uc μo/σ describes the ratio of the 

viscous stress to the interfacial tension. Non-

dimensional time is defined by τ = t Uc/H.    

One of the most important subjects considered by fluid 

mechanics researchers is flows with interfaces. Different 

numerical methods are used and developed for 

simulating these flows. These methods can be divided 

into two groups, depending on the type of grids used: 

moving grid and fixed grid. Two important approaches 

of fixed-grid methods, namely the Volume-of-Fluid 

(VOF) and level-set approaches, are among the most 

commonly used methods. The VOF method uses a 

marker function. The main difficulty in using VOF 

method has been the maintenance of a sharp boundary 

between the different fluids and the computation of the 

surface tension. The level-set method defines the 

interface by a level-set function, but this approach has 

some difficulties in preserving the mass conservation. 

Another method presented in this paper is the finite 

difference /front tracking method which improved the 

disadvantages of the previous methods. This approach 

was described in detail by Unverdi and Tryggvason [22-

23] and only a brief outline is given here. The present 

computations are based on an improved implementation 

of the front tracking method at finite Reynolds numbers 

that include convective terms. The numerical technique 

is based on a direct discretization of the Navier-Stokes 

equation. In conservative form it is: 
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                           (3) 

Where, u is the velocity, p is the pressure, and ρ and μ 

are the discontinuous density and viscosity fields, 

respectively. σ is the surface tension coefficient, f is a 

body force, and surface forces are added at the interface. 

The term δβ is a two- or three-dimensional δ function 

constructed by repeated multiplication of one-

dimensional δ functions. The dimension is denoted by β 

= 2 or 3, κ is the curvature for two-dimensional flow and 

twice the mean curvature for three-dimensional flows, n 

is a unit vector normal to the front, x is the point at which 

the equation is evaluated, and x  is a Lagrangian 

representation of the interface. 

This equation is solved by a second-order projection 

method using centred differences on a fixed regular, 

staggered grid. Both the bubble and the ambient fluid are 

taken to be incompressible, so the velocity field is 

divergence free [24]: 

 

.0. =u                                                                        (4) 

 
Equation (4), when combined with the momentum 

equation, leads to a non-separable elliptic equation for 

the pressure. If the density is constant, the elliptic 

pressure equation is solved by fast Poisson solver 

(FISHPACK), but when the density of the bubble is 

different from the suspending fluid, the equation is 

solved by a multigrid method (Adams [25]). 

Equations of state for the density and the viscosity are: 

 

0=
Dt

D  ,   0=
Dt

D                                                            (5) 

 

Where, D/Dt is the material derivative, and “Eq. (5)ˮ 

simply states that the density and the viscosity of each 

fluid remain constant 

3 RESULTS 

In this section, the motion of a liquid bubble was studied 

at finite Reynolds numbers, and the effect of the 

Reynolds number are examined. 

Figure 2a shows the non-dimensional lateral position of 

the bubble (z/H) versus the axial location for Reynolds 

numbers Red = 5, 10, and 15  at Ca = 0.3, λ = α = 0.65 

and ξ = 0.125. The grid resolution is 64×32×64. The 

flow through the gap between the bubble and the wall 

leads to a repulsive lubrication force called ‘geometric 

blocking’ [6], that pushes the bubble away from the wall. 

The negative slip velocity and the curvature of the 

velocity profile generate a force that drives the bubble 

away from the center of the channel. Thus, these two 

forces move the bubble to an equilibrium position about 

halfway between the centerline and the wall according 

to the so-called Segre-Silberberg effect. As the Reynolds 

number increases, the inertia effect increases and effect 

of viscosity decreases. So, the lubrication force between 

the wall and bubble decreases and the equilibrium 

position moves slightly closer to the wall. The results are 
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in agreement with those reported by Schonberg and 

Hinch [26], Yang et al. [27], Asmolov [28], Mortazavi 

& Tryggvason [9] and Segre & Silberberg [2] for 

Poiseuille flow. The axial and slip velocities of the 

bubbles versus non-dimensional time are shown in “Fig. 

2b & cˮ. As the Reynolds number increases, the axial 

velocities and slip velocities of the bubbles decrease. 

Figure 2d shows a slight increase of the bubble 

deformation with increasing Reynolds number, 

however, the bubble deformation is nearly the same at 

steady state equilibrium position. 

 

 

 

 

 
Fig. 2 (a): The lateral position versus the axial position, 

(b): axial velocity, (c): slip velocity and                               

(d): bubble deformation versus non-dimensional time at three 

different Reynolds numbers. 

4 ANN AND ANFIS METHODS 

In this study, values of (Re), (X) and (T) were used as 

input variables and value of z/H that was estimated by 

front tracking method were used as output variable of 

ANN and ANFIS methods. Input and output variables of 

aforesaid were randomly divided into two parts of 

training and testing. In order to, a total of 75% of the 

available data set was reserved for training and the other 

25% was used to testing the trained ANN and ANFIS. In 

addition, implementation of different structures for 

ANN and ANFIS methods were took by using 

MATLAB Software. 

Artificial neural networks are new computational 

methods for learning based on data trends, gaining 

knowledge inherent in data, and knowledge extension 

for complex phenomenon. Artificial Neural Networks 

(ANNs) adaptability to hydrology is well described by 

ASCE [29] and Govindaraju and Rao [30]. With regard 

to capability of artificial neural networks in predicting 

nonlinear phenomena such as non-dimensional lateral 

position of the bubble (z/H), they are used here to predict 

non-dimensional lateral position of the bubble. 

Multilayer perceptrons (MLPs), as the best known type 

of neural networks, consist of input, hidden and output 

layers. The number of independent parameters affecting 

the outputs specifies the number of neurons in the input 

layer. The number of neurons in the hidden layer is 

determined by trial and error procedure or other 

techniques during the training process [31]. Linear, 

Sigmoid and Tanhyporbolic (Tanh) activation functions 

and learning rules of Conjugate Gradient, Momentum 

and Levenberg Marquate are used in this study.  

Among the new techniques of modelling, fuzzy systems 

have a special place. The fuzzy expert system consists of 

linguistic rules relating the membership functions of the 
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input variables to the membership function of the output 

variable. A series of IF-THEN statements relates the 

input to the output variables. In this study, fuzzy logic 

was used as ANFIS method. The ANFIS model 

integrates adaptable fuzzy inputs with a modular neural 

network to rapidly and accurately approximate complex 

functions. Fuzzy inference systems are also valuable, as 

they combine the explanatory nature of rules 

(membership functions) with the power of ANNs. These 

types of networks solve problems more efficiently than 

ANNs when the underlying function to model is highly 

variable or locally extreme [32]. The characteristics of 

ANFIS are emphasized by the advantages of integrating 

ANNs with fuzzy inference systems (FIS) in the same 

topology [33]. The ANFIS architecture employed in this 

study is shown in “Fig. 3ˮ. 

 

 
Fig. 3 A prototype two-input one-output ANFIS network 

and output calculation [24]. 

 

Takagi–Sugeno fuzzy structure [34] is preferred in this 

article. The Gaussian, Triangular, Trapezoidal and 

Generalized bell fuzzy types are used as membership 

functions to each input neuron. To evaluate the 

performance of the employed models in z/H estimates, 

several performance criteria were used including 

correlation coefficient (r), Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE). The r 

measures the degree to which two variables are linearly 

related and should optimally be one. The RMSE and 

MAE are criteria of the residual standard deviation and 

should be as small as possible (optimally zero). These 

criteria are defined in “Eqs. (10-12)ˮ, respectively. 
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Where, Xi and Yi are the ith observed and estimated 

values, respectively; �̅� and �̅� are the average of Xi and 

Yi, and n is the total numbers of data. 

Sensitivity analysis is a testing process which provides a 

measure of the relative importance among the inputs of 

the neural model and illustrates how the model output 

varies in response to the variation of an input. The first 

input is varied from its mean by a predefined value of 

standard deviation while all other inputs are fixed at their 

respective means. The network output is computed for 

the predefined number of steps above and below the 

mean. This process is repeated until each input is 

considered once. A report is generated which 

summarizes the variation of each output with respect to 

the variation of each input [35-36].  

To use and test the ANN models, data is divided into a 

training set (in this study, 75% of the whole data) and a 

test set (25%). The training set is used to fit the ANN 

model weights (for a number of different network 

configurations and training phases) and the test set is 

used to evaluate the chosen model against unused data. 

In this study, hundreds of different topologies are tested. 

This way of defining the topology takes a considerable 

amount of time, and it is nevertheless quite likely that an 

untested combination might have a better response to the 

expected generalization and convergence time than the 

one selected. 

The statistical performance evaluation criteria of the 

ANN in training and testing phases are presented in 

Table 1. Although, several tests are repeated by using 

one, two and three hidden layers, a single hidden layer 

with seven neurons is the best architecture. The 

simulations show that increasing the number of hidden 

layers as well as the number of neurons in the hidden 

layers have no significant improvement in the estimated 

z/H. For the best selected architecture, the momentum 

learning algorithm and tanh activation function show the 

highest correlation coefficients and minimum errors. 

Different numbers of epochs are also tested to obtain the 

best case with minimum errors. For setting the numbers 

of epochs, the common practice is to start training with 

the default value of 1,000. 

The results show that increase and decrease in this value 

brought nearly no significant improvement to the z/H 

estimate, and the default value is the optimum number 

for the best topology. Comparison of the z/H estimated 

by ANN and front tracking values at testing phases 

demonstrate good agreement (“Fig. 4ˮ). As shown in 

“Table 1ˮ, the best of ANN model has the smallest 

RMSE (0.0007), MAE (0.0004) and the highest r (0.99). 

In general, the present study confirms the capabilities of 

ANN as an effective tool for estimating z/H. These 

results are consistent with the results reported by 

Zoveidavianpoor [21]. Nourbakhsh et al. [29] also found 

that ANN is able to estimate a reasonable degree of 

accuracy.  
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Fig. 4 Regression relationship between estimated z/H by 

ANN and front tracking. 
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Table 1 Statistical performance evaluation criteria of ANN in training and testing phases. 

Activation 

function 
Array 

Training set  Test set  

R MAE RMSE R MAE RMSE 

Tanh 3-6-1 0.99 0.0004 0.0007 0.99 0.0005 0.0010 

Tanh 3-7-1 0.99 0.0003 0.0006 0.99 0.0004 0.0007 

Sigmoid 3-5-1 0.98 0.0009 0.0019 0.97 0.0031 0.0068 

Sigmoid 3-6-1 0.98 0.0009 0.0020 0.97 0.0031 0.0075 

Linear 3-4-1 0.96 0.0016 0.0034 0.93 0.0094 0.0226 

Linear 3-5-1 0.96 0.0017 0.0035 0.93 0.0106 0.0237 

Tanh 3-2-3-1 0.98 0.0007 0.0008 0.97 0.0010 0.0011 

Tanh 3-3-2-1 0.98 0.0007 0.0009 0.97 0.0009 0.0011 

Sigmoid 3-2-3-1 0.98 0.0011 0.0029 0.97 0.0038 0.0078 

Sigmoid 3-2-3-1 0.098 0.0012 0.0029 0.97 0.0038 0.0078 

Linear 3-2-2-1 0.95 0.0021 0.0051 0.9 0.0300 0.0260 

Linear 3-2-2-1 0.95 0.0022 0.0055 0.9 0.0301 0.0280 

 

The ANFIS’s architecture comprises of three (3) inputs 

and one output. Different ANFIS architectures are tried 

using this code and the appropriate model structures are 

determined for each input combination. Then, the 

ANFIS models are tested and the results are compared 

by means of performance statistics. The results of 

statistical evaluation criteria of the ANFIS model for 

estimation of z/H are presented in “Table 2ˮ. The final 

ANFIS architecture is attained by Triangular 

membership function with 2-3-3 arrays (for input 

variable of Re, X and T, respectively). 

 

Table 2 Statistical performance evaluation criteria of ANFIS in training and testing phases. 

Membership 

function 
Array 

Training set  Test set  

R MAE RMSE R MAE RMSE 

Triangular 2-3-3 0.98 0.0008 0.0012 0.97 0.0010 0.0014 

Trapezoidal 4-3-3 0.98 0.0011 0.0017 0.97 0.0013 0.0022 

Generalized 

bell 
2-3-3 0.98 0.0013 0.0027 0.96 0.0015 0.0039 

Gaussian 3-3-3 0.98 0.0014 0.0047 0.97 0.0019 0.0051 

 

 

 

The comparison of the front tracking values and estimated z/H, by the best of ANFIS model is shown in “Fig. 5ˮ. 
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Fig. 5 Regression relationship between estimated z/H by 

ANFIS and front tracking. 
 

It is seen from the scatterplots that the z/H values 

estimated by the ANFIS models closely follow the front 

tracking values and ANFIS can be successfully applied 

to establish the estimating models that could provide 

accurate and reliable z/H estimation. Evaluation criteria 

of accuracy in test set derived from ANFIS demonstrates 

that estimated values of r, MAE and RMSE are 0.97, 

0.0010 and 0.0014, respectively (“Table 2)ˮ. Also, the 

final architectures of the ANN model show itself upper 

accuracy related to ANFIS model for estimation of z/H. 

The obtained results are supported by the other study 

[21], [37-38]. 

The results of sensitivity analysis of the z/H variables are 

given in “Table 3ˮ. In this table, variation of z/H (%) 

with respect to the variation in each input is presented. It 

is obvious that increase in Re, X and T is significant at 

35.21, 10.08 and 6.16 levels, respectively. Re and X are 

the most sensitive variables. In other words, variation of 

Re and X causes the most percent change of z/H.  

 
Table 3 The sensitivity of z/H to the input variables. 

Sensitivity z/H (%) 

Re 35.21 

X 10.08 

T 6.11 

5 CONCLUSION 

In the present study, a finite difference/ front tracking 

method is used for simulation of the motion of a three-

dimensional neutrally buoyant bubble between two 

parallel plates in a combined Couette-Poiseuille flow at 

finite Reynolds numbers. The bubble migrates to an 

equilibrium lateral position about halfway between the 
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centerline and the wall according to the so-called Segre-

Silberberg effect. As the Reynolds number increases, the 

equilibrium position moves slightly closer to the wall. 

The objective of this paper is to develop the ANN and 

ANFIS methods for accurately predicting the effect of 

Reynolds number on the migration of a bubble in a 

combined Couette-Poiseuille flow and comparing the 

results of the finite difference/front tracking method and 

the ANN and ANFIS methods. The potential of ANN 

and ANFIS in estimation of the lateral position (z/H) is 

investigated.  

The results reveal that ANN and ANFIS could 

satisfactorily bring into play for estimation of z/H. The 

ANN model with RMSE of 0.0007, MAE of 0.0004 and 

r of 0.99, is better than ANFIS model. It is conscluded 

that the z/H values estimated by the ANN and ANFIS 

models closely follow the front tracking values. The 

results of sensitivity analysis to variables show that Re 

and X are the most sensitive variables. It should be noted 

that the results obtained in this study are valid for the 

presented data set and one might not obtain the same 

behavior for other ones. For further work, using more 

data may be required to provide additional support for 

these conclusions. Finally, as a recommendation for 

future study, additional studies should be conducted to 

recognize and evaluate the effects of the other 

conventional well log parameters on z/H. 
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