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1 INTRODUCTION 

Due to outstanding physical, chemical, mechanical and 

electronic properties [1–4], nano-sized structures [5–8] 

have attracted a great deal of attention in scientific 

community. Therefore, development of appropriate 

mathematical models for nanostructures is an important 

issue concerning application of nanostructures. A 

review related to the importance and modelling of 

vibration behaviour of various nanostructures can be 

found in Gibson’s et al., [9]. Vibration of 

nanostructures has great importance in nanotechnology, 

where understanding vibration behaviour of 

nanostructures is the key step for many NEMS devices 

like oscillators, clocks and sensor devices. 

Three approaches have been developed to model 

nanostructures. These approaches are (a) atomistic [10-

11], (b) hybrid atomistic–continuum mechanics [12–

15], and (c) continuum mechanics. Nevertheless, the 

first two methods involve solving a large number of 

equations. Hence, they have difficulties in handling 

systems with large length and time scales. Since 

performing experiments in nano-level are difficult to 

control and also theoretical atomistic and hybrid 

atomistic–continuum models are computationally 

expensive for relatively large scale nanostructures, the 

continuum [12], [13], [16] models have been proven to 

be important tools in the study of the nanostructures. 

Continuum mechanics approach is less computationally 

expensive than the former two approaches. It is found 

that continuum mechanics results are in good 

agreement with atomistic and hybrid approaches. 

Considering the continuum models for small devices, 

the use of traditional elasticity theory may lead to 

erroneous results as continuum assumption may not 

hold valid in the small scales.  

This fact triggered development of various micro-

continuum theories such as couple stress theory [17], 

micro-morphic theory [18], strain gradient elasticity 

theory [19] and non-local elasticity theory [20]. Among 

these theories, non-local elasticity theory has been 

widely applied to various problems of physics. Such 

theories contain information about the forces between 

atoms, and the internal length scale is introduced into 

the constitutive equations as a material parameter. Chen 

et al., [21] proved that non-local elasticity theory is 

consistent with the molecular dynamics [22–24]. This 

has made the non-local elasticity theory an efficient 

alternate to atomistic methods. In non-local elasticity 

theory, the scale effects are taken into account by 

considering internal size as a material parameter.  

The most general form of the constitutive relation for 

non-local elasticity involves an integral over the whole 

body and therefore the governing equations become 

integro-differential equations (see e.g. [1-2]). Eringen 

[25] showed that it is possible to represent the integral 

constitutive relations of nano-structures in an 

equivalent differential form. While, Most classical 

continuum theories are based on hyper elastic 

constitutive relations which assume that the stress at a 

point are functions of strains at that point, Eringen [25] 

presented a non-local elasticity theory to account the 

small scale effect by specifying the stress at a reference 

point as a functional of the strain field at every point in 

the body. Afterward, the non-local differential elasticity 

(or non-local stress gradient elasticity) has gained more 

popularity among the researchers due to its simplicity. 

Compared to classical continuum mechanics theories, 

non-local theory of Eringen has capability to predict 

behavior of the large nano-sized structures, while it 

avoids solving the large number of equations. Here, the 

inter-atomic forces and atomic length scales directly 

come to the constitutive equations as material 

parameters [25]. Thus, it appears that non-local 

continuum mechanics could potentially play an 

important role in future. Therefore, many papers have 

been published on this topic, especially for analyzing of 

nano-structures (see, for example, the non-local theory 

of longitudinal waves in an elastic circular bar [26], 

non-local theory solution of two collinear cracks in the 

functionally graded materials [27], buckling analysis of 

CNT based on non-local theory [5], non-local theories 

of beams [28-29]).  

Initially Peddieson et al. [30] applied current non-local 

elasticity theory and studied flexural behavior of one 

dimensional nanostructures. Since then a large number 

of research activities using non-local elasticity theory 

have taken place. The non-local theory of elasticity has 

been extensively used for buckling and vibration 

analyses of carbon nano-tubes with the help of beam 

and shell theories [26], [31], [32].There are already 

studies on the continuum models for vibration of 

carbon nanotubes (CNTs) or similar micro or nano 

beam like elements [33–37]. A relevant reference 

concerning non-local theories for bending, buckling 

and vibration analysis of beams is reported by Reddy 

[28]. Also, one can find some papers about the analysis 

of nano beams in [39–45]. Unlike to one-dimensional 

non-local theories, there are only a few studies on two-

dimensional ones [40], [41], [43], [46–48]. In the 

continuum models used in [40], [41], [43], [47-48] only 

classical plate theory (CLPT) has been considered for 

modelling the nanoplates. These mathematical models 

do not take scale effect into account.  

Kitipornchai et al. [40] used the continuum plate model 

for mechanical analysis of graphene sheets. Pradhan 

and Phadikar [49] presented the vibration analysis of a 

simply supported nano-plate based on the first order 

shear deformation plate theory (FSDT). Aghababaei 

and Reddy [50] solved bending and vibration of plate 

problems based on the non-local third order shear 

deformation plate theory (TSDT) considering the small 
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scale effect. So far two methodologies have been used 

extensively for solving the governing differential 

equations arising in structural analysis of non-local 

elastic nanostructures. These are Navier’s method [50-

52] and Differential Quadrature Method (DQM) [53-

55]. However it is well known that Differential 

transformation method (DTM) unlike to these methods 

can effectively handle more complex geometry, 

material property, boundary and/or loading conditions. 

The DTM is a semi analytical–numerical technique 

based on the Taylor series expansion method for 

solving differential equations. It is different from the 

traditional high order Taylor series method.  

The Taylor series method computationally takes long 

time for large orders. However, with DTM, doing some 

simple mathematical operations on differential 

equations, a closed form series solution or an 

approximate solution can be obtained quickly. This 

method was first proposed by Zhou [56] in 1986 for 

solving both linear and nonlinear initial-value problems 

of electrical circuits. Later, Chen and Ho [57] 

developed this method for partial differential equations 

and Ayaz [58], [59] studied two and three dimensional 

differential transformation method of solution of the 

initial value problem for partial differential equations. 

Arikoglu and Ozkol [60] extended the differential 

transformation method to solve the integro-differential 

equations.  

Catal [61] used DTM for free vibration analyses of 

both ends simply supported beam resting on elastic 

foundation. Recently, researchers used the DTM 

method successfully to handle various kinds of rotating 

beam problems (Kaya [62]; Ozdemir and Kaya [63]; 

Ozdemir and Kaya [64]). It is importance to 

incorporate non-local elasticity theories in the vibration 

analysis of nanoplates. In the present paper attempt is 

made to study the vibration of the nanoplates using 

non-local elasticity theory. The CPT has been 

incorporated in the analysis. DTM approach has been 

used to solve the governing equations for different 

boundary conditions. 

2 MATHEMATICAL FORMULATION 

2.1. Geometrical configuration 

A flat, isotropic, and thin rectangular plate of length  a  

and width  b  is depicted in Fig. 1. The plate has two 

opposite edges simply supported along  y  axis (i.e. 

along the edges 0x  and x a ), while, the other 

two edges may be free, simply supported, or clamped. 

The Cartesian coordinate system ( , , )x y z  is 

considered to extract mathematical formulations when 

x and y  axes are located in the undeformed mid-

plane of the plate. 

 

Fig. 1 Schematic view of the nanoplate [49] 

 

2.2. Constitutive relations 

According to the classical plate theory, the components 

of displacement of points within the plate will be 

characterized by:  

0
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w
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(1) 

Where u, v, and w are measured in the x, y and  z 

direction, respectively. Here, displacements with 

subscript 0 are the related components in the mid-plane 

of the plate. Using Eq. (1) and the linearized strain-

displacement equations one can obtain: 
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(2) 

In classical local elasticity theories, stress at a point 

depends only on the strain at that point, while in non-

local elasticity theories it is assumed that the stress at a 

point depends on the strains at all the points of the 

continuum. In other words, according to this non-local 

theory strain at a point depends on both stress and 

spatial derivatives of the stress at that point. According 

to Eringen [14] the non-local constitutive behavior of a 

Hookean solid is represented by the following 

differential constitutive relation:  

 21 nl l    
                                             

(3) 

In which,  is the non-local parameter and  
l  the 

local stress tensor at a point which is related to strain 

by generalized Hooke’s law. Here, 2 is biharmonic 

operator. Using above equation and Hook’s law, the 

plane stress constitutive relation for a non-local thin 

plate will be obtained as:  
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Where, E  and  are the Young’s module and the 

Poisson’s ratio, respectively, and  G  is
2(1 )

E


. 

Bending moments are obtained by integrating the in-

plane stresses over the plate thickness. In the case of a 

homogeneous plate, the stress resultants are: 
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Using Eqs. (2), (4), and (5), the form of stress resultants 

in non-local theory will be yield as: 
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in which 
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2.3. Equations of motion 

The governing differential equations of motion for the 

plate without any external loading can be given in 

terms of the stress resultants by: 

11,1 12,2 1
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(7a, b, c) 

Obtaining 1Q and 2Q from Eq. 7(a) and 7(b) and then 

substituting them in Eq. 7(c), the equation of motion 

for thin plates will be resulted. By using non-local 

stress resultants in the equation of motion, one can 

obtain the non-local governing equation for thin nano 

plates as: 

4 4 4
2 2

4 2 2 4
2 (1 )

w w w
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x x y y
  

   
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      

(8) 

Or 

4 2 2(1 )D w h w     
 

(9) 

 

2.4. Boundary conditions 

In the considered rectangular nano plate, the boundary 

conditions along the edges  0y   and y b , are 

simply supported and as follows: 

0yyM w 
 

(10) 

The boundary conditions along the edges 0x   and 

x a  can be free, simply supported, or clamped and 

as follows: 

For a free edge 

 

0xx yxM M 
                                                     

(11) 

 

For a simply supported edge 

 

0xxM w 
                                                          

(12)
 

 

For a clamped edge 

 

0
w

w
x


 
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On the assumption of simply supported conditions at 

edges  0y   and b, one set of solution to Eq. (9) can 

be given as: 

 

1

( )sin( )
n y

w w x
b


                                      (14) 

 

Applying above solution in governing equation (8), the 

final equation of motion for the thin rectangular Nano-

plate with simply supported opposite edges will be 

resulted as: 
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                    (15) 

 

To solve Eq. (15), DTM will be used. A detailed 

description on how to use this method is given in the 

following section. 

 

2.5. DTM Solution 

Basic definitions and operations of differential 

transformation are introduced in the following. 
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Differential transformation of the function ( )f   is 

defined as follows: 
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In Eq. (16) ( )f  is the original function and ( )F k  is 

transformed function which is called the T-function (it 

is also called the spectrum of the ( )f  at 0   in 

the K domain). The differential inverse transformation 

of ( )F k is defined as: 
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Combining Eqs. (16) and (17), gives: 
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Eq. (18) implies that the concept of the differential 

transformation is derived from Taylor’s series 

expansion, but the method does not evaluate the 

derivatives symbolically. However, relative derivative 

are calculated by iterative procedure that are described 

by the transformed equations of the original functions. 

From the definitions of Eqs. (16) and (17), it is easily 

proven that the transformed functions comply with the 

basic mathematical operations shown in below. In real 

applications, the function ( )f   in Eq. (17) is 

expressed by a finite series and can be written as: 
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Eq. (19) implies that 
01
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
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negligibly small, where N  is series size. Theorems to 

be used in the transformation procedure, which can be 

evaluated from equations (16) and (17), are given at 

below: 
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0

( ) ( ) ( ).
k

l

F k G l H k l


 
 

Theorem 5. If ( ) ,nf    then ( )D k n   that 
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Although this newly emerged method has been proved 

to be an efficient tool for handling nonlinear problems, 

the nonlinear function ( ( ))h f   used in other studies is 

restricted to the types of nonlinear polynomials and 

derivatives. For other type of nonlinearity such as 

hyperbolic function, Zhou [56] introduced the standard 

way to calculate its transformed function. Using 

transformation operation which is defied in theorem 1 

to 5 and taking the differential transformation of 

equation 15 at x=0, one may obtain: 
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To complete the formulation, we have to discuss the 

boundary conditions. six combinations of boundary 

conditions, i.e., C–C, C–F, C–S, S–S, S–F, and F–F, 

where S, C and F denote the simply supported, clamped 

and free boundaries, respectively and may be written in 

the same order as: 
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The boundary conditions Eqs. (21)  to (26) can be 

represented in the Differential transformation form as 

shown in table 1. 

Using MATHEMATICA software the terms of series 

were obtained which some of series terms are depicted 

in the following.  
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Table 1 DTM theorems used for boundary conditions 
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For solving equation (20), four terms of series are 

needed. Two terms are derived from boundary 

condition, for example in S-S boundary condition, 

deflection and moment are zero, hence F[0] and F[2] 

take zero value, two other terms F[1] and F[3] which 

are relate to the ramp and shear conditions have 

unknown value, hence none zero C1 and C2 value are 

attributed to them. Using boundary condition in edge 

x=b, two equations are obtained. Knowing this fact that 

C1 and C2 must not be zero, natural frequency can be 

calculated. 

3 COMPARISON 

In order to verify the results obtained by DTM method 

for non-local theory of the plates, a comparison study 

has been done while the frequency results are in good 

agreements with the results of [49] and [50]. Fig. 2 

shows the variation of the natural frequencies with the 

length of a square nanoplate for various non-local 

parameters. The frequency ratio is obtained by dividing 

the frequency of non-local plate by local one with 

0  . Here one can see that with increasing the non-

local parameter, the frequency ratio will decrease, this 

trend is reported for higher mode of vibration as seen in 

Table 2. Also, with enlarging the plate dimensions, in 

horizontal coordinate, the frequency ratio will increase, 

that means the effect of non-local parameter in small 

nanoplates are more significant.  
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Fig. 2 Variation of SSSS natural frequencies ratio with the 

length of a square nanoplate for various non-local parameter 

 
Table 2 Variation of natural frequencies of a square 

nanoplate for various non-local parameter 

Frequencies 
 

third-order shear 

deformation theory [50] 
DTM 

11
 

0 0.0936 0.0935 

1 0.0855 0.0854 

2 0.0792 0.0791 

3 0.0742 0.0741 

4 0.0699 0.0699 

5 0.0664 0.0663 

22
 

0 0.3455 0.3458 

1 0.2583 0.2585 

2 0.2151 0.2153 

3 0.1882 0.1884 

4 0.1694 0.1696 

5 0.1553 0.1555 

33
 

0 0.7008 0.7020 

1 0.4206 0.4213 

2 0.3284 0.3290 

3 0.2786 0.2790 

4 0.2461 0.2466 

5 0.2229 0.2233 
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4 RESULTS AND DISCUSSIONS 

Frequency ratio for various length of the plate for 

different boundary conditions, namely SSCC, SSFF, 

SSSF, SSCF, and SSSC are depicted in Fig. 3. The 

value of non-local parameter is assumed to be 1, 2, and 

3. As shown in this figure, the rate of frequency change 

with non-local parameter in different boundary 

conditions is more or less the same.  
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Fig. 4 can give a better understanding about this 

frequency ratio. The same results for decreasing 

frequencies with enhancing non-local parameter 

observed here. Furthermore, with increasing non-local 

parameter  , the frequency for different boundary 

conditions decrease in the order from SSCF to SSFF,  

 

 

SSSF, SSCC, SSSS, and finally SSSC, while the 

smallest frequency obtained for SSSC boundaries. 

Also, in higher non-local parameters, the change of 

frequency ratio is more meaningful in SSCC, SSSS, 

and SSSC against SSCF, SSFF, and SSSF. Fig. 5 and 

Fig. 6 show the influence of non-local parameter on the 

vibration of nanoplates with higher modes for SSSS 

and for other boundary conditions, respectively. Here, 

n  and m  are dedicated to the number of half-waves 

in x and for y direction of the nanoplale. In this 

figure, The value of non-local parameter is assumed to 

be 1. It can be seen that the frequency ratio decreases 

with increase in vibration modes. So, as can be seen in 

higher vibration modes, non-local parameter has a more 

significant role. Different boundary conditions here are 

examined. 
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Fig. 3 Frequency ratio for various length of the plate for 

different boundary conditions, a) SSCC, b) SSCF, c) SSFF,  

d) SSSF, e) SSSC 
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Fig. 4 Frequency ratio of the plate for various non-local 

parameter and boundary condition 
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Fig. 5 Higher mode frequency ratio for various length of 

the plate for SSSS boundary condition 
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e) 

Fig. 6 Higher mode frequency ratio for various length of 

the plate for different boundary condition, a) SSCC, b) SSSC, 

c) SSFF, d) SSSF, e) SSCF 

5 CONCLUSION 

Main equation of motion of the thin classical plate is 

obtained using non-local theory of elasticity. This 

equation was solved with the aim of DTM method for 

different boundary conditions. Effects of non-local 

parameter, length, and boundary conditions are 

investigated for fundamental and higher vibration 

modes of nanoplates. In this paper, it is confirmed that 

frequency ratio of the nanoplate decreases with an 

increase in non-local parameter. Also, the significance 

of non-local parameter is more highlighted in smaller 

nanoplates and higher vibration modes. 

REFERENCES 

[1] Iijima, S., “Helical microtubules of graphitic 
carbon”, Nature, Vol. 354, 1991, pp. 56- 58. 

[2] Bockrath, M., Cobden, D. H., Lu, J., Rinzler, A. G., 
Smalley, R. E., Balents, L., and McEuen, P. L., 
“Luttinger-liquid behavior in carbon nanotubes”, 
Nature, Vol. 397, 1997, pp. 598-607. 

[3] Bachtold, A., Hadley, P., Nakanishi, T., and Dekker 
C., “Logic Circuits with Carbon Nanotube 
Transistors”, Science, Vol. 294, 2001, pp. 294- 
1317. 

[4] Kim, P., Lieber, C. M., “Nanotube Nanotweezers”, 
Science, Vol.  286, 1999, pp. 2148-2150. 

[5] Wang, C. M., Zhang, Y. Y., Ramesh, S. S., and 
Kitipornchai, S., “Buckling analysis of micro- and 
nano-rods/tubes based on non-local Timoshenko 
beam theory”, Journal of Physics D: Applied 
Physics, Vol. 39, 2006, pp. 3904–3909.  

[6] Lu, P., Lee, H. P., Lu, C., and Zhang, P. Q., 
“Dynamic properties of flexural beams using a non-
local elasticity model”, Journal of Applied Physics, 
Vol. 99, 2006, 073510. 

[7] Duan, W. H., Wang, C. M., “Exact solutions for 
axisymmetric bending of micro/nanoscale circular 
plates based on non-local plate theory”, 
Nanotechnology, Vol. 18, 2007, 385704. 

[8] Wang, Q., Wang C. M., “The constitutive relation 
and small scale parameter of non-local continuum 
mechanics for modelling carbon nanotubes”, 
Nanotechnology, Vol. 18, 2007, 075702. 

[9] Gibson, R. F., Ayorinde, O. E., and Wen, Y. F., 
“Vibration of carbon nanotubes and their 
composites: a review”, Composites Science and 
Technology, Vol. 67, 2007, pp. 1–28. 

[10] Ball, P., “Roll up for the revolution”, Nature, Vol 
414, 2001, pp. 142–144. 

[11] Baughman, R. H., Zakhidov, A. A., and de Heer, 
W. A., “Carbon nanotubes-the route toward 
applications”, Science, Vol. 297, 2002, pp. 787–
792. 

[12] Bodily, B. H., Sun, C. T., “Structural and 
equivalent continuum properties of single-walled 
carbon nanotubes”, International Journal of 
Materials and Product Technology, Vol. 18, 2003, 
pp. 381–397. 

[13] Li, C., Chou, T.W., “A structural mechanics 
approach for the analysis of carbon nanotubes”, 
International Journal of Solids and Structures, Vol. 
40, 2003, pp. 2487–2499.  

[14] Li, C., Chou, T.W., “Single-walled nanotubes as 
ultra-high frequency nano mechanical oscillators”, 
Physical Review B, Vol. 68, 2003, 073405. 

[15] Pradhan, S. C., Phadikar, J. K., “Nonlinear analysis 
of carbon nanotubes, Proceedings of Fifth 
International Conference on Smart Materials”, 
Structures and Systems, Indian Institute of Science, 
Bangalore, 24–26 July 2008, paperID19. 

[16] Phadikar, J. K., Pradhan, S. C., “Nonlinear finite 
element model of single wall carbon nanotubes”, 
Journal of the Institution of Engineers (India), 
Metallurgy and Materials Engineering Division, 
Vol. 89, 2008, pp. 3-8. 



48                                          Int  J   Advanced Design and Manufacturing Technology, Vol. 10/ No. 1/ March– 2017 
  

© 2017 IAU, Majlesi Branch 

 

[17] Toupin, R. A., “Elastic materials with couple-
stresses, Archive for Rational Mechanics and 
Analysis”, Vol. 11, 1962, pp. 385-414. 

[18] Eringen, A. C., Suhubi, E. S., “Nonlinear theory of 
simple micro-elastic solids”, International Journal 
of Engineering Science, Vol. 2, 1964, pp. 189–203.  

[19] Fleck, N. A., Hutchinson, J. W., “Strain gradient 
plasticity,” Advances in Applied Mechanics, Vol. 
33, 1997, pp. 295–361.  

[20] Eringen, A. C., “On differential equations of non-
local elasticity and solutions of screw dislocation 
and surface waves”, Journal of Applied Physics, 
Vol. 54, 1983, 4703.  

[21]  Chen, Y., Lee, J. D., and Eskandarian, A., 
“Atomistic viewpoint of the applicability of 
microcontinuum theories”, International Journal of 
Solids and Structures, Vol. 41, 2004, pp. 2085–
2097. 

[22] Sun, C. T., Zhang, H. T., “Size-dependent elastic 
moduli of plate like nanomaterials”, Applied 
Physics, Vol. 93, 2003, pp. 1212–1218. 

[23] Zhu, R., Pan, E., and Roy, A.K., “Molecular 
dynamics study of the stress–strain behavior of 
carbon-nanotube reinforced Epon862 composites”, 
Materials Science and Engineering: A, Vol. 447, 
2007, pp. 51–57.  

[24] Liang, Y. C., Dou, J. H., and Bai, Q. S., “Molecular 
dynamic simulation study of AFM single-wall 
carbon nanotube tip–surface interactions”, 
Science and Engineering: A, Vol. 339, 2007, pp. 
206–210. 

[25] Eringen, A. C., “Non-local Continuum Field 
Theories”, Springer, New York 2002.  

[26] Nowinski, J. L., “On a non-local theory of 
longitudinal waves in an elastic circular bar”, Acta 
Mechanica, Vol. 52, 1984, pp. 189–200.  

[27] Zhou, Z. G., Wang, B., “Non-local theory solution 
of two collinear cracks in the functionally graded 
materials”, International Journal of Solids and 
Structures, Vol. 43, 2005, pp. 887–898.  

[28] Reddy, J. N., “Non-local theories for bending, 
buckling and vibration of beams”, International 
Journal of Engineering Science, Vol. 45, 2007, pp. 
288–307.  

[29] Reddy, J. N., Pang, S. D., “Non-local continuum 
theories of beams for the analysis of carbon 
nanotubes”, Applied Physics, Vol. 103, 023511. 

[30] Peddieson. J., Buchanan, G. R., and McNitt, R. P., 
“Application of non-local continuum models to 
nanotechnology”, International Journal of 
Engineering Science, Vol. 41, 2003, pp. 305-312. 

[31] Wang, Q., Liew, K. M., “Application of non-local 
continuum mechanics to static analysis of micro- 
and nano-structures”, Physics Letters A, Vol. 363, 
2007, pp. 236–42. 

[32] Shen, H., Zhang, C. L., “Torsional buckling and 
post buckling of double-walled carbon nanotubes 
by non-local shear deformable shell model”, 
Composite Structures, Vol. 92, 2010, pp. 1073–84. 

[33] Wang, C. M., Tan, V. B. C., and Zhang, Y. Y., 
“Timoshenko beam model for vibration analysis of 
multi-walled carbon nanotubes”, Journal of Sound 
and Vibration, Vol. 294, 2006, pp. 1060–1072.  

[34] Wang, Q., Varadan, V. K., “Wave characteristics of 
carbon nanotubes”, International Journal of Solids 
and Structures, Vol. 43, 2005, pp. 254–265.  

[35] Fu, Y. M., Hong, J. W., and Wang, X. Q., 
“Analysis of nonlinear vibration for embedded 
carbon nanotubes”, Journal of Sound and Vibration, 
Vol. 296, 2006, pp. 746–756.  

[36] Wang, Q., Zhou, G. Y., and Lin, K. C., “Scale 
effect on wave propagation of double walled carbon 
nanotubes”, International Journal of Solids and 
Structures, Vol. 43, 2006, pp. 6071–6084.  

[37] Wang, Q., Varadan, V. K., “Vibration of carbon 
nanotubes studied using non-local continuum 
mechanics”, Smart Materials and Structures, Vol. 
15, 2006, pp. 659–666.  

[38] Lu, P., Lee, H. P., Lu, C., and Zhang, P. Q., 
“Application of non-local beam models for carbon 
nanotubes”, International Journal of Solids and 
Structures, Vol. 44, 2007, pp. 5289–5300. 

[39] He, X. Q., Kitipornchai, S., and Liew, K. M., 
“Resonance analysis of multi-layered grapheme 
sheets used as nanoscale resonators”, 
Nanotechnology, Vol. 16, 2005, pp. 2086–2091.  

[40] Kitipornchai, S., He, X. Q., and Liew, K. M., 
“Continuum model for the vibration of multi 
layered grapheme sheets”, Physical Review B, Vol. 
72, 2005, pp. 754- 763. 

[41] Behfar, K., Naghdabadi, R., “Nanoscale vibrational 
analysis of a multi-layered grapheme sheet 
embedded in an elastic medium”, Composites 
Science and Technology, Vol. 7–8, 2005, pp. 1159–
1164.  

[42] Reddy, J. N., “Mechanics of Laminated Composite 
Plates, Theory and Analysis”, Chemical Rubber 
Company, Boca Raton, FL, 1997.  

[43] Yoon, J., Ru, C. Q., and Mioduchowski, A., 
“Vibration of embedded multi wall carbon 
nanotubes”, Composites Science and Technology, 
Vol. 63, 2003, pp. 1533–1542.  

[44] Ru, C. Q., “Column buckling of multi walled 
carbon nanotubes with interlayer radial 
displacements”, Physical Review B, Vol. 62, 2000, 
pp. 16962–16967.  

[45] Li, C., Chou, T. W., “Elastic moduli of multi-
walled carbon nanotubes and the effect of vander 
Waals forces”, Composites Science and 
Technology, Vol. 11, 2003, pp. 1517–1524. 

[46] Lu, B. P., Zhang, P. Q., Lee, H. P., Wang, C. M., 
and Reddy, J. N., “Non-local elastic plate theories”, 
Proceedings of the Royal Society A, Vol. 463, 
2007, pp. 3225–3240. 

[47] Luo, X., Chung, D. D. L., “Vibration damping 
using flexible graphite”, Carbon, Vol. 38, 2000, pp. 
1510–1512.  

[48] Zhang, L., Huang, H., “Young’s moduli of ZnO 
nanoplates: Abinitio determinations”, Applied 
Physics Letters, Vol. 89, 2006, id.183111 (3 pages). 

[49] Pradhan, S. C., Phadikar, J. K., “Non-local 
elasticity theory for vibration of nanoplates”, Sound 
and Vibration, Vol 325, 2009, pp. 206–223. 

[50] Aghababaei, R., Reddy, J. N., “Non-local third-
order shear deformation plate theory with 
application to bending and vibration of plates”, 
Sound and Vibration, Vol. 326, 2009, pp. 277–289. 

http://rspa.royalsocietypublishing.org/


Int  J   Advanced Design and Manufacturing Technology, Vol. 10/ No. 1/ March – 2017                                         49 

  

© 2017 IAU, Majlesi Branch 

 

[51] Pradhan, S. C., Phadikar, J. K., “Small scale effect 
on vibration of embedded multilayered graphene 
sheets based on non-local continuum models”, 
Physics Letters A, Vol. 373, 2009, pp. 1062-1069. 

[52] Pradhan, S. C., Phadikar, J. K., “Non-local 
elasticity theory for vibration of nanoplates”, Sound 
and Vibration, Vol. 325, 2009, pp. 206-223.  

[53] Pradhan, S. C., Phadikar, J. K., “Bending, buckling 
and vibration analyses of nonhomogeneous 
nanotubes using GDQ and non-local elasticity 
theory”, Structural Engineering and Mechanics, 
Vol. 3, 2009, pp. 193-213. 

[54] Pradhan, S. C., Murmu, T., “Small scale effect on 
the buckling of single-layered graphene sheets 
under biaxial compression via non-local continuum 
mechanics”, Computational Materials Science, Vol. 
47, 2009, pp. 268-274. 

[55] Murmu, T., Pradhan, S. C., “Vibration analysis of 
nanoplates under uniaxial pre stressed conditions 
via non-local elasticity,” Journal of Applied 
Physics, Vol. 106, 2009, doi:10.1063/1.3233914. 

[56] [56] Zhou, J. K., “Differential Transformation and 
Its Applications for Electrical Circuits”, Huazhong 
Univ. Press, Wuhan, China, 1986 

[57] Chen, C. K., Ho, S. H., “Solving partial differential 
equations by two-dimensional differential transform 
method”, Applied Mathematics and Computation, 
Vol. 106, 1999, pp.171-179. 

[58] Ayaz, F., “On the two-dimensional differential 
transform method”, Applied Mathematics and 
Computation, Vol. 143, 2003, pp. 361–374. 

[59] Ayaz, F., “Solutions of the system of differential 
equations by differential transform method”, 
Applied Mathematics and Computation, Vol. 147, 
2004, pp. 547–567. 

[60] Arikoglu, A., Ozkol, I., “Solution of boundary 
value problems for integro-differential equations by 
using differential transform method”, Applied 
Mathematics and Computation, Vol. 168, 2005, pp. 
1145–1158. 

[61] Catal, S., “Analysis of free vibration of beam on 
elastic soil using differential transform method”, 
Structural Engineering and Mechanics, Vol. 24, 
2006, pp. 51-62. 

[62] Kaya, M. O., “Free vibration analysis of rotating 
timoshenko beam by differential transform 
method”, Aircraft Engineering and Aerospace 
Technology, Vol. 78, 2006, pp. 194-203. 

[63] Ozdemir, O., Kaya, M. O., “Flapwise bending 
vibration analysis of a rotating tapered cantilever 
Bernoulli–Euler beam by differential transform 
method”, Journal of Sound and Vibration, Vol. 289, 
2006, pp. 413–420. 

[64] Ozdemir, O., Kaya, M. O., “Flapwise bending 
vibration analysis of double tapered rotating Euler–
Bernoulli beam by using the differential transform 
method”, Meccanica, Vol. 41, 2006, pp. 661-670. 

 

 

 

http://technopress.kaist.ac.kr/?journal=sem

