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Abstract: In this paper, fluid flow between two parallel flat plates that are 

partially filled with two-dimension porous media is investigated numerically using 

single relaxation time (SRT) lattice Boltzmann method (LBM) at pore scale. The 

considered obstacles are random, circular, rigid and granular with uniform 

diameters. Single component and single-phase viscous Newtonian fluid are 

considered as working fluid. There are no overlaps between obstacles. It supposed 

incompressible, steady and laminar flow and no chemical reaction performed in 

porous media. Velocity vectors and streamlines in this domain depicted. The effect 

of varying Reynolds number on the pressure drop or pressure gradient and Darcy 

drag are studied. Dimensionless permeability calculated as a function of porosity 

and Knudsen number. To vary porosity, obstacles diameter changed but their 

places considered constant. With increasing Knudsen number, the dimensionless 

permeability is increased. In addition, effect of domain resolution on pressure 

gradient investigated. The results demonstrate that lattice Boltzmann method will 

be very useful in fluid flow simulation through porous media.  
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1   INTRODUCTION 

In fluid flow analysis three views exists: microscopic 

(Liouville equation), mesoscopic (particle kinetic equation) 

and macroscopic view (Navier–Stokes equations). In 

microscopic view, single particle motion is studied 

(molecular dynamics). This modeling method for solving 

engineering problems is very time consuming and not cost 

effective. Mesoscopic view is between microscopic and 

macroscopic views and instead of a single molecule 

investigation, a set of molecules (named molecular parcel) 

are considered as a particle (statistical thermodynamics). All 

molecules in a parcel have velocities U+dU, V+dV and 

W+dW. Lattice Boltzmann method (LBM) is one of the 

most important mesoscopic methods in fluid flow 

simulation. Since three previous decades, LBM is converted 

to a powerful and useful method in computational fluid 

dynamics (CFD) and nowadays LBM is an excellent 

alternative for conventional CFD (finite difference, finite 

volume and finite element) especially multi-phase and multi 

component flows in complex geometries and porous media.  

In LBM  simulation instead of solving Navier–Stokes 

equations, the discrete lattice Boltzmann equation (LBE) is 

solved to simulate the Newtonian fluid flow with collision 

operator models such as Bhatnagar-Gross-Krook(BGK 

approximation). Since Navier–Stokes equations are 

nonlinear partial differential equations but LBE is a first 

order linear partial differential equation, so it’s 

discretization and computer programming is more 

convenient. Fluid flow through porous media is very 

applicable in industry for example, in mechanic engineering 

such as in filters and filtration, acoustics, heat recovery 

systems, radiant burner, etc., in civil engineering such as 

underground water, water drainage, soil mechanics, rock 

mechanics, hydrogeology, etc. In chemical engineering such 

as chromatography method in separation of different fluid, 

in medical sciences such as biology and biophysics and in 

another sciences for example, geophysics and material 

science.  

A porous media is a material containing void spaces or 

pores (spaces between solid materials) that liquid or gas can 

pass through it. The skeletal portion of the material often is 

called the matrix. The voids typically are filled with a fluid 

and fluid can pass through media. The skeletal material is 

usually rigid or deformable. Obstacles can be fixed or in 

motion. In this study, rigid obstacles are considered. A 

porous media often is characterized by its porosity. Other 

properties of the media (e.g. permeability, tensile strength, 

electrical conductivity) can sometimes be derived from the 

respective properties of its constituents (solid matrix and 

fluid) and the media porosity and pores structure. Porosity is 

an essential factor in filtering process in industry so that 

particles must be removed by a porous medium.  

The pores must be small enough in such that effectively trap 

foreign particles. rocks, soil, bones, wood, cork, some types 

of stone, such as sandstone, artificial materials such as 

cements, sponges, reticulated foam and ceramics can be 

considered as porous media. Permeability calculation is 

very important in porous media studying. In fact 

permeability is the media ability for passing fluid. Spaid and 

Phelan [1] studied lattice Boltzmann methods for modeling 

micro scale flow in fibrous porous media. They concluded 

that LBM is equivalent for solving a hybrid method of the 

Stokes and Brinkman equations, where the Brinkman 

equation is applied to model flow through porous media, 

while the Stokes equation is applied to the open regions 

outside the porous media.  

Bernsdorf et al. [2] investigated the pressure drop in porous 

media flow with LBM. They concluded at the low Reynolds 

number in regularly packed beds of spheres, LBM is able to 

quantitatively predict pressure drop with high accuracy. 

Abdussamie [3] surveyed Navier-Stokes solutions for flow 

and transport in realistic porous media. He used both finite-

element and finite volume methods, for solving Navier-

Stokes equations and showed that, COMSOL solver has a 

good agreement with CFD FLUENT solver. Thompson and 

Fogler [4] modeled flow in disordered packed beds at pore-

scale.  They showed the pore-scale analysis provides a 

quantitative match with experimental macroscopic transport 

parameters. Van Doormaal and Pharoah [5] determined the 

permeability of fibrous porous media using the LBM with 

application to PEM fuel cells. They showed that the LBM 

can be used to determine the permeability in an idealized 

porous transport layer (PTL). Also they found relationships 

between permeability, porosity and fiber angle for fibrous 

porous media.  

Pazdniakou and Adler [6] determined dynamic permeability 

of porous media by the LBM. They imposed an oscillating 

macroscopic pressure gradient to generate oscillating flows. 

They concluded that the Knudsen number has a crucial 

influence on the numerical precision for low frequencies 

and for obtaining accurate results, Kn number must be small. 

Golestanian [7] determined the permeability variation with 

porosity for composite performs experimentally. All of his 

experiments were done under constant pressure conditions 

and RL-440 Epoxy resin was used as the working fluid. He 

showed that the permeability increases sharply as porosity 

increases above a certain value.  

Despois and Mortensen [8] surveyed the permeability of 

open-pore microcellular materials. They showed 

experimental data agrees with other data reported in the 

literature. Martys et al. [9] studied universal scaling of fluid 

permeability for sphere packing. They simulated Stokes 

flow through random packing of spheres with and without 

overlap and submitted universal curves for permeability 

such that one need only know the specific area and critical 

porosity then refer to their submitted universal curves, for 

evaluate permeability. Ngo and Tamma [10] predicted 

complex three-dimensional micro structural permeability of 

porous fibrous media with and without compaction. They 

studied realistic complex fabric geometries and structural 
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shapes and proposed using a three-dimensional unit cell to 

predict permeability.  

Nabovati et al. [11] surveyed three dimensional fluid flow 

simulations in fibrous media using the SRT lattice 

Boltzmann method. They concluded that fiber curvature has 

a negligible impact on the media permeability. Chai et al. 

[12] investigated non-Darcy flow in disordered porous 

media with high porosity. They showed that non-Darcy 

effect is observed obviously, when Reynolds number is up 

to a critical value. Gao et al. [13] calculated permeability of 

anisotropic porous media. They compared the SRT lattice 

Boltzmann method with multi relaxation time (MRT), and 

showed that although MRT model is an improved method, 

the SRT method is more competitive by properly choosing 

the value of the relaxation time. Cho et al. [14] studied 

permeability of micro scale fibrous porous media using 

LBM. They showed that the fibrous porous media behaves 

as the granular porous media at low porosities. Grucelski 

and Pozorski [15] simulated flow in simple porous media. 

They obtained lift and drag coefficients and the Strouhal 

number as the functions of the Reynolds number. Also they 

showed that according to porous media theory, the pressure 

drop meets the Darcy law for low Reynolds numbers and 

for higher Reynolds number, it is better to apply a quadratic 

polynomial (the Darcy–Forchheimer law). Zarghami et al. 

[16] studied the porous media with non-homogeneous 

porosity with a finite volume combined with Lattice 

Boltzmann method [FVM-LBM]. They also investigated the 

effects of Darcy number, porosity and porous layer 

thickness at canal walls. When Darcy number or media 

porosity is high, they showed that the fluid flows more 

easily through the porous layer at walls. Anisotropic porous 

media behavior was studied by Deshpande et al. [17].They 

simulated flow through porous media with varying degrees 

of anisotropy. Ortega and Romo investigated simulation of 

a non-Newtonian fluid in porous media [18]. They found 

that in random porous media there is flow separation. In this 

work, fluid flow through random circular porous media 

between two parallel flat plates is studied. Pressure drop 

along porous media, velocity vectors and streamlines are 

depicted. The effect of porosity and Knudsen number on 

permeability is also analyzed.  

2 THEORETICAL ANALYSIS  

2.1 LATTICE BOLTZMANN METHOD 

Nowadays, the lattice Boltzmann method (LBM) has been 

developed into an alternative numerical method for CFD in 

simulating fluid flows [19-21, 30, 31]. The earliest Lattice 

Boltzmann method was generated to solve one of the main 

problems of lattice gas automata (LGA) method; that is, 

statistical noise [22, 23]. For more details on LGA method, 

one can refer to ref [20, 24]. In this work, the lattice 

Boltzmann method with two-dimensional single relaxation 

time (SRT) [19] has been applied. In LBM, Macroscopic 

properties and parameters of fluid as a continuum 

environment in basis of microscopic properties and 

parameters were obtained. For D2Q9 model (nine-speed 

model), the lattice velocities are shown at    Fig. 1. 

 

 

Fig. 1 The D2Q9 model with discrete velocities 

 

Bhatnagar-Gross-Krook in 1954 introduced a discrete form 

for Boltzmann equation and suggested BGK approximation 

as follows: 

( , ) ( , )
eqf f

f t t t f t  
   




   x e x  

    

(1) 

 

Where f  is the distribution function and is a non-negative 

scalar variable between 0 and 1 for particles prediction. X 

and t are particles coordinates and time, t is time step in 

lattice. We select 1t x    for ease of calculation. 
e  

is the lattice velocity namely   
t








x
e and    is number 

of directions in lattice. Lattice velocities are always constant 

but macroscopic velocities U, V and W, are variables. The 

Eq. (1) splits in to two steps: collision and streaming (or 

propagation). In streaming step, each particle moves to the 

nearest adjacent node in the direction of its discrete velocity 

e . Collision occurs when particles arrives at a same node 

and at this node, collision happens.  Collision step is 

considered as a relaxation towards a local equilibrium. It 

should be noted that collision step is performed completely 

locally and independent of particle coordinates and also 

streaming step has very low computational cost in 

programming. 

Collision step:                          

         
1

, , , ,
eq

f t f t f t f t   

   
 

x x x x                        (2) 

 

Streaming step:                                                 

 

 

   , ,f t t t f t     x e x                                            (3) 

Where f , is the post-collision distribution function and 
eqf  is the equilibrium distribution function (Maxwell-

Boltzmann distribution) which are originated from the 
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maximum entropy principle and are calculated from Eq. (4). 

  is the dimensionless relaxation time.  

2 29 3
1 3 . ( . )

2 2

eqf w u   
 

   
 

e u + e u  
         

  (4)  

       

Where w 
 is the weighting factor which are used for 

discretization of Maxwell-Boltzmann equilibrium 

distribution and given by: 

4 9 , 0,

1 9 , 1,3,5,7,

1 36 , 2,4,6,8.

w










 
   

(5) 

In the discrete velocity space, the fluid density and velocity 

can be evaluated as follows: 

8 8
( )

0 0

8 8
( )

1 1

1 1

eq

eq

f f

e f e f

 
 

   
 



 

 

 

 



 

 u =

 
(6-7) 

Fluid kinematic and dynamic viscosity (  and   

respectively) in LBM scale are the functions of relaxation 

time   and in the D2Q9 model are given by Eq. (8-9). 

21
( )

2

1

3 2

sc t  


 


 


    

    

(8-9) 

Where 
sc  is the sound speed that in D2Q9 model is

3sc e . Fluid pressure in D2Q9 model is obtained 

from Eq. (10) which is similar to equation of state for gas. 

According to Eq. (8), since the negative viscosity is 

physically meaningless, it is necessary to always select 

1 2  . This inequality is stability condition for LBM.  

3
P


  (10) 

Mach number is defined according to Eq. (11). 

s

u
Ma

c


 

(11) 

Compressibility is measured with Mach number. In LBM it 

is assumed that fluid compressibility is low. For 

incompressible flow simulation with LBM, it is necessary to 

reduce the fluid compressibility with reducing Mach 

number. The numerical accuracy of LBM depends on Mach 

number. Compressibility effects are negligible by choosing 

the Mach number below 0.1 and flow can be considered as a 

quasi-incompressible flow. Usually two scales have been 

used in lattice Boltzmann simulation of fluid flow in porous 

media; the pore scale and the representative elementary 

volume (REV) scale [25]. In the pore scale, the porous 

media geometry is simulated exactly and porous media 

effect on flow is modeled only by the no-slip bounce-back 

boundary condition. In the REV scale, the porous media 

effect on flow is modeled by an additional term (body force) 

that is added to the lattice Boltzmann equation. The pore 

scale is the easiest approach to apply the LBM to porous 

flows [26]. In this paper, simulation of fluid flow in porous 

media at pore scale is considered. 

2.2 Boundary condition 

At each node, unknown distribution functions (f) in terms of 

known distribution functions are expressed. According to 

Fig. 2 at inlet, f1, f5 and f8 and at outlet, f3, f6 and f7 are 

unknown.  

 

 
Fig. 2 Known (solid line) and unknown (dashed line) 

distribution functions at boundaries [21] 

 

At inlet, with having inlet velocity and fluid density, three 

unknown distribution functions were obtained and known 

velocity boundary condition (Zhu and He) at inlet were used 

as follows: 

 0 2 4 3 6 72

1
in

x in

f f f f f f

u


      
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   (12) 

 

 

1 3

5 7 4 2
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2
( )

3

1 1
( )
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f f f f u

f f f f u







 

   

   
           

(13-14) 

At outlet, second order polynomial extrapolation is used 

(Eq. (16-18)). This approach is similar to the approach used 

in traditional finite difference methods (FDM) for boundary 

conditions.  

1 2

3 3 3

1 2

6 6 6
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 

 

  


 

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            (16-18) 
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Where, Nx is the nodes number in x direction. Because of 

no slip condition in solid walls, the on grid bounce-back 

boundary condition was used at lower and upper walls of 

canal. This model is the simplest model that satisfies no slip 

condition at fluid-solid interface. In bounce-back model, it 

assumed when a particle reaches wall, the particle would 

bounce back to the fluid nodes along its incoming direction. 

According to Fig. 2 at upper wall, f4, f7 and f8 and at lower 

wall, f2, f5 and f6 are unknown that are obtained from Eq. 

(19). 

   f ff x f x                                               (19) 

Where : 


 e e

                                                                     
(20) 

and xf is the fluid node at lower and upper walls of canal. 

 

2.3 Curved boundary 

At Fig. 3, a curved boundary is shown that separates fluid 

and solid region from each other’s. Solid, fluid and wall 

nodes are shown with 
bx , 

fx and 
wx respectively. Wall 

nodes result from intersecting curved boundary with lattice. 

At the curved walls of obstacles, linear interpolation method 

( fraction) [27] is used. Particle velocity from 
fx  to 

bx  

is 
e  and from 

bx  to 
fx  is 


e . According to Fig. 3 the 

streaming step requires the information of  ,bf t x  on the 

solid side in order to obtain  ,ff t x  for the fluid node at 

fx . 

 

Fig. 3 Curved boundary on the lattice 

 

With defining: 

,0 1
f w

f b


    



x x

x x
 

(21) 

 

When fluid nodes are located on the wall, 0  .  ,bf t x  

is unknown which Mei et al. [27] proposed linear 

interpolation (Eq. (22))  for this term. 

         *
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x x x

e u
 

(22) 

With 
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 

*

2

2 4 2
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3 9 3
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f t w t

e e e
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 
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 
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 
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(23) 
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
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

     
        


       

 

u
u u

u u u x e
 

(24) 

 

(25)  

Where 
wu  is the curved wall (boundary) velocity, that in 

this work 0w u  namely the obstacles are fixed and do 

not move.   is the weighting factor that is a function of   

and controls the linear interpolation. 
bfu is a virtual velocity 

and 
 *

f   is the virtual equilibrium distribution function. 

 

2.4 Flow in porous media 

The momentum equation for fluid flows passing through a 

porous media described by Darcy law [28, 29] 
K p

u
x


 

  
(26) 

Where u is velocity, p

x




 is the pressure gradient in the flow 

direction,   is the dynamic viscosity of the fluid and K is the 

permeability tensor of the media. For an isotropic media, 

this tensor reduces to a scalar. 

3 METHOD OF SOLUTION  

Validation of base computer code done with Poiseuille fully 

developed laminar flow (without porous media) between 

two parallel flat plates. The exact solution is: 

2

22

1 1

2 2

2

p p
u y Hy

x x

H p y y

x H H

 



    
     

    

      
      

         

(27) 

Where H is the distance between plates and y is measured 

from down plate. Dimensionless velocity profile is: 
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2

6
u y y

u H H

  
   

     

 

(28) 

Where u  is the mean velocity. As shown in Fig. 5 LBM 

results match with analytical solution with a good precision. 

Velocity at walls becomes zero and maximum velocity is 

obtained at centerline. Maximum velocity is obtained with 

absolute error of 5.4120×10-7 that is very small and 

negligible. Hence, LBM numerical solution has very good 

coincidence with analytical solution. 

 

Fig. 4 The Schematic of a canal with H distance. 

 

 

Fig. 5 Dimensionless velocity profile in Poiseuille flow 

 

 

Fig. 6 Linear pressure drop along centerline in Poiseuille flow 

 

In Fig. 6 fluid pressure drops at Poiseuille flow along canal 

centerline in LBM scale is drawn. As shown in Fig. 6 and 

according to Eq. (29) pressure drop is linear. 

 

2

12 u x
p

H

 
  

 
(29) 

  

4 RESULTS AND DISCUSSION  

General layout of porous media is shown in Fig. 7 in which 

Dp is the obstacles diameter. All particles have same 

diameter. 

 

 

Fig. 7 Schematic of a random circular porous media 

 

 

Fig. 8 Velocity vectors in porous media at Re 40H  , 

Re 8.4
pD   and porosity 0.72 

 

 

Fig. 9 Stream lines in porous media at Re 40H  , 

Re 8.4
pD   and porosity 0.72 

To show the effect of the porous media on flow, in Fig. 8 

and Fig. 9, velocity vectors and streamlines are drawn with 

Techplot software at Re 40H  , Re 8.4
pD   and 

porosity of 0.72. Obstacles diameter are 14 lu (lattice unit) 

or 0.47 cm. Canal length L is 0.1 m and inlet velocity is 

0 0.1u lu ts . As Fig. 8 shows, velocity vectors turn the 

obstacles and velocity inside obstacles is zero. Because of 

no permeation condition, there are not any velocity vectors 

inside obstacles as shown in Fig. 8.  
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3.2.1 Pressure drop calculations 

In Fig. 10 effect of Reynolds number based on the particle 

diameter Re
pD

 on the mean pressure drop is depicted. The 

mean pressure drop is calculated as follows: 

out inp p p    (30) 

In which 
inp and 

outp  are fluid mean pressure at cross 

section right before and after porous media respectively. 

These two cross-sections are shown in Fig. 7.  Mean 

pressure is calculated according to    Eq. (31).  

1

yN

i

i

y

p

p
N




 (31) 

Where 
yN is lattice nodes number in y direction (porous 

media width) and in this study is constant and equals to 67 

nodes. 

 
Fig. 10 Mean pressure drop vs. Re

pD
 

 
As shown in Fig. 10 with increasing Reynolds number 

Re
pD
(for example with an increase in obstacles diameter), 

fluid pressure drop along the porous media increases and 

becomes more negative. When Re
pD
increases by an 

increasing in obstacles diameter, contact surface of 

obstacles increases and because of friction between fluid 

and obstacles, fluid pressure reduces, pressure drop increase 

and become more negative. In Fig. 11 effect of Re
pD
 on 

pressure gradient along the porous media is plotted. 

Pressure gradient is calculated according Eq. (32). 

out inp pp
p

x x


  

   
(32) 

3.2.2 Permeability and porosity  

In fluid dynamics, the ratio of the molecular mean free path 

l to characteristic length h is defined as Knudsen number 

that is a dimensionless number [14]. The chosen 

characteristic length will depend on the problem under 

consideration. It may be, for example, the diameter of a pipe 

or an obstacle immersed in a flow, or the thickness of a 

boundary layer. This number was named after Danish 

physicist Martin Knudsen (1871–1949): 

l
Kn

h
  (33) 

The mean free path l is the particle’s distance traveled 

during the relaxation time   with a lattice speed, e . 

t






x
e  (34) 

 

x
l x

t


  


  e  (35) 

Where  , is the dimensionless relaxation time and is equal: 

t





  (36) 

So  

.
l x

Kn
h h


   (37) 

With choosing 1, 1x   , characteristic length h, is 

equal to particle diameter (   : 

1

p

Kn
D



 
(38) 

Small obstacles diameter is equal to large Kn number. In 

Fig. 12 dimensionless permeability as a function of Kn  

number is depicted. As shown in Fig. 12 when Kn number 

increases (namely obstacles become smaller) dimensionless 

permeability grows. With obstacles shrinking and with this 

assumption that obstacles position is constant, fluid can pass 

through porous media with more freedom and permeability 

of porous media increases. As previously mentioned 

permeability is a property of media and is independent of 

fluid. Therefore, when fluid changes, (viscosity) media 

permeability remains constant.  

 

http://en.wikipedia.org/wiki/Denmark
http://en.wikipedia.org/wiki/Martin_Knudsen
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Fig. 12 Dimensionless permeability vs. Kn number 

 

 
Fig. 13 Dimensionless permeability vs. porosity 

 

 
Fig. 14 Darcy-drag (inverse of dimensionless permeability) vs. 

Re
pD
 

In Fig. 13 dimensionless permeability as a function of 

porosity is drawn. Since permeability has dimension of 2L , 

we can normalize and dimensionless it with 2

pR  or 2

pD  term. 

If porosity increases, it means that void places increase and 

fluid can flow through porous media easier thus media 

permeability will be increased. 

In Fig. 14 effect of Re
pD
on Darcy drag (inverse of 

dimensionless permeability) is plotted. It should be noted 

that, Darcy drag is introduced in Darcy law with 

Forchheimer term. According to Fig. 14, when Re
pD

increases, Darcy-drag increases too, that means 

dimensionless permeability decreases. It should be noted 

that this ascending behavior is coincidence with results 

obtained from Chai et al. [12]. It concluded that for low 

porosities, growing of dimensionless permeability is slow. 

 
(a) 

 

 
(b) 

Fig. 15 Permeability vs. porosity at LBM scale (a) 

and SI scale (b) 

Fig. 15 Shows Permeability vs. porosity at LBM scale (a) 

and SI scale (b). In Fig. 15 permeability in LBM scale (lu2) 

and SI scale (m2) as a function of porosity is submitted. As 

shown in Fig. 15 with increasing porosity (with fixed 

obstacles and varying obstacles diameter), permeability also 

increases and at maximum porosity, maximum permeability 

is available. These results match with results of Deshpande 
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et al [17]. To change porosity, it is assumed in this work 

that obstacles location in channel is fixed and only diameter 

changes. Whatever porosity of porous media is larger, then 

fluid can pass through media easier and therefore 

permeability rises.  

In general, permeability is a second order tensor (matrix) for 

anisotropic media bur for an isotropic media, permeability 

in all directions is equal and this tensor will reduce to a 

scalar. Permeability is ability of a media for passing flow. K 

is not a function of fluid material (viscosity) but is a 

function of media geometry namely obstacle diameter. 

Therefore if fluid changes, K  do not change. For natural 

porous media, porosity does not usually exceed 0.6. 

Artificial materials such as metallic foams, porosity can 

approach the value unit. For unit conversion of permeability 

from LBM scale  2lu to SI scale  2m , Eq. (39) is used. 

   2 2 2m luSI LBMK K
 

(39) 

Where δ is conversion coefficient between two scales. 

Table 1:  Effect of resolution on mean pressure gradient 

Lattice D(lu) D(m) 
LBMp

(lm.lu-2.ts-2) 

102 x 67           4                  0.0013       -1.9115e-05 

104 x 67           6                  0.0020      -3.1470e-05 

106 x 67           8                  0.0027    -5.0331e-05 

108 x 67          10                 0.0033     -8.4587e-05 

110 x 67          12                 0.0040      -1.5016e-04 

112 x 67          14                 0.0047      -2.5831e-04 

116 x 67          18                 0.0060      -4.6526e-04 

 

3.2.3 Resolution effect 

Generally, for obtaining precise solution; the lattice must be 

fine with increasing lattice nodes. At the other hand for 

reducing calculations and saving time, the lattice do not 

should be very fine. Therefore, in a numerical simulation an 

agreement between high precision results and code speed is 

necessary and suitable nodes number should be selected. In 

Table 1    dependence of results (pressure gradient) to nodes 

number is studied and results show that this dependence is 

small. For unit conversion of diameter from LBM scale (lu) 

to SI scale (m), Eq. (40) is used. 

   SI LBMD m D lu  (40) 

  

5 CONCLUDING REMARKS  

In this paper single relaxation time (SRT) lattice Boltzmann 

method was used for fluid flow simulation in random 

circular porous media and ability of this numerical method 

was surveyed in complex geometries such as random porous 

media. In absence of porous media (Poiseuille flow between 

two parallel plates), the obtained results from LBM match 

completely with analytical solution and dimensionless 

velocity profile as well as linear pressure drop along canal is 

depicted.  

In Poiseuille flow, maximum velocity at centerline is 

obtained with absolute error of 5.4120×10-7 that is very 

small and negligible. Hence, LBM numerical solution has 

very good coincidence with analytical solution. Results 

show that porous media tend to raise pressure drop and fluid 

pressure decreases during pass porous media hence for 

handling fluid through porous media, more power is needed. 

With increasing obstacles number or their size, porosity 

reduces and pressure drop rises.  

Pressure drop rising means pressure drop becomes more 

negative. Permeability was depicted in terms of porosity in 

both LBM and SI scales. With rising porosity, permeability 

rises. According to permeability versus porosity plot, it is 

concluded that materials with low porosity are less 

permeable and typically have smaller pores, making it more 

difficult for fluid to pass through them, while materials with 

high porosity have large pores and are easily permeated.  

In addition, dimensionless permeability was plotted versus 

Kn number and porosity. With rising Knudsen number, 

dimensionless permeability rises. It is concluded that with 

increasing Reynolds number, Darcy-drag increased. With 

increasing Reynolds number, pressure drop and pressure 

gradient becomes more negative. In addition, effect of 

domain resolution on pressure gradient was investigated and 

it was observed that domain resolution has negligible effect 

on pressure gradient. Finally, it was found that the LBM is a 

useful, fast and accurate method for the investigation of 

fluid flows through porous media. 
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