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Abstract: It would be difficult to deny the importance of optimization 
in the areas of science and technology. This is in fact, one of the most critical steps 
in any design process. Even small changes in optimization can improve 
dramatically upon any process or element within a process. However, determining 
whether an optimization approach will improve on an original design is usually a 
question that its response in this study has led to an optimal design out of an 
existing car model. First of all, the optimization of a passive car-quarter model has 
been accomplished by means of a genetic algorithm. This initial optimization gives 
a figure of points named ''Pareto optimum points''. Secondly, through selecting a 
point amongst them, the design of active model has been completed and optimized 
based on genetic algorithm. Continuing with this thought, a similar process has 
been also accomplished with a car-half vehicle model with five degrees of 
freedom. Though the last optimized active model may prove a more reliable 
efficient design due to the more comprehensive feature related to the degrees of 
freedom, the results of each optimization should be considered and may supply 
equally attractive and diverse choices as well. Anyway, let's focus on the final 
purpose which is to reduce the vibrations as much as possible. This is what is 
observed through all the optimization jobs in this study. Comparison of these 
results with those reported in the literature affirms the excellence of the proposed 
optimal designs. 
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1 INTRODUCTION 

Dramatic growth of demand for comfort and reliability 

of vehicles is continuously increasing. The automotive 

suspension systems divide into three categories: passive, 

semi-active, and active. As we know, every vehicle 

should be flexible against the change of applied load 

and the center of mass. Furthermore, vibrations caused 

by engines and the motion paths lead to harmful effects 

and affect drivers’ comfort. Hence impacts, shocks and 

vibrations are what to diminish over passive and active 

suspension systems by using the multi-objective 

optimization in this study. 

For years, vehicle ride quality has been improved by 

both passive and active suspension systems [1], [2]. The 

passive suspension systems employ ordinary dampers to 

absorb vibration energy. Furthermore, the springs and 

dampers do not give energy to the suspension system 

and can only control the motion of the car body and the 

wheels by restricting the velocity of the suspension [3-

5]. Thus, to overcome this drawback, active and semi-

active suspension systems are developed which can 

enhance the ride quality by using the additional power 

to obtain a response-dependent damper [3, [4], [6]. 

Some studies showed that the interior vibrations of a 

vehicle majorly deteriorate the comfort and road holding 

capability [7-9]. In 1997, Bouazara studied the influence 

of suspension system parameters on the vehicle vibration 

model [10]. In the same year, Hrovat used a three- 

dimensional vibration model instead of the two-

dimensional one to get more exact results [11]. Further, 

Crolla applied a semi- active suspension model for 

improving the performance of the vehicle [12], and 

Bouazara and Richard presented their vibration model in 

three-dimensional space demonstrating that this model 

has a good estimation of the vehicle behavior [13]. They 

also studied three types of suspension system (active, 

semi-active and passive) for an eight-degree of freedom 

vibration model [14].  

In that work, they combined all the performance criteria 

to form an objective function for a single-objective 

optimization process. For this purpose, they used 

weighting coefficients to adjust comfort and road holding 

capability criteria in the single-optimization design 

process. Gundogdu designed an optimum system for a 

four-degree of freedom quarter car seat using Genetic 

Algorithm (GA) to determine a set of parameters in order 

to achieve the best performance of the driver’s seat [15]. 

The desired objective was proposed as the minimization 

of a multi-objective function formed by the combination 

of not only suspension displacement and tire deflection 

but also the head acceleration and crest factor, which has 

not been practiced as usual by designers. Alkhatib et al. 

applied genetic algorithm to the optimization problem of 

a linear one-degree of freedom vibration isolator mount 

and then extended the method to optimization of a linear 

quarter car suspension model [16].  

In addition, most of the practical engineering problems 

need to solve the optimization process involving 

multiple objective functions so that these functions 

(design criteria) may in turn conflict with each other. 

The inherent conflicting behavior of such objective 

functions lead to a set of optimum solutions named 

Pareto front [17-20]. For instance, Bagheri et al. applied a 

new multi-objective genetic algorithm to Pareto 

optimization of a two-degree of freedom passive linear 

suspension system [21]. Rajeswari and Lakshmi 

presented the optimized fuzzy logic controller for the 

active suspension system based on particle swarm 

optimization [22]. Nariman-zadeh et al., applied a new 

multi-objective uniform-diversity genetic algorithm 

(MUGA) with a diversity preserving mechanism to 

multi-objective optimization of a five-degree of freedom 

vehicle vibration model [23].  

Mahmoodabadi et al. applied a novel combination of 

particle swarm optimization and genetic algorithm to 

Pareto optimum design of a five-degree of freedom 

vehicle vibration model [24]. In [23], [24], new types of 

optimization algorithms are utilized for a five- degree of 

freedom vehicle vibration model containing passive 

suspension. Furthermore, some researchers showed that 

by using an active suspension and a simple multi-

objective optimization, a better model for suspension 

system could be achieved. Sharifi applied a multi-

objective GA to optimize a sliding mode controller for a 

vehicle suspension system [25]. Vahidi and Eskandarian 

introduced a predictive control methodology for active 

vehicle suspension control [26]. Baumal et al. presented 

an application of genetic algorithms to the design 

optimization of an active vehicle suspension system 

[27].  

Thoresson et al. applied a gradient-based approximation 

method for efficient optimization of a vehicle 

suspension system [28]. Crews et al. applied multi-

objective control optimization for semi-active vehicle 

suspensions [29]. Guo et al., utilized neural network 

control for a semi-active vehicle suspension with a 

magnetorheological damper [30]. Eski and Yildirim 

applied a new robust neural network control system for 

vibration control of the vehicle active suspension system 

[31]. Mao and Wang employed delay-dependent control 

design for a time-delay supercavitating vehicle model 

[32]. Some researchers dealt with vehicle models with 

active suspension systems with PID controller [33], 

[34].  

Yagiz and Sakman used a seven-degree of freedom full 

vehicle model to design a robust controller and to 

investigate the performance of active suspensions 

without losing the suspension working space [35]. 

Therefore, in this paper, a couple of optimal versions of 

both passive and active suspension systems are designed 
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step by step. Through this process, the multi-objective 

genetic algorithm is used for Pareto optimization of 

these two models with two- and five-degree of freedom. 

For the first model (the two-degree one), the conflicting 

objective functions are the sprung mass acceleration and 

the relative displacement between the sprung mass and 

the tire that should be minimized simultaneously. Design 

variables used in its passive model are the vehicle 

suspension damping coefficient and the vehicle 

suspension stiffness coefficient. Also, the design 

variables used in its active model are PID controller 

coefficients.  

For the second model (the five-degree one), the 

conflicting objective functions considered for 

minimization are seat acceleration, front tire velocity, 

rear tire velocity, relative displacement between sprung 

mass and front tire, and relative displacement between 

sprung mass and rear tire. Design variables used in its 

passive model are seat damping coefficient, vehicle 

suspension damping coefficients, seat stiffness 

coefficient, vehicle suspension stiffness coefficients, 

and seat position in relation to the center of mass. As 

well, the design variables used in its active model are 

the coefficients of the PID controller. For the second 

model, various pairs of wise objectives are selected for 

two-objective optimization process. Furthermore, the 

superiority of time domain vibration performance of the 

proposed design points is shown in comparison with 

those given in literature. 

2 MULTI-OBJECTIVE OPTIMIZATION OF THE 

VEHICLE SUSPENSION MODEL WITH TWO-DEGREE 

OF FREEDOM   

2.1. Passive Model 

Fig. 1 shows a passive vehicle suspension model with 

two degrees of freedom [10]. This model, consisting of 

a sprung mass jointed to an un-sprung mass, is the most 

prevalent model in the passive suspension design 

researches. For a reasonable simplicity, only the vertical 

direction of the motion is considered to formulate the 

motion equations, although the vehicle suspension does 

not exactly have a vertical motion. Further, the tire form 

is assumed to be perpetually maintained in contact with 

the road surface.  

M1, M2, K1, K2, and C2 respectively stand for tire mass, 

sprung mass, tire stiffness coefficient, spring stiffness 

coefficient, and damping coefficient for the vehicle 

suspension. According to Newton’s second law of 

motion, the linear differential equations excited by 

double bumps, shown in Fig. 2, are as follows [10]. 

 

)ZZ(K)ZZ(C)ZZ(KZM 1112212211              (1) 

)ZZ(C)ZZ(KZM 12212222
                             (2) 

Where Z1 and Z2 are vertical displacements, 1Z  and 2Z  

denote the vertical velocities and 1Z  and 2Z  denote the 

vertical accelerations of tire and sprung mass, 

respectively. Also, Z introduces the bump excitation of 

the road, as shown in Fig. 2, and the input values of 

fixed parameters are those used in [10] as M1= 36 kg, 

M2=240 kg and K1=16000 N/m. 10000 < 2K < 16000 

and 500 < 2C < 2000  are two design variables to be 

optimally found based on multi-objective optimization 

of two different objective functions, namely, sprung 

mass (seat) acceleration (c), and relative displacement 

between sprung mass and tire(Z2-Z1).To this end, the 

multi-objective genetic algorithm defined in toolbox of 

MATLAB software is used for multi-objective design of 

passive model shown in Fig. 1. A population of 100 

individuals with a crossover probability of 0.9, and 

mutation probability of 0.1 has been used in 1024 

generations according to [21].  

 

 
Fig. 1 The Passive vehicle suspension model with two-

degree of freedom 
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Fig. 2 Bump excitation for vehicle suspension model with 

two-degree of freedom. 

 

Fig. 3 depicts the Pareto front of the sprung mass 

acceleration and the relative displacement between 

sprung mass and tire. It represents different optimum 

points with respect to these conflicting objectives in the 
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passive model. Points Land R stand for the best sprung 

mass acceleration and the best relative displacement 

between sprung mass and tire, respectively. The selected 

point indicated in the top-left of the figure is one of the 

optimum design points which stands for an appropriate 

position; satisfies both of two conflicting objectives in 

comparison with the other points.  

 
Table 1 The values of objective functions and their associated 

design variables for the optimum points shown in Fig. 3 

 
..
Z2  

(m/s2) 

(m))ZZ( 12 

 
K2 (N/m) C2 (N.s/m) 

Point L 3.9103 0.0533 10484.9069 1976.4774 

Point R 4.6447 0.0513 15933.8257 1978.1740 

Selected 

point 
3.9167 0.0532 10529.8920 1978.1775 

 

 

Fig. 3 Obtained Pareto front for the two-degree of freedom 

passive suspension system using the multi-objective genetic 

algorithm 

 

The corresponding values of objective functions and 

design variables of these optimum design points are 

shown in Table 1. It should be noted that all of the 

optimum design points in this Pareto front are non-

dominated and could be chosen by a designer based on 

the kind of requirement. The selected point could give 

an optimum choice to reach to an optimal design of two-

degree of freedom passive suspension model. Then, by 

installing a PID controller and optimization of that, we 

will reach to an optimum design of the two-degree of 

freedom active suspension model in the next part. 

 

2.2. Active Model 

A two-degree of freedom active vehicle suspension 

model shown in Fig. 4 adopted from [36] is now 

considered. This model is composed of a passive 

suspension and an actuator that is handled by a PID 

controller. Parameters M1, M2, K1, K2, and C2 are the 

same fixed parameters of passive vehicle model whose 

values were expressed or obtained in the previous 

section. In fact, M1= 36 kg, M2=240 kg and K1=16000 

N/m. K2 and C2 have the corresponding values of the 

selected optimum point shown in Fig. 3 (K2=10529.82 

N/m and C2=1978.17752 N.s/m). The linear differential 

equations of motion with regard to the degrees of 

freedom could be written as follows [36]. 

u )ZZ(C)ZZ(KZM 12212222
                        (3) 

u )ZZ(K)ZZ(C)ZZ(KZM 1112212211


      
(4) 

Where Z1, Z2, 1Z , 2Z , 1Z , and 2Z denote those same 

displacements, velocities and accelerations of the 

passive vehicle model used in the previous section. 

Also, Z represents the double bumps excitation of the 

road, as shown in Fig. 2 and u is the PID controller 

signal. The ideal version of the PID controller is given 

by the following formula: 

 dtek
dt

de
keku idp                                       (5) 

Ideal where u  is the control signal and e is the control 

error (e=Zd-Z). The reference value Zd is called the 

desired set point and its value is 0 and Z denotes the 

relative displacement between sprung mass and un-

sprung mass, in this paper. A PID controller calculates 

an error value as the difference between the state 

variable and the desired set point. The controller 

attempts to minimize the error by adjusting the process 

control inputs. The control signal is thus a sum of three 

terms: a proportional term that is proportional to the 

error, a derivative term that is proportional to the 

derivative of the error and an integral term that is 

proportional to the integral of the error. The controller 

parameters are then proportional gain kp, derivative gain 

kd and integral gain ki. 

Now, the active model must be optimized to reach the 

optimum performance of the suspension system. 

Therefore, similar to the multi-optimization of passive 

model, the multi-objective genetic algorithm defined in 

toolbox of MATLAB software is used, but at this time, 

the active model shown in Fig. 4 is optimized and -

10000< kp <-6000, -100< kd <1000, -100< ki <1000 are 

three design variables to be found based on multi-

objective optimization of two different objective 

functions, namely, the sprung mass (seat) acceleration 

( 2Z ) and the relative displacement between sprung 

mass and tire (Z2-Z1). Like the previous section, a 

population of 100 individuals with a crossover 

probability of 0.9 and mutation probability of 0.1 has 

been used in 1024 generations. The initial range of the 

design variables is [-10000, 1000]. These conditions are 

same with those of the proposed model in [21]. 
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Fig. 4 Two-degree of freedom vehicle model with active 

suspension 

 
Table 2 The values of objective functions and their associated 

design variables for the optimum points shown in Fig. 5 
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kp kd ki 

A 2.822 0.0311 -9987.077 970.991 45.554 

B 2.621 0.0369 -9963.036 392.011 159.564 

C 2.389 0.0432 -9957.618 -75.965 251.761 
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Fig. 5 Obtained Pareto front for the two-degree of freedom 

active suspension system using the multi-objective genetic 

algorithm 

 
Fig. 5 depicts the Pareto front of the sprung mass 

acceleration and the relative displacement between 

sprung mass and tire. It represents different optimum 

points with respect to these conflicting objectives in the 

active model. In this figure, three optimum design points 

are denoted and the corresponding values of objective 

functions and their design variables are given in Table 2. 

It is clear from Fig. 5 that both of the objective functions 

are optimized to an acceptable level compared to Fig. 3. 

The comparison of two obtained Pareto fronts with the 

one proposed in [21] is shown in Fig. 6 and the values of 

objective functions are given in Table 3. Therefore, the 

superiority of the proposed optimal active design is clear. 

The time histories of two objective functions for the 

suggested optimum design points by this work and those 

suggested in [10] and [21] are shown in Figs. 7 and 8. 

The values of two objective functions for these points are 

given in Table 3. 

Table 3 Objective functions associated with the optimum 

design points from this work and [10], [21]. 

 
..
Z2 (m/s2) 

(m))ZZ( 12 

 

Point B, by this work 2.8221 0.03111 

Suggested optimum point in [21] 2.6210 0.03692 

Suggested optimum point in [10] 2.3892 0.04323 

 
The integral of absolute values the time behaviors of 

control forces for optimal design points A, B and C     

(Fig. 5) are 383.2641 N, 381.9616 N, and 428.4899 N 

(point B has the minimum value) respectively. 
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Fig. 6 The comparison of the Pareto fronts obtained by this 

work and [21] for the two-degree of freedom vehicle model 
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Fig. 7    The comparison of time responses of relative 

displacement between sprung mass and tire for point B (by this 

work) and optimum points proposed in [10], [21] 
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Fig. 8 The Comparison of time responses of sprung mass 

acceleration for point B (by this work) and optimum points 

proposed in [10], [21] 

3 MULTI-OBJECTIVE OPTIMIZATION OF THE 

VEHICLE SUSPENSION MODEL WITH FIVE-DEGREE 

OF FREEDOM 

3.1. Passive Model 

Fig. 9 shows a passive vehicle suspension model with 

five degrees of freedom [10]. This model consisting of a 

sprung mass (body) jointed to three un-sprung masses 

(tires and seat) not only simplifies the analysis but also 

includes most of the characteristics of the exact 

suspension model. It is noteworthy that both passive and 

active models with five-degree of freedom consider the 

seat having a linear spring and damper. Further, the tire 

form is assumed to be perpetually maintained in contact 

with the road surface. 

 

 
 

 

Fig. 9 The Passive vehicle suspension model with five-

degree of freedom 
 

In Fig. 9, parameters m1, m2, ms, Is, Kp1, Kp2, l1, and l2 

represent the vehicle's fixed parameters, respectively, 

front tire mass, rear tire mass, sprung mass, moment of 

inertia of sprung mass, front tire stiffness coefficient, 

rear tire stiffness coefficient and the front and rear tires 

position relative to the center of mass. Design variables 

Kss, Ks1, Ks2, Css, Cs1, Cs2, and r and r  denote seat 

stiffness coefficient, stiffness coefficients for vehicle 

suspension, seat damping coefficient, damping 

coefficients for vehicle suspension and the set position 

relative to the center of mass, respectively. As well, 

subscripts 1 and 2 denote tire axes. As shown in Fig. 10, 

the model is excited by the double bumps. In addition, 

the linear differential equations of motion are derived 

from Newton-Euler equations as follows [10]. 

rzz sps 
 

                                                         (6) 

11 lzz ss                                                                 (7) 

22 lzz ss                                                               (8) 

)()( pscsspscssss zzCzzKF                            (9) 

)()( 1111111 zzCzzKF sssss
 

 
                         (10)

 

)()( 2222222 zzCzzKF sssss
 

 
                    (11)

 

sscc Fzm                                                               (12)
 

1 2s s s s ssm z F F F                                               (13) 

1 1 2 2s s s ssI l F l F rF                                            (14) 

)( 111111 pps zzKFzm 
 
                                    (15) 

)( 222222 pps zzKFzm                                 (16) 

Where Zc, Zs, Zsi(i=1,2) and   are vertical seat 

displacement, vertical displacement of the central 

gravity of the sprung mass, vertical displacement of the 

ends of the sprung mass, and rotating motion (pitching 

motion), respectively.  
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Fig. 10    Double bumps excitation forvehicle suspension 

model with five-degrees of freedom 
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In addition, sc zz  ,  and )2,1( izsi
 indicate vertical 

seat velocity, vertical tire velocity, and vertical velocity 

of the ends of the sprung mass, respectively. 

)2,1(,, isisc zzz  , and   denote vertical seat 

acceleration, vertical acceleration of the center of 

gravity of the sprung mass, vertical tires acceleration, 

and rotating acceleration (pitch acceleration), 

respectively.  
 

Table 4 The values of fixed parameters for the passive model 

with five-degree of freedom 
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Fig. 11    The Obtained Pareto front of the five-degree of 

freedom passive suspension for seat acceleration and front tire 

velocity using the multi-objective optimization genetic 

algorithm 

 

Finally, 1pz  and 2pz indicate the double bumps 

excitation of the road, as shown in Fig. 10. It is assumed 

that the vehicle velocity has the constant value of 

20v m/s over the double bumps and the rear tire 

moves on the same trajectory of the front tire with a 

delay of t  )( 21 ll  /v. The values of fixed parameters 

are given in Table 4 with regard to [10]. In this section 

50000≤ Kss≤150000, 10000≤ Ks1≤20000, 10000≤ 

Ks2≤20000, 1000≤ Css≤4000, 500≤ Cs1≤2000, 500≤ 

Cs2≤2000and 5.00  r  are considered as seven 

design variables to be optimally found based on the 

multi-objective optimization of five different objective 

functions, namely, seat acceleration, front tire velocity, 

rear tire velocity, relative displacement between sprung 

mass and front tire, and the relative displacement 

between sprung mass and rear tire.  

 
Table 5 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 11 
 Kss(N/m) Ks1(N/m) Ks2(N/m) 

Point
1D 94013.1805 10156.5046 15942.0000 

Point
1E 92041.0331 10159.7081 18589.5539 

Point
1F 87208.5102 10212.2502 19021.1269 

 Css(Ns/m) Cs1(Ns/m) Cs2(Ns/m) 

Point
1D 2417.7909 1429.9201 1574.5840 

Point
1E 2476.8518 1085.9229 1552.6168 

Point
1F 2473.9271 1009.5767 691.5997 

 r(m) )/( 2
smzc

 )/(1 smz 

Point
1D 0.49896 3.0697 0.4104 

Point
1E 0.4895 3.1648 0.4072 

Point
1F 0.4941 3.4130 0.4063 
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Fig. 12   The Obtained Pareto front of the five-degree of 

freedom passive suspension for seat acceleration and rear tire 

velocity using multi-objective optimization genetic algorithm 
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Table 6 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 12 

 Kss(N/m) Ks1(N/m) Ks2(N/m) 

Point
2D 89163.0239 10192.3170 10705.4247 

Point
2E 97209.7539 10249.0677 10534.9070 

Point
2F 98382.7617 11202.0151 10517.1537 

 Css(Ns/m) Cs1(Ns/m) Cs2(Ns/m) 

Point
2D 3083.7583 1351.8687 1869.0524 

Point
2E 2869.4824 1079.7968 1658.3259 

Point
2F 2787.2322 1022.8388 1500.4208 

 r(m) )/( 2
smzc

 )/(2 smz 

Point
2D 0.4959 2.9784 0.4335 

Point
2E 0.2903 3.2018 0.4322 

Point
2F 0.0512 3.6955 0.4314 
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Fig. 13   The Obtained Pareto front of the five-degree of 

freedom passive suspension for seat acceleration and relative 

displacement between sprung mass and front tire using multi-

objective optimization genetic algorithm 

 

Note that from these five objective functions, four 

different pairs of them are considered in various two-

objective optimization processes in which; The fixed 

objective is the seat acceleration, and the other one is 

chosen from the other four objectives. As we know, all of 

the objective functions must be minimized, 

simultaneously. For this purpose, similar to previous 

sections, the multi-objective genetic algorithm defined in 

toolbox of MATLAB software is used for multi objective 

design of passive model shown in Fig. 9. A population of 

80 individuals with a crossover probability of 0.9 and 

mutation probability of 0.1 has been used in 240 

generations. 

Table 7 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 13 

 Kss(N/m) Ks1(N/m) Ks2(N/m) 

Point
3D 89159.9059 10311.5458 12705.8567 

Point
3E 89165.1050 10314.6204 12664.7729 

Point
3F 89169.1365 10315.7274 12647.9414 

 Css(Ns/m) Cs1(Ns/m) Cs2(Ns/m) 

Point
3D 2571.8137 1964.0384 1485.3474 

Point
3E 2567.7195 1966.8788 1476.0882 

Point
3F 2566.5456 1967.2258 1469.6132 

 r(m) )/( 2
smzc

 )(1 md 

Point
3D 0.4859 3.0104 0.0922 

Point
3E 0.2754 3.1687 0.0917 

Point
3F 0.1132 3.3009 0.0913 
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Fig. 14   The Obtained Pareto front of the five-degree of 

freedom passive suspension for seat acceleration and relative 

displacement between sprung mass and rear tire using multi-

objective optimization genetic algorithm 
 

In Figs. 11 to 14 the Pareto fronts of a five-degree of 

freedom passive suspension model are depicted. The 

values of objective functions and their associated design 

variables of three optimum points in each pairs of 

objectives are shown in Tables 5 to 8. Design points D1, 

D2, D3, and D4 stand for the best seat acceleration ( cz ), 

while points F1, F2, F3, and F4 represent the 

best
1z ,

2z d1, and d2, respectively. From these figures, 
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it is clear that choosing a better value for any objective 

function in these Pareto fronts would lead to a worse 

value of another one. Obviously, there are some 

important optimum design facts among these objective 

functions that can be readily observed in that Pareto 

front. From these design points, the selected points E1, 

E2, E3, and E4 satisfy all pairs of objectives in an 

acceptable level. 

 
Table 8 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 14 

 Kss(N/m) Ks1(N/m) Ks2(N/m) 

Point
4D 102408.7747 10703.5080 14871.9250 

Point
4E 111031.7107 10730.5283 19382.8372 

Point
4F 112541.8623 10763.5887 19393.2878 

 Css(Ns/m) Cs1(Ns/m) Cs2(Ns/m) 

Point
4D 3531.4237 1686.4035 1990.7008 

Point
4E 3580.8821 1309.0825 1991.5468 

Point
4F 3646.8442 819.7926 1991.6428 

 r(m) )/( 2
smzc

 )(2 md 

Point
4D 0.4997 3.0827 0.0574 

Point
4E 0.4994 3.2071 0.0525 

Point
4F 0.4999 3.6217 0.0516 

 

 

 
Fig. 15   The Five-degree of freedom vehicle model with 

active suspension 

 
3.2. Active Model  

Fig. 15 shows a five-degree of freedom vehicle 

suspension model which is a combination of the passive 

model presented in section 3.1 and two actuators with 

PID controllers. With similar assumptions, the vehicle 

velocity has the constant value of 20v m/s over the 

double bumps and also the rear tire moves on the same 

trajectory of the front tire with a delay of                  

t  )( 21 ll  /v. The linear differential equations of 

motion, with respect to the degree of freedom, can be 

written as follows. The existence of two signals of two 

controllers in the following equations is the only 

difference to motion equations of the passive model in 

Section 3.1. 

 

rzz sps                                                                    (17) 

11 lzz ss 
                                                   (18) 

22 lzz ss 
                                                 (19) 

)()( pscsspscssss zzCzzKF  
                       

(20) 

)()( 1111111 zzCzzKF sssss
 

                          
(21) 

)()( 2222222 zzCzzKF sssss
 

                     
(22) 

sscc Fzm                                                               (23) 

1 2s s s s ssm z F F F   
1u 2u                           (24) 

1 1 2 2s s s ssI l F l F rF   
11ul 22ul                  (25) 

)( 111111 pps zzKFzm 
1u                               (26) 

)( 222222 pps zzKFzm 
2u                           (27) 

1u  dtek
dt

de
kek idp 111

                                     

(28) 

2u  edtk
dt

de
kek idp 222

                                     

(29) 

 

All the parameters except those related to the two 

controllers are same as the fixed parameters of the 

passive vehicle model (Section 3.1) whose values were 

expressed or obtained in the previous section. u1 and u2 

are the front and rear control signals, respectively. kp1, 

kd1, and ki1 are the front controller parameters. kp2, kd2, 

and ki2 are the rear controller parameters. Zp1 and Zp2 

represent the double bumps excitation of road, as shown 

in Fig. 10. Note that the design variables of passive 

model are the fixed parameters in this model. These 

design variables become fixed by choosing the optimum 

selected points E1, E2, E3, and E4 from the related Pareto 

fronts (in passive model). In the following, -11000<kp1< 

0, -1300<kd1<0, 0 < ki1<1000,0 < kp2< 7000, 0 < kd2< 

80, and -5000 < ki2< 0 are considered as six design 

variables to be optimally found based on the multi-

objective optimization genetic algorithm. Similar to 

previous section, the objective functions are seat 

acceleration, front tire velocity, rear tire velocity, 

relative displacement between sprung mass and front 

tire, and relative displacement between sprung mass and 

rear tire.  
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A population of 80 individuals with a crossover 

probability of 0.9 and mutation probability of 0.1 has 

been used in 240 generations.  
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Fig. 16   The Obtained Pareto front of the five-degree of 

freedom active suspension for seat acceleration and front tire 

velocity using multi-objective optimization genetic algorithm 

 
Table 9 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 16 

 1pk 
1dk 

1ik 

Point
1G -9490.1246 -1073.6773 420.5514 

Point
1H -8737.0233 -842.1452 212.2822 

Point
1J -865.0340 -4.2936 2.1189 

 2pk
 2dk 2ik 

Point
1G 5335.8853 39.3767 -3700.5868 

Point
1H 5150.9548 12.9001 -3551.4432 

Point
1J 67.5018 0.5961 -137.1680 

 )/( 2
smzc

 )/(1 smz 

Point
1G 0.4366 0.7266 

Point
1H 0.6107 0.4809 

Point
1J 2.8131 0.4068 

 

 

Obtained Pareto fronts of this active model for four 

pairs of objectives are shown in Figs. 16 to 19, and the 

values of objective functions and their associated design 

variables of three optimum points for each figure are 

given in Tables 9 to 12.  

 

 

 

Table 10 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 17 

 1pk 
1dk 1ik 

Point
2G -8979.7508 -1045.4720 494.4313 

Point
2H -6246.8203 -1022.8856 202.2859 

Point
2J -1099.4640 -994.0698 262.8921 

 2pk
 2dk 2ik 

Point
2G 5626.6319 51.3839 -3936.9626 

Point
2H 576.2304 67.9625 -4256.9280 

Point
2J 6329.0565 48.2684 -3724.0063 

 )/( 2
smzc

 )/(2 smz 

Point
2G 0.4505 0.4224 

Point
2H 0.8383 0.4209 

Point
2J 1.8872 0.4201 

Table 11 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 18 

 1pk 
1dk 1ik 

Point
3G -9172.3617 -1150.4992 610.5210 

Point
3H -8051.9831 -893.8784 774.6310 

Point
3J -7923.6352 -168.9528 837.0506 

 2pk
 2dk 2ik 

Point
3G 3888.4744 51.0993 -3335.2942 

Point
3H 3699.4403 49.5145 -2699.3321 

Point
3J 3489.7572 34.8497 -591.9322 

 )/( 2
smzc

 )(1 md 

Point
3G 0.8954 0.1324 

Point
3H 1.0857 0.0697 

Point
3J 1.8135 0.0509 

 

Note that the direction of the signals of the controllers 

would be changed when the front tire crosses on the 

bump. 
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Table 12 The values of objective functions and their associated 

design variables of the optimum points shown in Fig. 19 

 1pk 
1dk 1ik 

Point
4G -9456.8099 -1244.6119 639.7846 

Point
4H -8018.3664 -1248.4557 774.1705 

Point
4J -5944.2039 -1249.3697 878.0658 

 2pk
 2dk 2ik 

Point
4G 5363.1819 47.1442 -3335.2942 

Point
4H 5636.5207 50.0937 -2699.3321 

Point
4J 5697.07880 51.2353 -591.9322 

 )/( 2
smzc

 )(2 md 

Point
4G 0.5032 0.0576 

Point
4H 0.5838 0.0373 

Point
4J 0.7593 0.0296 
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Fig. 17   The Obtained Pareto front of the five-degree of 

freedom active suspension for seat acceleration and rear tire 

velocity using multi-objective optimization genetic algorithm 

 

 

0.8 1 1.2 1.4 1.6 1.8 2
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

R
e
la

ti
v

e
 d

is
p

la
c
e
m

e
n

t 
b

e
tw

e
e
n

 s
p

ru
n

g
 m

a
s
s
 a

n
d

 f
ro

n
t 

ti
re

 (
m

)

Seat acceleration (m/s
2
)

G
3

H
3

J
3

 

Fig. 18   The Obtained Pareto front of the five-degree of 

freedom active suspension for seat acceleration and relative 

displacement between sprung mass and front tire using multi-

objective optimization genetic algorithm 
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Fig. 19   The Obtained Pareto front of a five-degree of freedom 

active suspension for seat acceleration and relative displacement 

between sprung mass and rear tire using multi-objective 

optimization genetic algorithm 
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In Figs. 20 to 23, the comparison of the proposed Pareto 

fronts of the active suspension model with suggested 

models in [23], [24] is depicted for four pairs of 

objective functions. 
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Fig. 20   The comparison of the Pareto fronts obtained by this 

work and [23], [24] for the five-degree of freedom vehicle 

model with seat acceleration and front tire velocity as the 

objective functions 
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Fig. 21    The comparison of the Pareto fronts obtained by this 

work and [23], [24] for the five-degree of freedom vehicle 

model with seat acceleration and rear tire velocity as the 

objective functions 
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Fig. 22   The comparison of the Pareto fronts obtained by this 

work and [23], [24] for the five-degree of freedom vehicle 

model with seat acceleration and relative displacement between 

sprung mass and front tire as the objective functions 

 

The most important obtained result from Figs. 20 to 23 

is the superiority of the active model in comparison with 

the optimum passive models reported so far. The 

comparison of the time responses of relative 

displacement between sprung mass and front (and rear) 

tire and seat acceleration with proposed models in [10], 

[23], [24]is depicted in Figs. 24 to 27. Also their values 

are given in Tables 13 and 14. For this comparison, the 

equitable points H3 and H4 have been chosen from Figs. 

18 and 19. Clearly, the proposed active design has a 

better performance than the models obtained by others. 
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Fig. 23.   The comparison of the Pareto fronts obtained by this 

work and [23,24] for the five-degree of freedom vehicle model 

with seat acceleration and relative displacement between sprung 

mass and rear tire as the objective functions 



Int  J   Advanced Design and Manufacturing Technology, Vol. 9/ No. 4/ December – 2016                                      71 

  

© 2016 IAU, Majlesi Branch 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 

 

Time (s)

R
e
la

ti
v

e
 d

is
p

la
c
e
m

e
n

t 
b

e
tw

e
e
e
n

 s
p

ru
n

g
 m

a
ss

 a
n

d
 f

ro
n

t 
ti

re
 (

m
)

Optimum point suggested by Ref. [10]

Optimum point suggested by Ref. [23]

Optimum point suggested by Ref. [24]

Optimum point H
3
 suggested by this work

 
Fig. 24    The Comparison of time responses of relative 

displacement between sprung mass and front tire for point 

3H  by this work and the optimum points proposed in [10], 

[23], [24] 

 
Table 13 The values of the objective functions for the optimum 

point
3H by this work and the optimum points proposed in [10], 

[23], [24] 

 )/( 2
smzc  )(1 md  

Point
3H by this work 1.0857 0.0697 

Suggested optimum point in [24] 2.0810 0.0890 

Suggested optimum point in [23] 2.8165 0.0892 

Suggested optimum point in [10] 4.0981 0.1069 
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Fig. 25    The Comparison of time responses of relative 

displacement between sprung mass and rear tire for point 
4H  

by this work and the optimum points proposed in [10], [23], [24] 

 

The integral of absolute values of time behaviors of the 

front control force (
1u ) and the rear control force (

2u ) 

for the equitable design points
1H , 

2H , 
3H , and 

4H  

are given in Table 15. 

Table 14 The values of the objective functions for the optimum 

point
4H by this work and the optimum points proposed in [10], 

[23], [24] 

 )/( 2
smzc  )(2 md  

Point
4H  by this work 0.5838 0.0373 

Suggested optimum point in [24] 2.9504 0.0516 

Suggested optimum point in [23] 2.9767 0.0534 

Suggested optimum point in [10] 4.0981 0.0618 
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Fig. 26    The Comparison of time responses of seat acceleration 

for point 
3H  by this work and the optimum points proposed in 

[10], [23], [24] 
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Fig. 27   The Comparison of time responses of seat acceleration 

for point 
4H  by this work and the optimum points proposed in 

[10], [23], [24] 
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Table 15 The values of front (
1u ) and rear (

2u ) control forces 

 1u  (N) 
2u  (N) 

Point H1 1097.10 1104.60 

Point H2 950.22 747.70 

Point H3 867.96 758.48 

Point H4 1319.70 801.20 

4 CONCLUSION 

As mentioned, there are several parameters of vehicle 

ride comfort when designing a suspension system. Some 

of the more impressive parameters in this study are seat 

acceleration, relative displacement (and tire velocity for 

5-DOF model) by which the optimization has been done 

over the design variables. It is clear that needing more 

than one objective to get optimized is why a type of 

multi-objective optimization that is the multi-objective 

genetic algorithm (defined in toolbox of MATLAB 

software) has been used to optimally design the passive 

car-quarter/car-half model, and active ones. To have an 

active design of each model, a PID controller has been 

implemented. Though which controller could be 

suitably chosen to make performance of a system get 

better is inherently a controversial problem in this case, 

how to optimize the chosen controller is equally 

important after selecting the controller, and this is what 

has been done in this study to improve the ride comfort. 

To this end, what is needed is a set of points as the 

results by which providing appropriate optimal designs 

can be possible as it is clear from Figs. 5, 18, and 19 

which are the results of optimization.  

In fact, multi-objective optimization of active models 

(like passive ones) has led to discovering some 

important equitable points amongst some conflicting 

objective functions whose values have been reduced to 

an acceptable level in comparison with the related 

references. Most important objectives used in this study 

are relative displacement, and seat acceleration. The 

optimization results of two-degree of freedom model 

prove that the seat acceleration and the relative 

displacement between sprung mass and tire have been 

reduced by 32% and 30%, respectively. Moreover, for 

the five-degree of freedom model, the amount of 

reduction on the relative displacement between sprung 

mass and front tire is 22%; on the relative displacement 

between sprung mass and rear tire is 28% and on the 

seat acceleration of design points E3 and E4 are 

respectively 48% and 80%. These results show the 

superiority of the proposed active designs by this work 

in comparison with the best passive models (two-degree 

of freedom and five-degree of freedom) published so 

far. 
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