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Abstract: In this paper, vibrational response of a variable-length cable in 
longitudinal, lateral and torsional directions is analysed in a cable robot using FE 
method. The flexibility of cables has remarkable effect on positioning of the end-
effector in cable robots. Also considering the fact that the length of the cables are 
time dependent in a dynamic cable structure like robocrane, the numerical 
approaches are preferable compared to analytic solutions. To do so, the cable is 
divided into finite elements in which the virtual work equation and Galerkin 
method can be implemented for the equations. Considering the stiffness matrix, the 
characteristic equations and Eigen values of each element can be defined. A 
simulation study is done in the ANSIS on a planar robocrane with 2-DOF and also 
for a spatial case with 6-DOF that is controlled by the aid of six variable-length 
flexible cables in the space for two different types of solid and flexible end-
effectors. Whole the cable robot flexibility is analyzed simultaneously instead of 
separation calculation of each cable. Not only all of the 3-D vibrating behaviour of 
the whole structure is studied in this paper but also the lengths of the cables are 
considered as variable. The vibrating response of mode shapes, amplitude and 
frequencies are extracted and analysed, and the results are compared for two case 
of solid and flexible end-effector which shows the effect of the flexibility in the 
position of the end-effector and the tension of the cables in different situations. 
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1 INTRODUCTION 

Cable robots are one of the new generations of parallel 

robots in which the end-effector is controlled by the aid 

of several cables that just can exert tensional force to 

the end-effector. The applied cables which are used as 

the actuator of the end-effector should be flexible 

enough to provide the possibility of its rotation around 

a drum without forming a rotational spring on the drum 

which is a negative drawback on the calculated 

kinematic and kinetic of the robot. That’s why a little 

flexibility of the cables is unavoidable.  Increasing the 

inertial forces of the End-effector and cables leads to 

considerable deformation in the cables and 

consequently generates significant vibrational error on 

the position of the end-effector which influences the 

accuracy of the robot. Hence, vibration of the cables is 

the most challenging problem in controlling of such 

robots which can cause enormous deviation in the 

position of the end-effector [1, 2]. Both of axial and 

transversal flexibilities appear in these cables. Cable 

robots are manufactured under two main categories: 

Under-constrained and Fully-constrained. 

According to an analytic research on a fully-

constrained cable robot, the transversal flexibility is 

ignorable compared to the axial flexibility [3]. 

However this assumption is not completely valid for 

under-constrained robots. Cable suspended robots 

which are under-constrained are so popular since they 

do not have limited work space [4, 5]. The most 

important challenge in order to analyse the vibrational 

response of such cables is their variable length during 

the dynamic process of the robot which makes it 

difficult to solve their PDE using ordinary solutions. In 

previous researches continuum and multi dynamic 

models of cables were used for vibrational modelling. 

Authors in [6] present a procedure for studying the 

dynamics of a single variable length cable system. The 

cable is modelled as a chain and is treated as a 

multibody system. The chain links in turn are modelled 

as lumped masses. Here the dynamic is extracted for a 

single cable. Some vibrating analysis of elastic cable 

robots can be found in [7].  

This paper discusses a feedback control method for 

incompletely restrained wire-suspended mechanisms 

and anti-sway control method with exact linearization 

using inverse dynamics is designed for incompletely 

restrained type mechanism. Here since the cable is 

incompletely restrained, the vibration and swing is 

unavoidable which is neutralized using the mentioned 

controlling strategy. Again the modelling and 

simulation is done for a single rope. Dynamic and 

control of a complete robocrane actuated by seven 

cables is studied in [8] however the important problem 

of flexibility of the cables is ignored here. Workspace 

study of these kinds of robocranes is done in [9] in 

which again the effect of flexibility is not considered in 

the obtained workspace. Another research of solid 

robocrane is done in [10] in which a different method 

of controlling of the cable robots is presented using 

active boundary control. Since the vibrating analysis of 

cables using analytic methods,  especially for the time 

dependent length versions is extremely difficult, 

numerical algorithms are preferred in some literatures. 

Vibration analysis of a single cable with a constant 

length is done in [11] using the FE method, and it is 

extended in [12] for the variable-length one. FEM and 

FEA are used together in order to analyze the dynamic 

and planar vibration of a cable in [13]. Vibration 

analysis of the cables used in a simple structure is done 

in [14]. For the mentioned researches again the 

numerical methods are employed for a single cable 

which does not show the effect of flexibility of a 

complete dynamic cable structure like robocranes on 

deviation of their end-effectors.  

Therefore, considering the mentioned shortage in the 

literatures, in this paper flexibility analysis of a 

dynamic cable structure like cable robots is extracted 

for time-variable length cables using numerical finite 

element approach by which the effect of the flexibilities 

can be easily investigated on the deviation of the robot 

end-effector. Galerkin method is used here in both 

longitudinal and lateral directions. This calculation is 

done for whole of the cables and their structure 

simultaneously instead of analyzing each cable 

separately. FEM is chosen here since a fast calculation 

with an acceptable accuracy could be provided for a 

variable length case. Since the studied cable robot is 

under-constrained, both of lateral and longitudinal 

vibrations need to be analyzed simultaneously for the 

robot with time variable cables’ length. This study is 

first done for a three-cable planar robot with two 

degrees of freedom and it is then extended for a 6-cable 

spatial robot with six degrees of freedom. Dynamic 

formulation of the planar structure can be found in [15, 

16] while the spatial case is presented in [17]. 

First of all, dynamic modelling of a single cable rope is 

extracted using Lagrangian method which results in 

longitudinal, lateral and torsional vibration equations of 

the cable. Afterwards, resultant differential equations 

are solved using weighted residual functions and the 

Galerkin method. Using the finite-element method, the 

rope is divided into finite elements which give us the 

shape functions, stiffness matrix, characteristic 

equation of the system and finally Eigen values or 

natural frequencies of the vibration of the system. This 

process is then extended for a six-cable robot with 

variable length cables. Correctness of the presented 
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theoretical formulations is investigated using a 

simulation study for both of planar and spatial samples 

of cable robots. A 3-cable robot with a massive end-

effector and two degrees of freedom is first modeled in 

the ANSYS and then it is extended for a six cable 

triangular end-effector with six degrees of freedom.  

The first simulation analyses the planar vibrations of 

the cable while the second one covers the vibration of 

the cables in three directions. Also an interesting 

comparison is performed for a robot structure in which 

the end-effector’s vibration is ignorable compared to 

the cable’s vibration and the structure in which the end-

effector is also flexible. Natural frequencies, mode 

shapes and maximum stress of the cables for all of the 

mentioned systems are gained and analyzed.  Results 

show that cable vibrations can affect the position of the 

end-effector in the systems which are not equipped 

with a suitable controller especially for the spatial case. 

2 DYNAMIC FORMULATION 

First the formulation of a single cable is represented. 

Considering a cable composed of several twisted ropes 

like Fig. 1 results in longitudinal elongation [18], Here 

  is rotational flexibility of the cable, U  is its 

longitudinal flexibility along Z axis, f and q are force 

and torque of the cable respectively, T is the tension of 

the cable at position S and C is torsional stress of the 

cable. 

 

Fig. 1 Schematic of a single rope [18] 

Using Lagrangian method, the following dynamic 

equations can be achieved which include two 

parameters of angular and longitudinal displacement: 

2

1 2

2

3 4

0

0

xx xx

xx xx

m U k U K

I k U k

    

    
                                         (1) 

where m and I are the mass and inertia of the cable 

respectively, Ki is flexibility coefficient of the rope,   

is time derivation of rotational flexibility and the index 

x indicates derivation respect to S.  

 

Implementation of weighted residual function and 

Galerkin method results in the following differential 

equations: 

2

1 2

0

2

3 4

0

0

0

L

U xx xx

L

xx xx

W U( m U k U K )dx

W ( I k U k )dx

      

      




                       (2) 

Dividing the cable into finite elements and using partial 

integral, we have: 

1 2 1 2

2

0 0

4 2 4 2

2

0 0

0

0

L l

e

U

L l

e

k U lk k
W U( m U )ld [ U U ] U d

l l l

k lk k
W U( I ) ld [ ] U d

l l l



  



    


          


          

 

 

(3) 

Shape functions can be defined as: 

1

1 2

2

1

1 2

2

a a

t t

U
U( ) N N

U

( ) N N

 
   

 

 
    

                                                        (4) 

By supposing the shape functions as below: 

1 2 1

1 2 4

U( ) C sin( ) C cos( ); L m / k

( ) D sin( ) D cos( ); L I / k

       

        

                (5) 

The final resultant shape functions are: 

1

2

1

1

2

4

1

1

a

a

r

r

sin( L( ))
N ( )

sin( L )

sin( L )
N ( ) ;

sin( L )

m / k

sin( rL( ))
N ( )

sin( rL )

sin( rL )
N ( )

sin( rL )

;r I / k

 
  


 

 


  



 
 




 

  



                                       (6) 

By substituting the mentioned shape functions into the 

weighted residual function equations, we have: 
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11 0 1 11

22 0 2 1

1 2

11 1 1 22

22 1 2 20

11 0 1 14

22 0 2 1

1 2

12

' '

' '

e

U
l ' ' ' '

' ' ' '

' '

' '

e

uN NK

uN Nl
W U U

N N N NK
d

l N N N N

N NK

N Nl
W

NK

l

 

 

   

   

 

 





    
    

    
    

    
       

    
   

    
  



11 1 2

22 1 2 20

l ' ' ' '

' ' ' '

uN N N
d

uN N N N

  

   

 
 
 
 

    
    
   


        (7) 

where: 

   

     

4 4 4 1

ee

n n* *

e e e

uncoupled coupling

W u k( ) u ;

k( ) k( ) k( )

  

    
                 (8) 

Galerkin results in the following general characteristic 

equation: 

   0k

n n

elements

W W U K( ) U    
                    (9) 

Natural frequencies of the system can be obtained by 

the aid of mentioned characteristic equation. The same 

procedure can be done for a six-cable robocrane of the 

Fig. 2.   

 

 

Fig. 2 Scheme of a spatial cable robot [19] 

Here six DOFs of the lower triangular end-effector 

plate are controlled using six flexible cables connected 

to the upper triangular fixed plate. The lengths of the 

cables are time dependent which makes it difficult to 

use analytical methods for analysing their flexibilities. 

First of all dynamic equation of the system is extracted 

using Hamiltonian method. Kinetic and potential 

energies of the system are calculated without 

considering any external forces: 

2 2 2

2 2 2
2 2 2

2 2 2

1 2 1 2

1 2 1 2

u v
T / (( ) ( ) ) / I(( ) )

t t t

u v
V / AE(( ) ( ) ) / k(( ) )

x x x

  
   

  

   
  

           (10) 

where u , v  and   are longitudinal, lateral and 

torsional displacement of the cables respectively. Also 


 is the density, E  is the elasticity module and A is 

the cross section area of the cables. Using Hamiltonian 

formulation, the following dynamic equations can be 

presented: 

  0)( dtVT
 

2 2

112 2

2 2

12 132 2

2 2

212 2

2 2

22 232 2

2 2

312 2

2 2

32 332 2

0

0

0

u( x,t ) u( x,t )
k

t x

v( x,t ) ( x,t )
k k

x x

v( x,t ) u( x,t )
k

t x

v( x,t ) ( x,t )
k k

x x

( x,t ) u( x,t )
k

t x

v( x,t ) ( x,t )
k k

x x

  
  

 
   

   


 
    


    
  


    
  


    
                          (11) 

In order to use the weighted residual method, the 

following functions are chosen: 

( , ) ( )sin ;

( , ) ( )sin ;

( , ) ( )sin

u x t U x t

v x t V x t

x t x t





  





 

                                            (12) 

Substituting the above functions in the dynamic 

equations, vibrating formulations can be defined as 

below: 















0

;0

;0

333231

2

232221

2

131211

2

xxxxxx

xxxxxx

xxxxxx

kVkUkUm

kVkUkVm

kVkUkUm







               (13) 

Using the weighted residual method, the following 

virtual work formulation can be gained, which defines 

the vibrating amplitude: 



Int  J   Advanced Design and Manufacturing Technology, Vol. 10/ No. 1/ March – 2017                                         5

   

© 2017 IAU, Majlesi Branch 

 





























)(

0

333231

2

)(

0

232221

2

)(

0

131211

2

0)(

;0)(

;0)(

tL

xxxxxx

tL

xxxxxxV

tL

xxxxxxU

dxkVkUkmW

dxkVkUkVmVW

dxkVkUkUmUW









 (14) 

3 STIFFNESS MATRIX CALCULATION 

Now we can divide the cable into finite longitudinal 

elements with two nodes and three degrees of freedom. 

Considering boundary condition, the following virtual 

work formulation can be obtained: 





























1

0

2

3332312

1

0

2

2322212

1

0

2

1312112

))((

;))((

;))((
























ldmkVkUk
l

W

ldVVmkVkUk
l

V
W

ldUUmkVkUk
l

U
W

e

e

V

e

U

  (15) 

According to the mentioned equations, Galerkin 

equations produce the following weighted functions 

which are the vibrating amplitude of the system: 

1 2

11

1 2

22

1 2

33

U( ) U sin( ) U cos( );

L( t ) m / k ;

V( ) V sin( ) V cos( );

L( t ) m / k ;

( ) sin( ) cos( );

L( t ) m / k

  

 

  

 

     

 

 



  



  

 

                       (16) 

Vibrating amplitudes are definable according to the 

shape function as below: 

 

 

 














































2

1
)(

;
2

1
)(

;
2

1
)(

21

21

21










 NN

V

V
NNV

U

U
NNU

VV

UU

                                         (17) 

In order to have more accurate results, shape functions 

are supposed to be harmonic: 

1U

2U

1V

2V

1

2

sin( (1 ))
N ;

sin

sin( )
N ;

sin

sin( (1 ))
N ;

sin

sin( )
N ;

sin

sin( (1 ))
N ;

sin

sin( )
N

sin





 







 







 











 



 


 

 
 


 


                                              (18) 

Substituting the above shape functions in the virtual 

work formulations results in: 

 

 

1 0 1 1 111
1 2

2 0 2 1 2

1
1 1 1 2 112

2 1 2 2 20

1
1 1 1 2 113

2 1 2 2 20
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1 2
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U U
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N N Ul
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 

 

 

 

    
          

      
          

       
         
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


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



    (19) 

And so by defining the movement vector of the 

elements as: 

 1 2 1 2 1 2

T
a U ;U ;V ;V ; ;                                    (20) 

Stiffness matrix of the whole system can be calculated 

as: 
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(21) 

4 ANSYS MODELING 

A. MODELING OF PLANAR ROBOT 

Based on the mentioned formulations, two cases of the 

cable robots are simulated in ANSYS software and 

their natural frequencies and mode shapes are gained. 

The first structure is a planar cable robot with three 

cables and two degrees of freedom like Fig. 3. Here 

two DOFs of the lumped mass of m (X, Y) are 

controlled using three flexible cables with time 

dependent length of Li which are connected to three 

fixed drums of inertia Ji and rotational damping 

coefficient of ci at the position of Ai with the angle of 

i . The distance of the drums is LB. 

 

 

Fig. 3 Schematic of a planar cable robot [16] 

This structure is modelled in ANSYS by making full 

constraint in the triangular shaped frame and also 

making z direction constraint for the cables movement 

in order to study their planar vibration (Fig. 4), where 

the related parameters are presented in Table 1. 

 

 

Fig. 4 ANSYS model of the planar cable robot 

 

 
Fig. 5 Schematic of a spatial cable robot [19] 

B. MODELING OF SPATIAL ROBOT 

In the second case there is a spatial cable robot with six 

cables and six degrees of freedom for the triangular 

shaped end-effector as illustrated in Fig. (5). Here Fn is 

TABLE 1  PARAMETERS OF PLANAR MODELING
 

Analysis Type
 

Structural Modal Sub-space
 

Element type
 

PIPE16 

Outside diameter 0.04 unit 

Wall thickness 0.02 unit 

Pipe wall mass
 

0.03 unit 

Pipe axial stiffness
 64.5 10 unit  

Material properties
 

6

Linear Elastic Isotrop

E=4.5 10 unit,υ=0.3
 

Mesh type
 

Line Mesh 

Key Point1
 

(1,0,0)
 

Key Point2
 

(-1,0,0)
  

Key Point3
 

(0,2,0)
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the fixed global coordinate attached to the fixed upper 

plate of the robocrane, Fb is local coordinate of the 

moving end-effector, A,B,C are the corners of the fixed 

plate and E,D,F are the corners of the moving end-

effector and these points are connected using six 

flexible cables of time dependent length. The base 

triangle is constrained in all of its degrees of freedom 

and the end effector is free to vibrate through the cables 

(Fig. 6): 

 

Fig. 6 ANSYS model of a spatial cable robot 

Related parameters can be found in Table 2: 

 

 

  
 

5 SIMULATION STUDY 

A. SIMULATION OF PLANAR ROBOT 

Using the mentioned parameters results in the 

following nodal mode shape functions of Fig. 7 and 

frequencies of Table 3: 

 

 

 

 

 

 

TABLE 2: PARAMETERS OF SPATIAL MODELING 
Analysis Type

 
Structural Modal Sub-space

 

Element type
 

PIPE16 

Outside diameter 0.04 unit 

Wall thickness 0.02 unit 

Pipe wall mass
 

0.03 unit 

Pipe axial stiffness
 64.5 10 unit  

Material properties
 

6

Linear Elastic Isotrop

E=4.5 10 unit,υ=0.3
 

Mesh type
 cables: Line mesh

plates: Triangular





 
Distance between base and 

end-effector
 10units 

End-effector
 

Key-point1:(1,0,0)

Key-point2:(-1,0,0)

Key-point3:(0,2,0)







 

Base 
Key-point1:(2,3,10)

Key-point2:(-2,3,10)

Key-point3:(0,-1,10)






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Fig. 7 First five mode shapes of the planar system 

 

It can be seen that the critical vibrations are occurred at 

the middle of the cables and as a result, it does not 

critically affect the position of the end-effector. The 

critical vibration causes significant displacement at the 

cables with low frequency and can be occurred easily 

for a lot of boundary conditions in the case of planar 

robot. 

 

 

B. SIMULATION OF SPATIAL ROBOT 

Spatial simulation is done using two different 

conditions. First the end-effector is supposed to be 

elastic that its vibration is not ignorable compared to 

the cables’ vibrations. In this condition the stress of the 

cables is: 

 
MINIMUM VALUES  

NODE          1                65            65               1               1 

VALUE    0.0000     -6489.3     -24698      0.0000    0.0000 

 

MAXIMUM VALUES 

NODE         67                63            1              67              33 

VALUE    25718        8198.9      0.0000    25718       23133 

The same node numbers are related to different cables. 

Also the natural frequency of the whole system is 

presented in Table 4. First five modes of the system in 

nodal displacement contour are shown in Fig. 8. 

In this case two categories of flexibility are observable 

in the mode shapes. First two modes are mostly 

affected by longitudinal flexibilities of the cables while 

the last three modes are mostly affected by lateral 

vibrations. It can be seen that for the cases in which the 

longitudinal flexibilities of the cables are ignorable 

compared to their lateral vibrations, the position of the 

end-effector is not considerably deviated while the 

error is not ignorable for the cases in which the 

longitudinal vibrations are dominant. 

 

TABLE 3: FIRST TEN NATURAL FREQUENCIES OF 

THE PLANAR ROBOT 

Step Time (sec)/Frequency(Hz) 

1 3.4929 

2 4.6014 

3 7.7857 

4 11.304 

5 12.684 

6 21.047 

7 24.809 

8 25.284 

9 40.357 

10 40.773 

Table 4: First ten natural frequencies of the flexible 

end-effector spatial system 

 Step Time (sec)/Frequency(Hz) 

1 1.1729 

2 1.3359 

3 1.8198 

4 3.5414 

5 4.2455 

6 4.5021 

7 11.217 

8 11.807 

9 15.924 

10 19.306 
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Fig. 8 First five mode shapes of the flexible end effector 

spatial case 

 

TABLE 5: FIRST TEN NATURAL FREQUENCIES OF THE 

RIGID END-EFFECTOR SPATIAL SYSTEM 

Step Time (sec)/ Frequency(Hz) 

1 0.22977 

2 0.22977 

3 0.22977 

4 0.22977 

5 0.24839 

6 0.24839 

7 0.24839 

8 0.24839 

9 0.25657 

10 0.25657 

So it can be concluded that the destructive flexibility of 

a spatial cable robot which needs to be inhibited by a 

proper controller is its longitudinal vibrations.  Here, in 

contrary to planar case, the amplitude of vibrations is 

superposed at the point of the end-effector which leads 

to a big deviation. In the second approach the vibration 

of the end-effector is considered ignorable compared to 

the vibration of the cables. Therefore, just the vibration 

of the cables can be analysed here, where the natural 

frequencies are shown in Table 5. The amounts of 

stress in the cables are calculated as:  

MINIMUM VALUES 

NODE          2                2                        9            13              13 

VALUE        0          -51.528            -0.12E+11      0               0  

MAXIMUM VALUES 

NODE          1                 2               2         1                     1 

VALUE   0.3E+11    0.17E+10       0    0.42E+11     0.39E+11 

It can be seen that in this case both of the stress of the 

cables and amplitude of lateral vibrations are increased 

while its frequency is decreased respect to previous 
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study which shows that most of the vibrating energy 

here is consumed to vibrate the cables while for the 

former case, flexibility of the end-effector dissipates a 

section of the energy which leads to lower vibrating 

response of the cables. The first five modes of this 

system in the nodal displacement contour are shown in 

Fig. 9. As it was expected the end-effector is remained 

solid here. It can be observed that here, in contrary to 

flexible end-effector case most vibration of the cables 

are lateral which do not extremely affect the position of 

the end-effector. 

 
 

 
 

 

 

 
 

Fig. 9 First five mode shapes of the rigid end-effector 

spatial case 

 

Although the amplitude of these vibrations is higher 

than previous case, they do not disturb the accuracy 

since no longitudinal flexibility is produced. So it can 

be concluded that providing a solid end-effector for the 

spatial cable robot helps its accuracy while the 

remained longitudinal vibrations can also be damped 

using a controller.  

 

7 CONCLUSION 

In this paper vibrating formulation of the cables in 

longitudinal, lateral and torsional directions was 

represented for a variable-length cable using FEM. A 

simulation study was done for two samples of cable 

structures like robocrane in which the length of the 

cables is time-variable. FEM was performed as a strong 

vibrating analyser tool for whole of the cable robot 

structure instead of separation analysis of each cable. 

Not only the 3-D vibrations of the cables were studied 

but also the lengths of the cables were considered 

variable. Results are presented for a case of planar 

robot with three cables and a spatial robot with six 

cables. 
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It was seen that the critical vibration by which the 

maximum displacement and minimum frequency is 

produced and can be occurred easily for a lot of 

boundary conditions in the case of planar robot are 

occurred at the middle of the cables and as a result, it 

does not critically effect the position of the end-

effector. But the result is opposite in the case of spatial 

robot. In this case because of spatial structure of the 

robot in which the amplitude of vibrations is 

superposed at the point of the end-effector, an 

important error at the position can be observed which 

shows the necessity of designing a proper vibration 

controller. On the other hand comparing the results of 

solid and flexible end-effector for spatial case showed 

that in the case of the solid end-effector most vibrations 

are lateral vibration which does not cause a major 

displacement error in the end-effector but the amplitude 

and stress of the vibrations is higher and frequency of 

the vibrations is lower.  

This is contributed to the fact that in this case all of the 

vibrating energy is exerted on the cables. However the 

vibrations in the flexible end-effector system can be 

dissipated by transmitting a section of vibrating energy 

to the end-effector and thus produces a lower amplitude 

and stress with bigger frequencies but because of its 

longitudinal nature it has more destructive effect on the 

position and accuracy of the system. This phenomenon 

shows that a solid end-effector can lead to a more 

accurate motion of the robot. 
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