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1 INTRODUCTION 

The most common sources of vibration in machinery 

are related to the inertia of their moving parts of which 

one of the most important parts is rotor. Rotor is 

usually a flexible shaft with a number of disks mounted 

on it and has some bearing supports. The vibration of 

the rotor bearings increases due to bad installation, high 

rotating speed, poor lubrication, unbalances, etc. 

Recognizing the roots of these vibrations can help 

engineers to return the operating conditions of the rotor 

to safe mode. This is important because rotor is usually 

the most expensive part of large machines.  

Since some types of rotor faults are diagnosable using 

common vibration based condition monitoring methods 

and some others are not, then engineers need to use the 

simple models of rotors so that they can predict the 

behaviour of rotor under a group of its faults. Many 

relevant studies have been accomplished on rotor 

dynamics in recent years, where reference is covering a 

complete review in this regard [1]. 

Rotor modelling can be divided in two categories: a) 

simple theories with discrete shafts, b) complicated 

theories with continuous shaft. Among simple theories, 

Jeffcott model is very common for clamp-clamp rotors. 

Also, Stodola-Green model is used for clamp-free 

rotors. Furthermore, a combination of these models is 

sometimes used to study the gyroscopic effects and 

rotating inertia. Some of complicated theories such as 

Rayleigh [2], [3], Timoshenko [4], [5], [6] and Euler-

Bernoulli beam [7] theories have been also used. 

The first analysis of a spinning shaft was done by 

Rankin in 1869. In 1919, Jeffcott introduced some 

models for rotor with massless and elastic shaft, rigid 

disc and unbalance forces [8]. A modal analysis of 

continuous rotor-bearing system was studied by Lee et 

al., [9] examining the effects of rotary inertia and 

gyroscopic moment. They investigated the effects of 

asymmetry boundary conditions on dynamic 

characteristics of the system [9]. Jun et al., [4] analysed 

the free bending vibration of a rotating shaft composed 

of multi-step segments with each segment having a 

uniform circular cross-section using the Timoshenko 

beam model.  

Shabaneh investigated the dynamic analysis of a 

rotating disc-shaft system with linear elastic bearings at 

the ends mounted on viscoelastic suspensions [5]. 

Stability and steady state response of symmetric rotors 

using the finite element method have been investigated 

by Oncescu et al., [10]. Athanasios [3] analysed a rotor-

bearing system consisting a continuous Rayleigh’s 

shaft and finite fluid film bearings. A novel wavelet-

based finite element method was used for the analysis 

of rotor-bearing systems by Xiang et al., [11]. They 

have considered the effects of translational and rotary 

inertia, the gyroscopic moments, the transverse shear 

deformations, and the internal viscous and hysteretic 

damping using the Rayleigh-Timoshenko element. 

Khanlo et al., [7] modelled the rotor-bearing system as 

a continuous shaft with a rigid disc in its midsection 

with Coriolis and centrifugal effects included. They 

extracted the governing partial differential equations of 

motion based on the Euler–Bernoulli beam theory.  

The assumed modes method was used to discrete 

partial differential equations and the resulting equations 

were solved numerically [7]. One can conclude that the 

most of the previous works have been done based on 

complicated theories, simulated lateral vibrations of 

rotor using the finite element method. The finite 

element method in this area does not have the required 

flexibility for changing the position of each member 

and boundary conditions, because in each of these 

cases a new problem must be produced. Furthermore, 

finding mode shapes, sometimes, is very difficult 

because of spatial condition on rotor-bearing system.  

The aim of this research is to make a user friendly 

model for complicate rotor using the Rayleigh's theory 

which is suitable for condition monitoring studies. Also 

in this paper, the assumed modes method was inserted 

into solving process after extracting of energy terms, 

while the governing differential equations were not 

derived. This approach whose software was written in 

MATLAB allows the user to change all inputs and 

increase the accuracy by including any number of 

modes easily. The resulting equation will be solved 

using the Newmark’s method and Crank-Nicholson 

coefficients. 

2 ROTOR WITH MULTI-DISK, BEARING AND 

MASS UNBALANCE 

A complete model of rotor-bearing system with 

arbitrary conditions is shown in Fig. 1. 

 

 

Fig. 1 A general model of the rotor-bearing system with 

arbitrary conditions. 

 

In this model, the number of discs and their axial 

locations, the number and position of the bearings, the 

number of unbalance masses with different radius, 

magnitude, phase angle and their axial locations are 
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completely arbitrary. In this model, the shaft is 

continuous and each bearing is modelled as two springs 

in horizontal and vertical directions. 

3 DERIVATION OF ENERGY TERMS 

Consider a model of a rotor with an arbitrary number of 

discs, unbalance masses and bearings with arbitrary 

locations mounted on the continuous flexible shaft as 

shown in Fig. 1. All energy terms of each of these parts 

are derived individually as follows: 

 

3.1. Kinetic energy of a disc 

It is assumed that the disk is rigid. Fig. 2 shows the 

reference frame of a disc mounted on a rotating shaft. 

 XYZR0  is an inertial frame and R(x, y, z) is attached 

to the disc. The reference frame fixed to the disc is 

related to the inertial reference frame through a set of 

three angles of x ,
y and z . In order to find the 

orientation of the disc, it is rotated around the Z axis by 

amount of z , then by amount of x around the new 

axis which is 1x . Finally it is rotated by amount of y  

around the new y  axis. 

 

Fig. 2 Rotating frames of a disc on a rotating flexible shaft 

 

Let u and w denote the coordinates of O in R, the 

coordinate along Y being constant and also the inertia 

tensor components are dxI , dyI  and dzI . So the kinetic 

energy of the disc can be written as in Eq. (1). If the 

disc is symmetric i.e. dzdx II  , the angles of x and 

z are small, and the angular velocity is constant, i.e. 

y
 , the Eq. (1) can be written as in Eq. (2). The 

last term in this relation represents the gyroscopic 

(Coriolis) effect [12]. So for a rotor with many discs 

located at different axial distances from the left end of 

the rotor, kinetic energy of each disc can be written 

according to the distance from the left end of the rotor 

as in Eq. (3). It is worth noting that in this relations, 

x and z  are related to u and w as dydwx   and 

dyduz  . 
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3.2. Kinetic energy of the shaft 

The kinetic energy of the shaft can be written by 

extending the kinetic energy of a disk in longitudinal 

direction. Fig. 2 shows the reference frame of a disc 

mounted on flexible shaft. Then, it is possible to have 

[12]. 
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3.3. Kinetic energy of the unbalance mass 

The kinetic energy of unbalance mass is shown as UT . 

The mass remains in a plane perpendicular to the y axis 

and its coordinate along the y axis is a constant or zero 

depending on the origin of the reference frame. The 

displacements of unbalance mass in the x  and z  

directions are tdu U  sin  and tdw U  cos  

respectively with the constant in the y  direction.  So 

the kinetic energy of the unbalance mass is given as Eq. 

(5). The term 2/22

UU dm   is a constant and can be 

omitted because the derivatives of kinetic energy 

remain in final equations, this constant term, thus, does 

not appear in next equations. Also, the unbalance mass 

Um  is so smaller than the mass of the rotor [13]. 

Therefore, for a rotor-bearing system with multi 

unbalance masses that each of them has a phase angle 

of 
nU  from horizontal line and located at distance of 

Uyy   from the left end of the rotor, the kinetic energy 

is obtained as Eq. (6). 

 2222

2

1
UUU dwumT    



28                                       Int  J   Advanced Design and Manufacturing Technology, Vol. 8/ No. 1/ March– 2015 
  

© 2015 IAU, Majlesi Branch 

 

twdtud UU  sin2cos2             (5) 

 
j

UUUUU yy
twtudmT

nnnnn 
 )sin()cos(   (6) 

 

3.4. Strain energy of the shaft 

The displacements of the shaft in the x, y and z 

directions are uux  , 
zxy XZu    and wuz  . 

So, the longitudinal strain in the y direction will be as 

Eq. (7). Using Hook’s law 
yyyy E   and ignoring the 

non-linear terms, the strain energy can be written as Eq. 

(8). Furthermore, the third term in this equation can be 

neglected due to the symmetry of the cross section. 

Also, III zx  , 
A

x dAZI 2 , 
A

x dAXI 2 , (due to 

symmetry) and 
S

dsA  is the area of the cross section. 

So, the strain energy of the shaft will be obtained as Eq. 

(9) [12]. 
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3.5. Strain and damped energy of the bearings 

If any of the bearings is modelled as a linear spring and 

damper with constant coefficients, the strain energy of 

each of the bearings located in 
nByy  of the left end of 

the rotor will be obtained from (10). Also, assuming the 

cross damping coefficients are zero, the wasted energy 

of each bearings will be obtained as Eq. (11). 
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4 THE GENERAL EQUATIONS OF THE ROTOR 

Substituting the energy terms into Lagrange’s equations 

or Hamilton’s principle, some mathematical operations 

lead to governing differential equations of the rotor. 

Derivation of these equations is not important because 

there is no exact solution for them. Then, it is better to 

use the assumed modes method as approximate in this 

stage. Based on this method we can assume that rotor 

responses at any point and time, i.e. u  and w , are a 

linear combinations of some assumed modes instead of 

real ones as in Eq. (12), [15]. 
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In these relations  yi  and  yi  are known trial 

functions that satisfy the geometric boundary 

conditions, as in Eq. (13), and  ti  and  ti  are 

unknown functions of time and n  is the number of 

trial functions. 
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Substituting the above responses in the energy 

relations, approximated matrices of mass, stiffness and 

damping of the system are derived and the following 

system of equations is obtained [14].  

 

          FqKqDqM                                     (14) 

 

In this relation, vector  q  is a 2 n 1 vector defined by 

equation (15). Also, the damping matrix which includes 

both gyroscopic and damping effects is as equation 

(16). In the following equations, ][c  is the damping 

matrix of the system, ][ dG  is the gyroscopic matrix 

related to the disc, and ][ sG  is the gyroscopic matrix 

related to the shaft [14]. 
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In the next section, derivation of each of the matrices in 

equation (14) based on the assumed modes method is 

given in details. 
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5 DERIVATION OF THE MASS AND STIFFNESS 

MATRICES 

According to the assumed modes method, u  and 

w could be given a set of trial functions as in equations 

(12). In that relation, the functions  yi  and  yi  are 

known trial functions that can be a set of assumed 

mode shapes, polynomials or even some eigen 

functions. Rayleigh’s quotient is expressed as relation 

(17). In this relation max  and max
*T  denote, 

respectively, the maximum strain energy and reference 

kinetic energy of the system. Minimization of 

Rayleigh’s quotient results in the relation (18) in which 
 n

i

2
  are the eigenvalues. The roots of this eigenvalue 

problem represent the natural frequencies and each of 
  iq  will be the vectors of Ritz coefficients [15]. 
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1. Kinetic energy of a disc 

The third term in equations (3) and (4) represents the 

gyroscopic effects and the relation (11) represents the 

damping effects on the system. Thus, the elements of 

each of the gyroscopic Eq. (16) and damping matrices 

will be obtained as in equations (21) to (23). 
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2. Vector of force  

According to equation (6), the energy from the 

unbalance mass could be expressed as a kinetic energy 

term. Applying Hamilton’s principle on equation (6) 

leads to the following two equations: 
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Therefore, the integrands of these two relations are the 

external forces due to unbalance mass in u  and w  

directions respectively. The unbalance mass may be 

located at any distance of the shaft, so the matrix of 

external force would be affected by its location. Thus, 

the external force exerted on the system is obtained as 

the equation (26) which  uF  and  wF  will be as the 

relations (27) and (28). 
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6 VALIDATION OF THE MODEL AND SOLUTION 

METHOD 

Newmark's method and Crank-Nicholson's coefficients 

were used to solve the resulting equations. To verify 

the modelling and method of solution, some examples 

are solved in this section and the accuracy of the results 

in this study has been compared with those obtained 

from other references. 
 

1. Example 1 

Consider a rotor without disc and neglect the effects of 

the bearing on both sides. The length of the shaft is 1 m 

and its diameter is 50 mm. The material properties are: 

E= 2.058e11 N/m
2
, 29.0  and 3/7800 mkg . It 

is assumed that the rotating speed is zero for ignoring 

the effects of gyroscopic forces. Natural frequencies of 

this rotor in reference [4] were obtained based on two 

Euler-Bernoulli and Timoshenko beam theories. The 

results are shown in Table 1. 

 
Table 1   Natural frequencies comparison of simple rotor 

(Hz) 

Mode 

No. 

Timoshenko 

Theory [4] 

Euler-Bernoulli 

Theory [4] 

Present 

Research 

0 6.100  9.100  8.100  
1 6.399  4.403  2.402  
2 1.888  7.907  5.901  

 

2. Example 2 

Consider a simple rotor consisting of a flexible 

massless shaft with a massive disc at its center mounted 

on bearings with stiffness mNK /101 10  at both 

ends. The properties of this rotor are summarized in 

Table 2. In this example, the impacts of rotor speed and 

gyroscopic effect on the natural frequencies and critical 

speeds of the rotor were investigated. The variations of 

rotor speed were from zero to 2000 rpm. 

 
Table 2   Mass and geometrical properties [16] 

Length of 

shaft 

Diameter of 

shaft 

Poisson’s 

ratio 
Mass 

1.2 m 0.04 m 0.3 120.072 Kg 

Young’s 

modulus 
Density 

Diametral 

inertia 
Polar inertia 

2.1×1011 N/m2 
7800 Kg/m3 3.6932 Kg-m2 7.3544 Kg-m2 

 
Table 3   Eigen frequencies of the rotor at 2000 rpm 

Mode 

No. 

Finite Element 

Method [16] 

Present Study Error 

Percent 

1 121.12  615.11  1.4  

2 123.12  617.11  1.4  

3 607.20  293.21  3.3  
4 538.85  841.84  8.0  

 

Fig. 3 Campbell’s diagram of the rotor using Ansys [16] 

 

Figs. 3 and 4 and Table 3 show the changes of eigen 

frequencies in Campbell's diagram. It is clear that 

Campbell's diagram drawn in this study fits very well 

with diagrams drawn by finite element method using 

Ansys software [16]. Rotor critical speeds are also 

compared in Table 4 with [16]. 
 

 

Fig. 4 Campbell's diagram of the rotor in the present study 

 
 

Table 4   Critical speed of simple rotor 

Mode 

No. 

Finite 

Element 

Method [16] 

Present 

Study 
Whirl 

Error 

Percen

t 

1 727.29 696.93 Backward 4.1 
2 727.33 696.99 Forward 4.1 
3 1467.23 1496.09 Backward 1.9 

 

3. Example 3 

To investigate the forced response of the system, the 

frequency response of the rotor in Example 2 was 

considered. In this example it is assumed that the 
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mounted disc on the rotor has an eccentricity of 

e=0.001 m. The flexible bearings have stiffness value 

of 4 mmKN / and damping value of 2000 msN / . To 

determine the response of the rotor for this unbalance 

loading, a harmonic analysis was carried out within the 

speed range from 0 rpm to 1000 rpm. Frequency 

response graph at the location of the disc was plotted in 

Figs. 5 and 6. Moreover, the maximum displacement of 

the rotor, rotor critical speed, and relevant comparisons 

are given in Table 5. 

 
Table 5   Maximum response of simple rotor 

Response of Rotor Present 

Study 

Ref. 

[16] 

Error 

Percent 

critical speed (rpm) 697.19 695.52 0.2 

 

Maximum  

displacement of the 

rotor (m) 

0.3014 0.3038 0.8 

 

 

Fig. 5 Maximum response of the simple rotor in Ref. [16] 

 

 

Fig. 6 Maximum response of the simple rotor in the 

present study 

 Table 7   Details of the discs [17] 

Disc 

No. 

Outsid

e 

diamet

er (m) 

Thicknes

s (mm) 

Mass 

unbalanc

e    (kg-

m) 

Position from 

the left end of 

rotor (m) 

1 0.24 0.005 0 0.2 
2 0.4 0.005 0.2 0.5 
3 0.4 0.006 0 1 

 

4. Example 4 

Consider a complex rotor as shown in Fig. 7. The rotor 

consists of a 100 mm diameter uniform steel shaft with 

length of 1.3 m. It is supported on two identical 

orthotropic bearings at its ends and carries three rigid 

discs at different locations within its span. The location, 

geometry and other properties of the discs are given in 

Table 6. Density of the shaft material is 7800 kg/m
3
 

and Young’s modulus is 200 GPa. The stiffness and 

damping coefficients of the two identical bearings at 

each end are: mNKyy /107 7 , mNK zz /105 7 , 

mNsCyy /105 7 , mNCzz /105 7 . 

 

 
Fig. 7 Appearance and position of the rotor discs and 

bearings in Example 4 [17] 

 

 

Fig. 8 Frequency response of the rotor of example 4 using 

the finite element method [17] for point 6 
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Fig. 9 Frequency response of the rotor of example 4 in the 

present study for point 6 

 

Frequency response functions at the location of the 

second disc are shown in Figs. 8 and 9. The result is 

quite clear that the number of peaks, rotational speed of 

each peak and amplitude of the peaks are in good 

agreement with the full model of [17]. Thus, the 

methods used in this study were capable to model 

complicated rotor with multiple discs and different 

conditions, which is comparable to hard and time 

consuming methods such as finite element. 

7 CONCLUSION 

In this study the modelling of a rotor-bearing system 

with desired conditions using the Rayleigh’s theory and 

approximate analytical method of assumed modes was 

investigated. Various models of the rotor were 

considered and the results were compared with those of 

other reliable references. The present work showed that 

the method used in this research is more efficient for 

determining the natural frequencies of the rotor, 

studying of the gyroscopic effects and forced response 

of the complex rotors. The examples verified the high 

accuracy along with greater ease and less time 

consuming of the present method. Thus, the procedure 

developed in this study can be used for complicated 

models of rotors apart from the difficulties in selecting 

mode shapes, higher volume of equations and 

consuming a lot of time to achieve the desired results.  

8 APPENDIX OR NOMENCLATURE 

List of Symbols 

A Area of shaft (m
2
) 

mA Amplitude of vibration (m) 

uC Bearing damping in direction u (N.s/m) 

wC Bearing damping in direction w (N.s/m) 

Ud  Radius of unbalances (m) 

E Young’s modulus (GPa) 

f  Frequency (Hz) 

uK Bearing stiffness in direction u (N.s/m) 

wK Bearing stiffness in direction w (N.s/m) 

L Length of shaft (m) 

DM Mass of disc(Kg) 

Um Mass of unbalance (Kg) 

Ra Railey’s quotient 

I Moment of the shaft (m
4
) 

dxI Moment of inertia of the disc about the axis 

perpendicular to the shaft (Kg.m
2
) 

dyI Polar Moment of disc about shaft axis 

(Kg.m
2
) 

t Time (s) 

u Displacement in the horizontal direction (m) 

w Displacement in the vertical direction (m) 

 

Greek Symptoms 

 Density (Kg/m
3
) 

 Angular velocity (rad/s) 

 Natural frequency (rad/s) 

U Phase of unbalance mass (rad) 

yy Stress in direction of y  axis (N/m
2
) 

yy Strain in direction of y  axis 

 

Subtitles 

B Related to bearing 

D Related to disc 

n Counter of disc, bearing and unbalance mass 

U Related to unbalance mass 
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