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Abstract 
 
Aluminum composites are one of the most important alloys with a wide range of properties and applications. In this paper, 
we predict the micro-hardness of aluminum-based alloys by artificial neural method (ANN). First, the effective parameters 
in mechanical alloying include weight percentage and micro hardness of reinforcement materials, milling time, the ball to 
powder weight ratio, vial speed, the pressure of presses, sintering time and temperature, selected for inputs and micro-
hardness of Al composite considered as the output. A feed-forward back propagation artificial neural network designed with 
16 and 10 neurons in the first and second hidden layers, respectively. The created network with the mean percentage error of 
5.6% was able to predict micro hardness of the Al composites. Finally, the effect of each parameter was determined by 
sensitivity analysis which volume fraction of alloying elements, milling speed and sintering time had the highest impact on 
the micro hardness of Al-based composites. 
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1. Introduction 
 
Noble properties of aluminum like low density, 
malleability, machinability, good electrical and heat 
conductivity, and high corrosion resistibility; turn 
the Al-based alloys to the most commonly used 
composites than other MMCs (metal matrix 
composite) [1]. Hence, Al-alloys have various 
applications such as automobile manufacturing [2], 
aerospace applications [3], circuits [4], fuel cells [5], 
etc. 
On the one hand, low strength is the known 
weakness of the Al, and on the other; reinforcement 
materials usually improve the main phase properties 
such as strength, toughness, electrical and heat 
conductivity. Variety methods exist for producing 
Al composites such as casting [6], ultrasonic 
cavitation [7], severe plastic deformation (SPD) [8] 
and mechanical alloying (MA) [9]. 
Among these ways, MA due to low temperature, 
simplicity and cheapness of the process, being eco-
friendly and homogenous dispersion of the second 
phase, has a particular position for the production of 
Al composites. Different materials in Al alloys 
could apply as reinforcement phases; such as Cu, 
Mg, Mn and, Si. Despite the simplicity of the 
mechanical alloying, each alloying element and 
effective MA factors owing to various interactions 
between the matrix and the second element has a 
different impact on the micro hardness of Al-
composites.  
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Estimation the micro hardness of the Al composites 
lead to optimizing using of the MA for synthesizing 
Al-alloys. 
Various computational modeling have been 
proposed for numerous materials engineering 
optimization and prediction, such as artificial neural 
network [10], Taguchi [11], and Genetic Algorithm 
[12]. ANN due to the suitability of categorizing 
large datasets, approaching different parameters and 
achieving a precise solution, has been used widely. 
Indeed, ANN is one of the most powerful modeling 
tools for approaching different datasets and reaching 
an exact solution [13-15]. 
This modeling technique is based on learning and 
subsequently the prediction of output responses. 
Moreover, ANN has been a lot of applied in MA 
and owing to the different significant parameters in 
the mechanical alloying, it can help to predict 
desired outputs.   
In this paper, we collect important factors in the MA 
method include weight percentage and micro 
hardness of reinforcement materials, milling time, 
the ball to powder weight ratio (BPR), the vial 
speed, the pressure of presses, sintering time and 
temperature, and micro-hardness of Al-composites 
from valid related papers. 
Then, the gathered data were used to design an 
artificial neural network for prediction the micro 
hardness of different Al alloys. Finally, the 
Neurosolution program was used for specifying the 
most important parameters on the micro hardness of 
Al composites in the MA method.  
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2. Materials and Methods 
 
In order to predict the hardness of Al-based alloys, 
the experimental data were extracted from valid 

international reports [16-24] and collected in (Table. 
1.).

 
Table. 1. The collected dataset with detail of effective parameters in the MA method for producing Al-based 
composites. 

 

No  Composite  
Reinforcement 

(wt %)  

Reinforcement 
Hardness 

(HV)  

Milling 
Time 
(h)  

BPR  
Vial 

Speed 
(RPM)  

Pressure 
(MPa) 

Sintering 
Temperature 

(K˚)  

Sintering 
Time 

)h(  

Final 
Micro 

Hardness 
(HV) 

Reference  

1 Al-Al4C3 2 498 10 6 450 650 873 5 100 [16] 
2 Al-Al4C3 2 498 20 6 450 650 873 5 140 [16] 
3 Al-Al4C3 2 498 30 6 450 650 873 10 220 [16] 
4 Al-Al4C3 2 498 10 6 450 650 873 20 175 [16] 
5 Al-Al4C3 2 498 30 6 450 650 873 20 290 [16] 
6 Al-Al4C3 2 498 20 6 450 650 923 5 150 [16] 
7 Al-Al4C3 2 498 30 6 450 650 923 5 200 [16] 
8 Al-Al4C3 2 498 30 6 450 650 923 10 310 [16] 
9 Al-Al4C3 2 498 10 6 450 650 923 20 200 [16] 

10 Al-Al4C3 2 498 20 6 450 650 923 20 270 [16] 
11 Al-Al4C3 2 498 30 6 450 650 923 20 350 [16] 
12 Al-Al4C3 2 498 20 6 450 650 873 10 180 [16] 
13 Al-Al4C3 2 498 10 6 450 650 923 10 160 [16] 
14 Al-AlB2 15 2500 4 7 300 49 600 60 175 [17] 
15 Al-AlB2 50 2500 4 7 300 49 600 60 295 [17] 
16 Al-AlB2 15 2500 4 7 300 49 900 60 160 [17] 
17 Al-AlB2 50 2500 32 7 300 49 600 60 370 [17] 
18 Al-AlB2 15 2500 32 7 300 49 900 60 250 [17] 
19 Al-AlB2 50 2500 32 7 300 49 900 60 500 [17] 
20 Al-AlB2 50 2500 4 7 300 49 900 60 400 [17] 
21 Al-AlB2 15 2500 32 7 300 49 300 60 145 [17] 
22 Al-MgB2 15 2600 4 7 300 49 900 60 170 [17] 
23 Al-MgB2 50 2600 4 7 300 49 900 60 315 [17] 
24 Al-MgB2 15 2600 4 7 300 49 300 60 150 [17] 
25 Al-MgB2 50 2600 4 7 300 49 300 60 220 [17] 
26 Al-MgB2 15 2600 4 7 300 49 600 60 180 [17] 
27 Al-MgB2 50 2600 32 7 300 49 300 60 360 [17] 
28 Al-MgB2 15 2600 32 7 300 49 600 60 250 [17] 
29 Al-MgB2 15 2600 32 7 300 49 900 60 270 [17] 
30 Al-MgB2 50 2600 32 7 300 49 900 60 460 [17] 
31 Al-Fe 2.5 130 20 10 300 375 600 120 220 [18] 
32 Al-Fe 10 130 20 10 300 375 600 120 370 [18] 
33 Al-Fe 15 130 20 10 300 375 600 120 440 [18] 
34 Al-Fe 20 130 20 10 300 375 600 120 600 [18] 
35 Al-Fe 2.5 130 20 10 300 375 400 120 130 [18] 
36 Al-Fe 5 130 20 10 300 375 400 120 140 [18] 
37 Al-Fe 15 130 20 10 300 375 400 120 170 [18] 
38  Al-Fe 20 130 20 10 300 375 400 120 180 [18] 
39 Al-Fe 5 130 20 10 300 375 800 120 170 [18] 
40 Al-Fe 10 130 20 10 300 375 800 120 180 [18] 
41 Al-Fe 20 130 20 10 300 375 800 120 500 [18] 
42 Al-AlN 2.5 1100 25 20 270 1500 873 20 183 [19] 
43 Al-AlN 5 1100 25 20 270 1500 873 20 186 [19] 
44 Al-AlN 10 1100 25 20 270 1500 873 60 185 [19] 
45 Al-AlN 5 1100 25 20 270 1500 873 60 198 [19] 
46 Al-Al3Ti 10 145 20 10 300 375 673 120 140 [20] 
47 Al-Al3Ti 15 145 20 10 300 375 673 120 210 [20] 
48 Al-Al3Ti 20 145 20 10 300 375 673 120 340 [20] 
49 Al-Al3Ti 5 145 20 10 300 375 673 120 100 [20] 
50 Al-Al3Ti 20 145 20 10 300 375 573 120 270 [20] 
51 Al-Al3Ti 5 145 20 10 300 375 573 120 110 [20] 
52 Al-AlB2 50 2600 20 7 300 49 573 60 430 [21] 
53 Al-AlB2 15 2600 20 7 300 49 673 60 240 [21] 
54 Al-AlB2 15 2600 20 7 300 49 573 60 190 [21] 
55 Al-AlB2 15 2600 20 7 300 49 573 60 200 [21] 
56 Al-AlB2 50 2600 20 7 300 49 673 60 370 [21] 
57 Al-AlB2 50 2600 20 7 300 49 673 60 450 [21] 
58 Al-AlB2 15 2600 20 7 300 49 773 60 160 [21] 
59 Al-AlB2 50 2600 20 7 300 49 773 60 350 [21] 
60 Al-AlB2 50 2600 20 7 300 49 773 60 470 [21] 
61 Al-AlB2 15 2600 20 7 300 49 873 60 170 [21] 
62 Al-AlB2 15 2600 20 7 300 49 873 60 280 [21] 
63 Al-AlB2 50 2600 20 7 300 49 873 60 500 [21] 
64 Al-SiC 10 2400 24 20 200 38 823 60 270 [22] 
65 Al-SiC 2 2400 24 20 200 38 823 60 120 [22] 
66 Al-SiC 5 2400 24 20 200 38 823 60 160 [22] 
67 Al-SiC 7 2400 24 20 200 38 823 60 190 [22] 
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68 Al-SiC 1 2400 20 10 260 570 523 60 83 [23] 
69 Al-SiC 1 2400 2 5 360 570 523 60 88 [23] 
70 Al-SiC 1 2400 20 5 360 570 523 60 85 [23] 
71 Al-SiC 1 2400 2 5 260 570 523 60 47 [23] 
72 Al-SiC 1 2400 20 10 360 570 523 60 88 [23] 
73 Al-MWCNT 0.25 2400 1 5 300 950 823 180 51 [24] 
74 Al-MWCNT 0.25 2400 2 5 300 950 823 180 52 [24] 
75 Al-MWCNT 0.75 2400 2 5 300 950 823 180 77 [24] 
76 Al-MWCNT 0.75 2400 1 5 300 950 823 180 69 [24] 
77 Al-TiB2 20 3400 1 10 360 35 277 10 206 [25] 
78 Al-Al4C3 2 498 30 6 450 650 873 5 210 [16] 
79 Al-Al4C3 2 498 20 6 450 650 873 20 260 [16] 
80 Al-Al4C3 2 498 10 6 450 650 923 5 140 [16] 
81 Al-Al4C3 2 498 10 6 450 650 873 10 140 [16] 
82 Al-Al4C3 2 498 20 6 450 650 923 10 225 [16] 
83 Al-AlB2 50 2500 4 7 300 49 300 60 200 [17] 
84 Al-AlB2 15 2500 32 7 300 49 600 60 210 [17] 
85 Al-AlB2 50 2500 32 7 300 49 300 60 320 [17] 
86 Al-MgB2 15 2600 32 7 300 49 300 60 165 [17] 
87 Al-MgB2 50 2600 4 7 300 49 600 60 350 [17] 
88 Al-MgB2 50 2600 32 7 300 49 600 60 415 [17] 
89 Al-Fe 5 130 20 10 300 375 600 120 230 [18] 
90 Al-Fe 10 130 20 10 300 375 400 120 150 [18] 
91 Al-Fe 2.5 130 20 10 300 375 800 120 160 [18] 
92 Al-Fe 15 130 20 10 300 375 800 120 300 [18] 
93 Al-AlN 10 1100 25 20 270 1500 873 20 190 [19] 
94 Al-AlN 2.5 1100 25 20 270 1500 873 60 195 [19] 
95 Al-Al3Ti 10 145 20 10 300 375 573 120 130 [20] 
96 Al-Al3Ti 15 145 20 10 300 375 673 120 150 [20] 
97 Al-MgB2 15 2600 20 7 300 49 673 60 200 [21] 
98 Al-MgB2 50 2600 20 7 300 49 573 60 340 [21] 
99 Al-MgB2 15 2600 20 7 300 49 773 60 230 [21] 

100 Al-MgB2 50 2600 20 7 300 49 873 60 340 [21] 
101 Al-SiC 1 2400 2 10 260 570 523 60 99 [23] 
102 Al-SiC 1 2400 20 5 260 570 523 60 138 [23] 
103 Al-SiC 1 2400 2 10 360 570 523 60 108 [23] 
104 Al-MWCNT 0.5 2400 1 5 300 950 823 180 64 [24] 
105 Al-MWCNT 0.5 2400 2 5 300 950 823 180 76 [24]  

 

 
 

Fig. 1. Diagram of the designed ANN architecture. 
 
2.1. ANN Modeling Procedure 
 
ANN network generally contains interconnected 
units known as neurons or nods. Neurons are the 
smallest computing elements which interconnected 
to weighted links and they aggregate into layers. 
These layers affect their input information and can 
be trained by a process [26, 27]. Indeed, ANN 
consist of input layers, output layers, and hidden 
layers and neuron signals transmitted several times 
from input to the output. The training process of 
ANN continuous intermittently by changing weights 
until the network could approach the desired output 
and reaches to the acceptable error. 
After training, the network can predict the output of 
untrained data by using the designed model that was 
learned at the training step. The relationship of 
neurons can be expressed by relation Eq. (1). [28-
31]:  
 

x = ∑ w x + b                                    Eq. (1). 

 
Where the output 𝑥 produced by the neuron in the 
layer, p is the number of elements in the layer, w x  
is the weight, and b is the offset or bias. 77 and 28 
data sets were used for the train and test of the 
network, respectively. Feed-forward 
backpropagation (FFBP), which is one of the most 
suitable ways for the training of the network in 
ANN, was used for training the model. This method 
presents effective solutions for approaching 
different factors in order to find a solution [14, 28]. 
The number of neurons in the hidden layers during 
the training process was determined by trial and 
error. This network includes an input layer, two 
hidden layers and, an output layer. There are 16 and 
10 neurons in the first and second hidden layers, 
respectively. The input variables are weight 
percentage and micro hardness of reinforcement 
materials, time of milling, the ball to powder weight 
ratio, vial speed, the pressure of presses, sintering 
time and temperature; and micro-hardness of Al-
composites considered as the output (Fig. 1.). 
provides information about the schematic diagram 
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of the ANN model configuration. The network 
modeling was written in MATLAB software version 
R2014a and the Levenberg–Marquardt (LM) 
algorithm [29] was used to train the network. 
Furthermore, the log-sigmoid transfer function was 
applied as an activation function for hidden and 
output layers. The data sets have been normalized 
between 0.1 to 0.9 for homogenization according to 
relation Eq .(3). [31]: 
 

N= 0.8 + 0.1                              Eq .(3). 

 
Where 𝑥  and 𝑥  are the maximum and 
minimum values of the parameters, respectivelly. 
The root mean square errors (RMSE) for the 
designed network was computed by Eq. 4. [31]: 
 

RMSE = ∑
|   |

 
× 100 Eq.(4). 

 
Where N is the total number of training patterns.  
 
3. Results and Discussion 
 
In order to verify the accuracy of the network 
performance, regression analysis was performed for 
training and testing data sets. The result of the 
regression analysis is shown in Fig. 2. According to 
this graph, the total regression (total regression of 
test, train, and validation) was 0.987. Better 
regression leads to less scattering between datasets 
and predicted values. Thereby, it is completely 
reasonable that the error percentage of the measured 
regression will be less and the obtained relation 
would be more accurate, due to being very close to 
1. It can be seen that the artificial neural network 
has been able to reach a very close relation between 
the experimental variables and the prediction values 
and the network has been able to find an appropriate 
equation. For verification of the network, a 
comparison between experimental and predicted 
values datasets was carried out. Regarding Eq. 4., 
the average error of the network was calculated by 
5.6%. Based on this result, it can be expected that 
the modeled ANN network can predict other similar 
results with such high accuracy and reliability. 
Moreover, with attention to the many variables 
involved in the MA, the proposed model reduces 
time and experimental research costs. The influence 
of each parameter can be determined by using 
sensitivity analysis. This analysis explains which of 
input more important than the other factors. Fig. 3. 
shows the result of Neurosolution from the 
sensitivity analysis of collected datasets. According 
to the results, the proportion of alloying elements, 
milling speed and sintering time have the highest 
impact function, respectively. In General, The 
enhancement amount of the reinforcement materials 
leads to an increase in the lattice parameter and 
micro-hardness. More percentages of alloying 

elements cause to work hardening of Al particles 
and so the hardness of the powders increased. 
 

 
 

Fig. 2. Schematic of regression based on the designed 
ANN model for prediction micro hardness of Al-based 
alloys in the MA method. 
 
The rich solid solution in aging will form a high 
volume fraction of coherent sediments, and 
crystalline defects provide preferred sites for 
sedimentation, consequently, these sediments 
prevent recovery and recrystallization [30]. During 
the ball milling of Al alloys, powder particles are 
severely deformed by the impact of the steel balls 
which leads to an increase in the local temperature 
and as a result, atomic diffusion occurs. 
Furthermore, the density of crystalline defects such 
as vacancies, dislocations, and stacking faults are 
greatly increased. Consequently, the particles get 
work hardening over time and as a result, the effects 
of work hardening expanded; hence it is reasonable 
that milling speed has a major effect on the hardness 
of the Al alloys.  It should be noted that each 
parameter can minimize or maximize the others and 
affect the micro hardness of the Al- composites 
during MA. 
 

 
Fig. 3. Sensitivity analysis of the important parameters 
of the MA for fabrication AL-composite. 
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4. Conclusion  
 
1. The ANN model with 16 and 10 neurons in 
hidden layers 1 and 2, respectively, is a useful 
method for the prediction of the micro hardness of 
Al-based composite synthesized by the MA method.  
2. In this study, the designed ANN model predicted 
the micro hardness of Al alloys with an average 
error of 5.6%. 
3. Results of the sensitivity analysis show that the 
proportion of alloying element, milling speed and 
sintering time have the highest impact on the micro 
hardness of Al composites, respectively. 
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