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Abstract

The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and
the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended
for solving high dimensional problems and finally, some example and graph of error function are
presented to show the ability and simplicity of the method.
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1 Introduction

T
he integral equations with a Toeplitz, Han-
kel or Toeplitz plus Hankel kernel attracts

attention of many authors as they have practi-
cal applications in such diverse fields as scatter-
ing theory, fluid dynamics, linear filtering the-
ory, and inverse scattering problems in quantum-
mechanics, problems in radiative wave transmis-
sion, and further applications in Medicine and Bi-
ology [1, 2, 6, 7, 8, 11, 15, 18, 19, 20, 21].

Many different powerful methods have been
proposed to obtain exact and approximate so-
lution of integral equation with a Toeplitz plus
Hankel kernel. Solvability of the integral equa-
tions with TPH kernel considered in ([12] ). Fred-
holm integral equations with TPH kernel have
been solved numerically in ([13]). Also, Fredholm
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integral equations solved by variational iteration
method ([17]), homotopy perturbation method
(HPM) ([5, 14]), Adomian decomposition method
(ADM) ([4, 9]).

In [3], Avazzadeh et al. introduced a new
method for solving Fredholm integral equation by
using integral mean value method (IMVM)and
M. Heydari et al. [10] extended their method
for high dimensional Fredholm integral equations.
Based on their works, in this paper, (IMVM) is
used for solving integral equations with Toeplitz,
Hankel and Toeplitz plus Hankel kernel.

The paper organized as follow : Section 2 intro-
duces the main idea of method for solving Fred-
holm integral equation with TPH kernel and also,
some exampels, graph of error function and com-
parison between exact and approximate solution
for one dimensional Fredholm integral equations
with TPH kernel. Our idea is devoted to general-
ized the method for solving two and also, high di-
mensional integral equations in Sections 3 and 4.
Section 4, includes the extented formulae to clar-
ify the generalization process and some numerical
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example, graph of error functions and compari-
son between exact and approximate solution to
describe the method, and Section 5 is discussion
and conclusion.

2 Fredholm integral equation
with TPH kernel

Consider the following nonlinear Fredholm inte-
gral equation of second kind:

u(x) = f(x)+λ

∫ b

a
[P (x−t)+Q(x+t)]F (u(t))dt,

(2.1)
whereλ is a real number and also F, f, P and Q
are given continuous functions, and u is unknown
function to be determined.

For solving TPH kernel with IMVM, we use
mean value theorem for integrals as follows:

Theorem 2.1 (mean value theorem for integrals
[22]). If w(x) is continuous in [a, b], then there
is a point c ∈ [a, b], such that∫ b

a
w(x)dx = (b− a)w(c), (2.2)

Now, we illustrate the main idea of our method.
By applying the above theorem to Eq. (2.1) we
have

u(x) = f(x) + λ(b− a)

[p(x− c) + q(x+ c)]F (u(c)),

c ∈ [a, b]

(2.3)

now we must just find c and u(c) as unknowns.
Substitution of c into Eq. (2.3)

u(c) = f(c)+λ(b−a)[p(0)+ q(2c)]F (u(c)) (2.4)

For constructing another equation concerning c
and u(c) we substitute Eq. (2.3) into Eq. (2.1)

u(x) = f(x) + λ

∫ b

a
[p(x− t) + q(x+ t)]

F (f(t) + λ(b− a)[p(t− c)

+q(t+ c)]F (u(c)))dt (2.5)

substituting x = c in to (2.5):

u(c) = f(c) + λ

∫ b

a
[p(c− t) + q(c+ t)]

F (f(t) + λ(b− a)[p(t− c)

+q(t+ c)]F (u(c)))dt (2.6)

Now, we solve Eqs. (2.4) and (2.6) simultane-
ously. For solving the above nonlinear system,
various methods can be used.

Some different examples of Fredholm integral
equation with Toeplitz, Hankel and Toeplitz plus
Hankel kernel are chosen to illustrate the pre-
sented method. The results show the ability and
simplicity of the method.

Example 2.1 ( Fredholm integral equation with
Toeplitz kernel): Consider the integral equations

u(x) =
1

3
(−1 + e)ex + e2x − 1

3

∫ 1

0
ex−tu(t)dt

for which the exact solution is u(x) = e2x. Using
the presented method leads to the following system
of equations:

u(c) = 1
3(−1 + e)ec + e2c − 1

3u

u(c) = (−1
3 + e

3)e
c + e2c + 1

3((
4
3 + 4e

3 )e
c + 1

3u)

By mentioned method, values of c and u(c) are
found as follows:

c = 0.5413248546, u(c) = 2.9524924420
Hence, we have u(x) = e2x − 1.11022 × 10−16.
The error function is demonstrated in Figure 1.

Note that the absolute error is −1.11022×10−16

with considering 16 digits and it is equivalent
to the exact solution.The comparison between ex-
act solution and approximate solution showned in
Figure 2.

Example 2.2 (Fredholm integral equation with
Hankel kernel):

u(x) = −(−2 + e)ex + x2 +

∫ 1

0
ex+tu(t)dt

for which the exact solution is u(x) = x2.Using
the presented method leads to the following system
of equations:

u(c) = c2 + (2− e)ec + e2cu

u(c) = c2 + (2 + e)ec + 1
2e

c

(−6− (−3 + e)e(1 + e) + ec(−1 + e2)u)
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Figure 1: The error function of Example
2.1.

Figure 2: The comparison between exact
solution and approximate solution of Exam-
ple 2.1.

Solving the obtained system leads to
c = 0.5413248546, u(c) = 2.9524924420
with considering 10-digit accuracy.Hence, approx-
imate solution is u(x) = x2−4.12812×10−16 and
absolute error is −4.12812× 10−16. In Figure 3.
show the comparison between exact solution and
approximate solution and The error function is
demonstrated in Figure 4.

Example 2.3 ( Fredholm integral equation with
TPH kernel):

u(x) = x3 − 2(3 + cos(1)− 4 sin(1))

× (cos(x) + sin(x))

+

∫ 1

0
[sin(x+ t) + cos(x− t)]u(t)dt

for which the exact solution is u(x) = x3.and sys-

Figure 3: The error function of Example
2.2.

Figure 4: The comparison between exact
solution and approximate solution of Exam-
ple 2.2.

tem of equations is:

u(c) = c3 − 2(3 + cos(1)− 4 sin(1))
(cos(c) + sin(c))

−1/2(cos(c) + sin(c))
(4(3 + cos(1)− 4 sin(1)) sin(1)2

+u(−3 + cos(2))(cos(c) + sin(c)))

u(c) = c3 − 2(3 + cos(1)− 4 sin(1))
(cos(c) + sin(c))

+(sin(c+ c) + cos(c− c))u(c)

By solving of the related system, we have

c = 0.6296960723676109

and
u(c) = 0.6296960723676109.

Hence, approximate solution is u(x) = x3 +
2.22045 × 10−16 and absolute error is 2.22045 ×
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10−16. Figure5 is comparison between exact and
approximate solution and The error function is
demonstrated in Figure 6.

Figure 5: The error function of Example
2.3.

Figure 6: The comparison between exact
solution and approximate solution of Exam-
ple 2.3.

3 Solving of two dimensional
Fredholm integral equation
with TPH kernel via IMVM

Consider the following two dimensional Fredholm
integral equation of the second kind:

u(x, y) = f(x, y) + λ

∫ b

a

∫ d

c
(P [(x, y)− (s, t)]

+Q[(x, y) + (s, t)]F (u(s, t))dsdt

(3.7)

For solving the above equation, we apply the in-
tegral mean value theorem. However, the mean
value theorem is valid for double integrals, we
apply one dimensional integral mean value theo-
rem directly to fulfill required linearly indepen-
dent equations.

Corollary 3.1 (mean value theorem for inte-
grals). If w(x, y) is continuous in [a, b] × [c, d],
then there are points c1 ∈ [a, b] and c2 ∈ [c, d],
such that ∫ b

a
w(s, t)ds = (b− a)w(c1, t) (3.8)

and ∫ d

c
w(s, t)dt = (d− c)w(s, c2) (3.9)

Proof:It is clear by using(2.2)

Theorem 3.1 (mean value theorem for double
integrals). If w(x, y) is continuous in [a, b]×[c, d],
then there are points c1 ∈ [a, b] and c2 ∈ [c, d],
such that∫ b

a

∫ d

c
w(s, t)dsdt = (b− a)(d− c)w(c1, c2).

(3.10)
Proof: It is clear using Theorem (2.1).

By applying (3.8) and (3.9) for the right hand of
(3.7), since the integral equation (3.7) depends
on x and y, c1 and c2 will be functions with
respect to x and y and here we write them as
c1(x; y)) ∈ [a, b] and c2(x; y)) ∈ [c, d]. To be able
to implement our algorithm, we take c1(x; y)) and
c2(x; y)) as constants. Now to find the solution
of integral equation we describe the following al-
gorithm:

Algorithm

1. Apply (3.9) in (3.7) to get

u(x, y) = f(x, y) + λ(d− c)
∫ b
a (P [(x, y)

−(s, c2)] +Q[(x, y) + (s, c2)])F (u(s, c2)))ds
(3.11)

2. Apply (3.8)in (3.11)and Replace the ob-
tained equation in 3.11 as

u(x, y) = f(x, y) + λ(b− a)(d− c)
(P [(x, y)− (c1, c2)] +Q[(x, y) + (c1, c2)])

F (u(c1, c2))
(3.12)
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3. Let (x, y) = (c1, c2)in the (3.12). It is ob-
tained as

u(c1, c2) = f(c1, c2) + λ(b− a)(d− c)
(P [(c1, c2)− (c1, c2)] +Q[(c1, c2)

+(c1, c2)])F (u(c1, c2))
(3.13)

4. Replace (3.12) into (3.7) and then let(x, y) =
(c1, c2) in the obtained formula.

u(c1, c2) = f(c1, c2) + λ
∫ b
a

∫ d
c (P [(c1, c2)

−(s, t)] +Q[(c1, c2) + (s, t)])F (f(s, t)
+λ(b− a)(d− c)(P [(s, t)− (c1, c2)]

+Q[(s, t) + (c1, c2)])F (u(c1, c2)))dsdt
(3.14)

5. Substitute (3.12) into (3.11). We have

u(x, y) = f(x, y) + λ(d− c)
∫ b
a (P [(x, y)

−(s, c2)] +Q[(x, y) + (s, c2)]F (f(s, c2)
+λ(b− a)(d− c)(P [(s, c2)− (c1, c2)]
+Q[(s, c2) + (c1, c2)])F (u(c1, c2)))) ds

(3.15)

6. Let(x, y) = (c1, c2) to be in the above equa-
tion

u(c1, c2) = f(c1, c2) + λ(d− c)
∫ b
a (P [(c1, c2)

−(s, c2)] +Q[(c1, c2) + (s, c2)])F (f(s, c2)
+λ(b− a)(d− c)(P [(s, c2)− (c1, c2)]
+Q[(s, c2) + (c1, c2)])F (u(c1, c2))) ds

(3.16)

7. Solve the Eqs. (3.13), (3.14) and (3.16) si-
multaneously as the system including 3 equa-
tions and 3 unknowns c1; c2 and u(c1, c2).

4 Solving of high dimensional
integral equations via IMVM

Consider the second kind high dimensional inte-
gral equation

u(x) = f(x) + λ
∫ b1
a1

∫ b2
a2

...
∫ bn
an

[P (x− t)

+Q(x+ t)]F (u(t)) dt
(4.17)

where x = (x1, x2, ..., xn) and t = (t1, t2, ..., tn).
Similar to the previous section, instead of using
mean value theorem for multiple integral, we ap-
ply one dimensional integral mean value theorem
directly to provide needful linearly independent
equations.

Theorem 4.1 (mean value theorem for multiple
integrals): If s(x) is continuous in [ai, bi]

n, i =
1, 2, ..., n, then there are points ci ∈ [ai, bi], i =
1, 2, ..., n such that∫ b1

a1

∫ b2
a2

...
∫ bn
an

(s(x)) dxn dxn−1 ... dx1
=

∏n−1
j=0 (bn−j − an−j)s(c1, c2, ..., cn)

(4.18)

In the similar way, to find u(x1, x2, ..., xn), we
have to obtain c1, c2, ..., cn and u(c1, c2, ..., cn).
Follow the consecutive substituting in the follow-
ing algorithm which lead to the system including
(n+1) unknowns and (n+1) linearly independent
equations.

Algorithm

1. Apply the integral mean value theorem for
interval[an, bn]:∫ bn

an
[p(x− t) + q(x+ t)]F (u(t))dtn

= (bn − an)[p(x− ξn) + q(x+ ξn)]F (u(ξn))
(4.19)

where ξn = (t1, t2, ..., tn−1, cn).

2. Substitute (4.19) into (4.17) to obtain :

u(x) =

f(x) + λ(bn − an)
∫ b1
a1

...
∫ bn−1

an−1
[p(x− ξn)

+q(x+ ξn)]F (u(ξn))dtn−1 · · · dt1
(4.20)

3. Again, we use the integral mean value theo-
rem with i = n− 1,as follows∫ bn−1

an−1
[p(x− ξn) + q(x+ ξn)]F (u(ξn))dtn−1

= (bn−1 − an−1)[p(x− ξn−1) + q(x
+ξn−1)]F (u(ξn−1))

(4.21)
where ξn−1 = (t1, t2, ..., cn−1, cn).

4. Replace the above equation into (4.20). So,
we have

u(x) = f(x) + λ(bn − an)(bn−1 − an−1)∫ b1
a1

· · ·
∫ bn−2

an−2
[p(x− ξn−1)

+q(x+ ξn−1)]F (u(ξn−1))dtn−2 · · · dt1
(4.22)

5. Repeat the process for i = 3, ..., n− 1, as

u(x) = f(x) + λ(bn − an) · · · (bn−i+1

−an−i+1)
∫ b1
a1

· · ·
∫ bn−i

an−i
[p(x− ξn−i+1)

+q(x+ ξn−i+1)]F (u(ξn−i+1))dtn−i · · · dt1
(4.23)
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where ξn−i+1 =
(t1, t2, ..., tn−i, cn−i+1, cn−i+2, ..., cn). Also,
the nth step of the above process leads to

u(x) = f(x) + λ(bn − an) · · · (b1 − a1)

[p(x− ξ1) + q(x+ ξ1)]F (u(ξ1))

(4.24)

where ξ1 = (c1, c2, ..., cn).

6. Let x = ξ1 into 4.24 to get

u(ξ1) = f(ξ1) + λ

n∏
j=1

(bj − aj)[p(0)

+q(2ξ1)]F (uξ1)) (4.25)

Now the first equation of the proposed sys-
tem including (n + 1)unknowns and (n + 1)
equations is constructed.

7. To make the other equations, the demon-
strated process must be repeated such that
the ith achieved equation is as follows
(use (4.23) and (4.24))

u(x) =

f(x) + λ
∏i−1

j=0(bn−j − an−j)
∫ b1
a1

· · ·
∫ bn−i

an−i

[p(x− ξn−i+1) + q(x+ ξn−i+1)]

F ([f(ξn−i+1) + λ
∏i−1

j=0(bn−j − an−j)

[p(0) + q(2ξn−i+1)]F (u(ξ1))])dtn−i · · · dt1
(4.26)

where i = 1, ..., n− 1 , and gives
u(ξ1) =

f(ξ1) + λ
∏i−1

j=0(bn−j − an−j)
∫ b1
a1

...
∫ bn−i

an−i

[p(ξ1 − ξn−i+1) + q(ξ1 + ξn−i+1)]

F ([f(ξn−i+1) + λ
∏i−1

j=0(bn−j − an−j)

[p(ξn−i+1 − ξ1) + q(ξn−i+1 + ξ1)]

F (u(ξ1))])dtn−i · · · dt1
(4.27)

as the ith equation. Therefore, we obtain the
(n − 1), new equations when i = 1, ..., n −
1, for final mentioned system including (n+
1)unknowns and (n+1) equations. Also, 4.25
can be provided 4.27 with i = n.

8. Implement the previous step to obtain the
nth equation as

u(x) = f(x) + λ

∫ b1

a1

· · ·
∫ bn

an

[P (x− t) + q(x+ t)]

F (f(t) + λ

n−1∏
j=0

(bn−j − an−j)

[p(t− ξ1) + q(t+ ξ1)]

F (u(ξ1)))dtn · · · dt1
(4.28)

which lead to

u(ξ1) = f(ξ1) + λ

∫ b1

a1

· · ·
∫ bn

an

[P (ξ1 − t) + q(ξ1 + t)]

F (f(t) + λ

n−1∏
j=0

(bn−j − an−j)

[p(t− ξ1) + q(t+ ξ1)]

F (u(ξ1)))dtn · · · dt1

(4.29)

Finally, the last equation of the proposed
system including (n+1) unknowns and (n+
1) equations is constructed.

9. Solve the nonlinear system including (4.25),
(4.27) and (4.29) with the Newtons method
or other efficient methods.

Remark 4.1 The equations of the final system
include the numerous integrals containing long
terms. It is recommended to use the numerical
integration rules such as Gauss quadrature rule
or trapezoidal integration method.

Some different examples of two dimensional
Fredholm integral equation with Toeplitz ,Han-
kel and Toeplitz plus Hankel kernel are chosen to
illustrate the presented method.

Example 4.1 ( Two dimensional Fredholm in-
tegral equation with Hankel kernel) Consider the
integral equations:

u(x, y) = f(x, y) +

∫ 1

0

∫ 1

0
2x+y+s+tu(s, t) ds dt

where

f(x, y) = x+ y − 2x+y(−2 + log(16))

log(2)3
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for which the exact solution is u(x, y) = x + y.
Using the presented method leads to the following
system of equations:

u(c1, c2) =

c1 + c2 +
1

log(2)4
2−1+c1+c2

(2c2 log(2)
3 + 3× 2c1+2c2u log(2)3

+2(−3× 2c2 + log(2)2)(−1 + log(4)))

−2c1+c2(−2 + log(16))

log(2)3

u(c1, c2) =

c1 + c2 −
2c1+c2(−2 + log(16))

log(2)3

+
1

log(2)5
2−2+c1+c2(9× 2c1+c2u(c1, c2) log(2)

3

+(−2 + log(16))(−9 + log(2) log(16)))

u(c1, c2) = c1 + c2 − 2c1+c2 (−2+log(16))
log(2)3

+2c1+c2+c1+c2u(c1, c2)

By mentioned method, values of c1, c2and
u(c1, c2) are found as

c1 = 0.5449840956, c2 = 0.5449055202

and

u(c1, c2) = 2.9524924420

. Hence, u(x, y) = x+ y + 3.55271× 10−15 .
The error function is demonstrated in Figure 7.
Note that the absolute error is 3.55271 × 10−15

with considering 15 digits and it is equivalent to
the exact solution.The comparison between exact
solution and approximate solution showned in
Figure 8.

Example 4.2 ( Two dimensional Fredholm
integral equation with Toeplitz kernel)

u(x, y) = f(x, y)+

∫ 1

0

∫ 1

0
e(2x+2y)−(s+t)u(s, t) ds dt

where

f(x, y) = x− y

Figure 7: The error function of Example .

Figure 8: The comparison between exact
solution and approximate solution of Exam-
ple .

for which the exact solution is u(x, y) = x − y.
Using the presented method leads to the following
system of equations:

u(c1, c2) = c1 − c2 + e−1+c1+c2(ec1

(−2 + c2 + e− c2e) + (−1 + e)

e1+c2u(c1, c2)),

u(c1, c2) = c1 − c2 + (−1 + e)2ec1+c2

u(c1, c2),

u(c1, c2) = c1 − c2 + e(2c1+2c2)−(c1+c2)

u(c1, c2).

Solving the obtained system leads to

c1 = 0.4180232931, c2 = 0.4180232931
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and

u(c1, c2) = −2.9338723141× 10−27

with considering 10-digit accuracy.Hence, approx-
imate solution is u(x, y) = x−y+6.94271×10−26

and absolute error is 6.94271×10−26.In Figure 9.
show he comparison between exact solution and
approximate solution and The error function is
demonstrated in Figure 10.

Figure 9: The error function of Example
4.2.

Figure 10: The comparison between exact
solution and approximate solution of Exam-
ple 4.2.

Example 4.3 ( Two dimensional Fredholm in-
tegral equation with TPH kernel)

u(x, y) = f(x, y) +

∫ 1

0

∫ 1

0
(e(2x+2y)−(s+t)

+e(x+y)+(s+t) u(s, t) ds dt

where

f(x, y) = x2 − y2

for which the exact solution is u(x, y) = x2 −
y2.and system of equations is:

u(c1, c2) = c21 − c22 +
1

6
e−1+c2

(−6(5 + c22(−1 + e)− 2e)e2c1

+3e1+2c1+3c2(−1 + e2)u(c1, c2) + 2e1+2c2

(−1 + e3 + 3e3c1)u(c1, c2)

−6e1+c1+c2(2 + c22(−1 + e)

+u(c1, c2)− e(1 + u(c1, c2)))),

u(c1, c2) = c21 − c22 +
1

36
(36(−1 + e)2

ec1+c2 + 36e3(c1+c2) + 9e2

(c1 + c2)(−1 + e2)2 + 4

(−1 + e3)2)u(c1, c2),

u(c1, c2) = c21 − c22 + (e(2c1+2c2)−(c1+c2)

+ec1+c2+c1+c2)u(c1, c2).

By solving of the related system, we have

c1 = 0.6114976933, c2 = 0.6114976933

and

u(c1, c2) = 5.6991080150× 10−21

Hence, approximate solution is u(x, y) = (x2 −
y2) − 2.34655 × 10−19 and absolute error is
−2.34655 × 10−19. Figure 11. is comparison be-
tween exact and approximate solutions and The
error function is demonstrated in Figure 12.
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5 Conclusions

In this paper, we used the new efficient method
for solving linear and nonlinear Fredholm inte-
gral equation of the second kind (different di-
mensional problems)with Toeplitz , Hankel and
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Figure 11: The error function of Example
4.3.

Figure 12: The comparison between exact
solution and approximate solution of Exam-
ple 4.3.

Toeplitz plus Hankel kernel.We exhibit the ap-
plied main idea that it just is the famous integral
mean value theorem. Exampels that were pre-
sented show the ability of the model. The results
confirm that the method is very effective and sim-
ple.
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