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Abstract

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow
due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing
partial differential equations of momentum equations are reduced into a nonlinear ordinary differential
equation (NODE) by using a classical similarity transformation along with appropriate boundary
conditions. Both nonlinearity and infinite interval demand novel the mathematical tools for their
analysis. The solution of the resulting third order nonlinear boundary value problem with an infinite
interval is obtained using fast converging Dirichlet series method and approximate analytical method
viz. method of stretching of variables. These methods have the advantages over pure numerical
methods for obtaining the derived quantities accurately for various values of the parameters involved
at a stretch and they are valid in much larger parameter domain as compared with HAM, HPM,
ADM and the classical numerical schemes. Also, these methods require less computer memory space
as compared with pure numerical methods.

Keywords : Magnetohydrodynamics (MHD); Boundary layer flow; Shrinking sheet; Dirichlet series;
Powell’s method; Method of stretching variables.
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1 Introduction

T
he boundary layer flow of conducting fluid
fast stretching surface has numerous impor-

tant engineering applications. The flow situations
encountered in many industrial applications are
extrusion of polymer sheet from a die or in the
drawing of plastic films and heat-treated materi-
als travelling between a feed roll and a wind-up
roll or materials manufactured by extrusion pro-
cess, glass-fiber and paper production, cooling of
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metallic sheets, crystal growing etc. In all these
cases, the mechanical properties of the final prod-
uct strictly depend on the stretching and cooling
rates during the process. In the manufacture of
these sheets the melt issues from a slit and is sub-
sequently stretched to achieve the desired thick-
ness. The pioneering work of Sakiadis [1, 2] gives
various aspects of boundary layer flow on a con-
tinuously stretching surface with constant speed.
Crane [3, 4] analysed this configuration for the
stretching surfaces. Specifically Crane’s problem
for flow of an incompressible viscous fluid fast
stretching surface has become classic in the liter-
ature. It admits an exact analytical solution and
many researchers have analysed various aspects
of this problem. Among those Mcleod and Raj-
gopal [5] discussed the uniqueness of exact analyt-
ical solution. Gupta and Gupta [6] examined the
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heat and mass transfer on a stretching flow sub-
ject to suction or injection. Brady and Acrivos [7]
analysed the flow inside a stretching channel or
tube with accelerating velocity. Wang [8] exam-
ined the fluid flow due to a stretching cylinder.
In another paper, Wang [9], analysed the three
dimensional axi-symmetric flow due to stretch-
ing surfaces. Wang [10] and Usha and Sridharan
[11] have discussed the unsteady flows induced
by stretching film. The extended work of Crane’s
problem for second grade, micropolar and power-
law fluid models have been studied by Rajagopal
et al[12], Sankara and Watson[13] and Anders-
son et al. [14] respectively. The contributions
due to the boundary layer flow over a stretching
surface have been made by Pavlov[15], Sachdev
et al. [16], Mahapatra et al. [17], Ahmed and
Asghar[18], Makinde and Charles [19], Makinde
et al. [20], Recently, Vajravelu and Prasad [21]
have analysed various aspects of MHD stretch-
ing/shrinking sheet problems involving bound-
ary layer theory. Vajravelu et al.[22] have anal-
ysed the fluid flow and heat transfer over per-
meable stretching cylinder. Hayat et al. [23]
have analysed MHD flow of nanofluids over an ex-
ponentially stretching sheet in a porous medium
with convective boundary conditions. Nadeem et
al. [24] have examined MHD flow of a Casson
fluid over an exponentially shrinking sheet. Za-
imi et al. [25] have discussed boundary layer flow
and heat transfer over a nonlinearly permeable
stretching/shrinking sheet in a nanofluid.

The present investigation is to analyse the
MHD viscous flow caused by a stretching sheet.
The solution of the resulting third order nonlin-
ear boundary value problem with an infinite in-
terval is obtained using Dirichlet series method
and method of stretching of variables. The third
order nonlinear differential equation with infinite
boundary admits a Dirichlet series solution; nec-
essary conditions for the existence and unique-
ness of these solutions may also be found in
[26, 27]. The specific type of the boundary con-
dition i.e. f ′(∞)=0 , the Dirichlet series solu-
tion is particularly useful for obtaining solution
and the derived quantities exactly. A general
discussion of the convergence of the Dirichlet se-
ries may also be found in Riesz [28]. The ac-
curacy as well as uniqueness of the solution can
be confirmed using other powerful semi-numerical
schemes. Sachdev et al. [16] have analysed vari-

ous problems from fluid dynamics of stretching
sheet using this approach and found more ac-
curate solution compared with earlier numerical
findings. Vishwanath et al. [29, 30, 31] and
Kudenatti et al. [32] have analysed the prob-
lems from MHD boundary layer flow with non-
linear stretching sheet using these methods and
found more accurate results compared with the
classical numerical methods. In this paper, we
present Dirichlet series solution and an approxi-
mate analytical method-method of stretching of
variables. This method is quite easy to use es-
pecially for nonlinear ordinary differential equa-
tions and requires less computer time compared
with pure numerical methods and easy to solve,
compared with other approximate methods (for
example, Homotopy perturbation method (HPM)
Pade’ technique, Adomain decomposition meth-
ods (ADM)) etc.

The present paper is structured as follows. In
Section 2 the mathematical formulation of the
proposed problem with relevant boundary con-
ditions is given. Section 3 is devoted to the so-
lution of the problem using Dirichlet series. Sec-
tion 4 gives the solution by means of method of
stretching of variables. In Section 5 detailed re-
sults obtained are compared with the correspond-
ing numerical schemes and Section 6 is about the
conclusion.

2 Mathematical Formulation

Consider a steady two-dimensional incompress-
ible boundary layer flow of an electrically con-
ducting isothermal Newtonian liquid over a lin-
early stretching sheet as shown in Fig. 1. The

Figure 1: Schematic of the stretching sheet prob-
lem.

uniform transverse magnetic field H0 acts paral-
lel to the y-axis and the conducting liquid in the



Vishwanath B. Awati et al, /IJIM Vol. 7, No. 4 (2015) 343-350 345

space y>0 is considered. Two equal and oppo-
site forces are applied along the x-axis, so that
the wall is stretched and keep the origin fixed.
A Hartmann formulation is done for the MHD
problem. The conservation of mass and momen-
tum boundary layer equation for the quadratic
stretching sheet problem are as (Makinde et
al.[20])

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2
− σH2

0

ρ
u. (2.2)

The relevant boundary conditions for the present
flow are

u(x, y) = cx, v = vw at y = 0 (2.3)

u(x, y) = 0 as y → ∞ (2.4)

where u and v are the liquid velocity compo-
nents in the x and y directions respectively, c > 0
is the streching rate, ν is the kinematic viscosity,
H0 is the applied magnetic field and σ is the elec-
trical conductivity of the fluid. The constant vw
is the suction/ blowing parameter, where vw < 0
corresponds to the suction and vw > 0 to the
blowing of the fluid and vw=0 , characterize the
impermeable. Introducing the dimensionless vari-
ables f and η as

ψ =
√
cνxf(η) and η = y

√
c

ν
(2.5)

The velocity components u and ν are related to
the physical stream function ψ defined by

ψ =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.6)

is introduced such that the continuity equation is
automatically satisfied. Introducing the stream
function ψ(x, y) and the non-dimensional form of
Eqs. (2.2-2.4) becomes

v
∂3ψ

∂y3
+
∂(ψ, ∂ψ∂y )

∂(x, y)
− σH2

0

ρ

∂ψ

∂y
= 0, (2.7)

∂ψ

∂y
= cx,

∂ψ

∂x
= vw at y = 0, (2.8)

∂ψ

∂y
= 0, as y → ∞, (2.9)

Substituting the similarity transformation for
stream function in equation 2.5 into equations 2.7
- 2.9, we obtain

f ′′′ + ff ′′ − f ′2 −Mf ′ = 0,′=
d

dη
. (2.10)

f(0) = fw, f
′(0) = 1, f ′(∞) = 0. (2.11)

where M =
H2

0σ
cρ is the Magnetic parameter and

fw = vw√
cρ suction /blowing parameter. In this

case, we assume f(0)=fw and fw > 0 correspond
to suction, fw < 0 correspond to blowing and
fw = 0 is the case when the surface is imperme-
able. The functions f(η) allow us to determine
the skin friction coefficient given as Cf = −f ′′(0).

The exact solution of MHD flow of Newto-
nian fluid is obtained by Chakrabarti and Gupta
[33] and non-Newtonian fluid by Bhattacharyya
et al [34]. We assume the solution in more
general form as

f(η) = a+ b exp(−λη). (2.12)

where a, b and λ are constants with λ > 0. Sub-
stituting Eq. 2.12 into Eq. 2.10 and Eq. 2.11, we
get

b = − 1

λ
, a = fw +

1

λ
and

λ =
1

2
(fw +

√
4 + f2w + 4M)

(2.13)

So, the analytical solution reduces to

f =fw − 2

fw ±
√

4 + f2w + 4M

2 exp((12)(−fw ∓
√

4 + f2w + 4M)η)

fw ±
√
4 + f2w + 4M

(2.14)

3 Dirichlet Series Solution

We seek an elegant semi-numerical method i.e.
Dirichlet series solution of Eq. 2.10 satisfying last
boundary condition f ′(∞) = 0 automatically in
the form (Kravchenko and Yablonskii [26, 27])

f = γ1 + 6γ

∞∑
i=1

bia
i exp(−iγη) (3.15)

where γ and a are parameters which are to be
determined. Substituting Eq. 3.15 into Eq. 2.10,
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we get

∞∑
i=1

(−γ2i3 + γγ1i
2 +Mi)bia

i exp(−iγη)

+ 6γ2
∞∑
i=2

i−1∑
k=1

[k2 − k(i− k)]bkbi−ka
i exp(−iγη)

= 0

(3.16)

For i = 1 we have

γ1 = γ2 −M. (3.17)

Substituting Eq. 3.17 into Eq. 3.16 the recur-
rence relation for obtaining coefficients is given
by

bi =
6γ2

i(i− 1)[γ2i+M ]

i−1∑
k=1

[k2 − k(i− k)]bkbi−k

(3.18)
for i = 2, 3, 4, ... . If the Eq. 3.15 converges ab-
solutely when γ = 0 for some η0 , this series con-
verges absolutely and uniformly in the half plane
Reη ≥Reη0 and represents an analytic 2π

γ peri-

odic function f = f(η0) such that f ′(∞) = 0
([kra26]). The Eq. 3.15 contains two free un-
known parameters namely a and γ which are to
be determined from the remaining boundary con-
ditions of Eq. 2.11 at η = 0

f(0) =
γ2 −M

γ
+ 6γ

∞∑
i=1

bia
i = α1 (3.19)

and

f ′(0) = 6γ2
∞∑
i=1

(−i)biai = β1 (3.20)

The solution of the above transcendental Eq.
3.19 and Eq. 3.20 yield constants a and γ . The
solution of the above transcendental equations is
equivalent to the unconstrained minimization of
the functional

[
γ2 −M

γ
+6γ

∞∑
i=1

bia
i−α1]

2+[6γ2
∞∑
i=1

(−i)biai−β1]2

(3.21)
We use Powell’s method of conjugate directions
(Press et. al. [35]) which is one of the most ef-
ficient techniques for solving unconstrained opti-
mization problems. This helps in finding the un-
known parameters a and γ uniquely for different

values of the parameters α1 ,β1 and M . Alterna-
tively, Newton’s method is also used to determine
the unknown parameters a and γ accurately. The
physical quantity of the interest for the problem
is shear stress at the surface and velocity profiles.
The shear stress at the surface of the problem is
given by

f ′′(0) = 6γ
∞∑
i=1

bia
i(iγ)2 (3.22)

The velocity profiles of the problem is given by

f ′(η) = 6γ2
∞∑
i=1

(−i)biai exp(−iγη) (3.23)

4 Approximate Analytical solu-
tion

Most of the nonlinear ODE arising in MHD
problems are not amenable for obtaining analyt-
ical solutions. In such situations, attempts have
been made to develop an approximate analyti-
cal method for the solution of these problems.
The numerical approach is always based on the
idea of stretching of variables of the flow prob-
lems. Method of stretching of variables is used
here for the solution of such problems. In this
method, we have to choose suitable derivative
function H ′ such that the derivative boundary
conditions are satisfied automatically and inte-
gration of H ′ will satisfy the remaining boundary
condition. Substitution of this resulting function
into the given equation gives the residual of the
form R(ξ, α) which is called defect function. Us-
ing Least squares method, the residual of the de-
fect function can be minimized. For details see
Ariel [36]. Using the transformation f = fw + F
into Eq. 2.10, we get

F ′′′+(fw+F )F
′′−F ′2−MF ′ = 0,′=

d

dη
(4.24)

and the relevant boundary conditions 2.11 be-
come

F (0) = 0, F ′(0) = 1, F ′(∞) = 0 (4.25)

We introduce two variables ξ and G in the form

G(ξ) = αF (η) and ξ = αη (4.26)
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where α > 0, is an amplification factor. In view
of Eq. 4.26, the system 4.24-4.25 are transformed
to the form

α2G′′′ + (fwα+G)G′′ −G′2 −MG′ = 0, (4.27)

where ′ = d
dξ and the boundary conditions in Eq.

4.25 become

G(0) = 0, G′(0) = 1, G′(∞) = 0 (4.28)

We choose a trail velocity profile

G′ = exp(−ξ) (4.29)

which satisfies the derivative conditions in Eq.
4.28. Integrating Eq. 4.29 with respect to ξ from
0 to ξ using conditions 4.28, we get

G = 1− exp(−ξ). (4.30)

Substituting Eq. 4.30 into Eq. 4.27, we get the
residual of defect function

R(ξ, α) = (−α2+ fwα− 1+M) exp(−ξ). (4.31)

Using the Least squares approximation method
as discussed in Ariel [?], the equation 4.31 can be
minimized for which

∂

∂α
(

∫ ∞

0
R2(ξ, α)dξ) = 0. (4.32)

Substituting 4.31 into equation 4.32 and solving
cubic equation in α for a positive root, we get

α =
1

2
(fw ±

√
−4 + 4M + f2w) (4.33)

Once the amplification factor is calculated, then
using Eq. 4.24, original function f can be written
as

f = fw +
1

α
(1− exp(−αη)). (4.34)

With α defined in Eq. 4.33. Thus Eq. 4.34 gives
the solution of Eq. 2.10 for all values of fw and
M .

5 Result and discussion

The megnetohydrodynamic (MHD) viscous
flow due to a stretching sheet caused by boundary
layer of an incompressible viscous flow is analysed
by the more suggestive ways by using the Fortran
programming and Mathematica. The third or-
der nonlinear ordinary differential Eq. 2.11 sub-
ject to the infinite boundary conditions 2.11 ( has

been solved semi-numerically using Dirichlet se-
ries method and method of stretching of variables
for different values of the parameters fw and M .
Table 1. shows that the results of skin friction for
different parameters fw andM which agree accu-
rately with available pure numerical method. Fig.
2 presents the effect of increasing magnetic field
strength on the momentum boundary layer thick-
ness. The effect of increasing magnetic strength
on the boundary layer creating the drag force
that opposes the fluid motion causing the velocity
to decrease. Increase the Magnetic parameter it
slow down the motion of the fluid and decreases
the boundary layer thickness. Fig. 3. shows
a similar trend with increasing suction fw > 0
while an injection fw < 0 causes the boundary
layer to thicken by increasing the fluid velocity.
Fig. 4. shows that the skin friction increases gen-
erally with increase in the intensity of magnetic
field. As the intensity of fluid suction increases,
a skin friction increases and an injection causes a
decrease in the local skin friction at the surface.

Figure 2: Effect of increasing magnetic field in-
tensity on velocity profile for fw = 0.1.

Figure 3: Effect of success/injection on velocity
profile for M = 0.5.
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Table 1: Comparison of result obtained by Dirichlet series, Method of stretching of variables [MSV] and
numerical method

M fw Dirichlet series Numerical [20] MSV

a γ f”(0) f”(0) f”(0)

0 0 -1.000000 0.999999 -0.999999 -1.000000 -1.000000

0 0.5 -0.609612 1.280776 -1.280776 -1.280777 -1.280776

.5 0.5 -0.074074 1.500000 -1.500000 -1.500000 -1.500000

1.0 0.5 -0.058622 1.686141 -1.686141 -1.686140 -1.686140

0.5 -0.5 -0.166666 1.000000 -0.999999 -1.000000 -1.000000

0.5 -1.0 -0.246139 0.822876 -0.822875 -0.822875 -0.822875

Figure 4: Effect of parameter variation on skin
friction coefficients.

Nomenclature:

c constant rate of stretching [s−1]

f similarity function

ν kinematic viscosity [m2s−1]

σ electrical conductivity [mhom−1]

ρ density [kgm−3]

H0 strength of the magnetic field [wm−2]

ψ(x, y) stream function [m2s−1]

kl − k1 =
k0c
µ viscoelastic parameter

l characteristic length [m]

H −H0

√
σ
cρ Hartmann number

M −H2 Magnetic Parameter

u velocity component along the sheet
[ms−1]

v velocity component normal to the sheet [ms−1]

vw suction / blowing parameter

x coordinate along the sheet [m]

y coordinate normal to the sheet [m]

η similarity variable

α amplification factor

6 Conclusion

In this article, we describe the analysis of bound-
ary value problem for third order nonlinear ordi-
nary differential equation over an infinite inter-
val arising in MHD boundary layer. The semi-
numerical schemes described here offer advan-
tages over solutions obtained by HAM, HPM,
ADM and other numerical methods etc. The con-
vergence of the Dirichlet series method is given.
The results are presented in Table and graphi-
cally, the effects of the emerging parameters are
discussed.
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