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Abstract

We introduce an implicit method for finding a common element of the set of solutions of systems of
equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings and
a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed
implicit schemes to the unique solution of a variational inequality, which is the optimality condition
for a minimization problem and is also a common fixed point for a sequence of nonexpansive mappings

and a representation of nonexpansive mappings.
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1 Introduction all z;y € C. Let f be an a-contraction on H

Et H be a Hilbert space and let G : HxH — R
be an equilibrium function, that is

L

G(u,u) =0 forevery u € H.

The Equilibrium Problem is defined as follows:
Find & € H such that

G(z,y) >0 forally € H. (1.1)

A solution of (1.1) is said to be an equilibrium
point and the set of the equilibrium points is
denoted by SEP(G). Let C be a closed convex
subset of H. A mapping T of C into itself is
called nonexpansive if |7z — Ty||< ||z — y]|, for
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(ie. [[f(z) = FW< allz —yll, z,y € H with
0 <a<1),and A be a bounded linear operator
on H. The following variational inequality prob-
lem with viscosity is of great interest [10, 11].
Find z* in C such that

<(A—7f):c*,a:—x*> >0 (xeC), (1.2

which is the optimality condition for the mini-
mization problem

min
zeC

(%(Ax,x} + h(x)),

where 7 satisfies || — A[|[< 1 — avy and h is a
potential function for v f (that is h'(z) = v f(z)).
S. Takahashi and W. Takahashi [20] introduced
the following viscosity approximation method for
finding a common element of SEP(G) and Fix(T),
where T is a nonexpansive mapping. Starting
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with an arbitrary element 2y € H, they defined
the sequences {u,} and {z,} recursively by

G(umy) + %<y — Unp, Unp — $n> >0
(y € H),

Tnt1 = V[ (zn) + (I — €p)Tup

(n €N),

and Plubtieng and Punpaeng in [14] proved a
strong convergence theorem for an implicit iter-
ative sequence {z,} obtained from the viscosity
approximation method for finding a common ele-
ment in SEP(G)NFix(T) which satisfies the vari-
ational inequality (1.2):

Theorem 1.1 Let C be a nonempty closed con-
vex subset of a Hilbert space H. Let G be a bi-
function from H x H into R satisfying

(A1) G(z,z) =0 for all x € C,

(A2) G is monotone, i.e. G(z,y)+ G(y,z) <0
forall x,y € C;

(Az) For all x,y,z € C,

limsup G(tz + (1 — t)z,y) < G(x,y);
t—0
(Aq) For all z € C, y — G(x,y) is conver and
lower semicontinuous.
Forx e H andr > 0, set S, : H — C to be the
resolvent of G i.e. Sy(x) is the unique z € C for
which

1

G(z,y)—l—;<y—z,z—x>20, (ye ).

Let T be a nonexpansive mapping on H such that
SEP(G)NFix(T) # 0. Let f be a contraction of H
into itself with o € (0,1) and let A be a strongly
positive bounded linear operator on H with coef-
ficient ¥ > 0 and 0 < v < g Let {x,} be the
sequence generated by

Tn = Oén'yf(xn) + (I - anA)Tun
(n € N),
G(una y) + %<y — Un, Up
(y € H),

—xp) >0

where Uy, = Sy, Tn, {rn} C (0,00) and a,, C [0,1]
satisfying lim «, =0 and
n— o0

liminfr, > 0. Then {x,} and {u,} converge

n—oo

strongly to a point z in Fix(T) N SEP(G) which
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solves the variational inequality

(A=~f)z,z—x) <0 =z € Fix(T)NSEP(G).

V. Colao, G. L. Acedo and G. Marino proved

a strong convergence theorem for the follow-

ing implicit sequence {z,} for finding a common
element in (),,cy Fix(Tn) NN, SEP(Cy) in [4],

zn = €Y f(2n) + (I — enA)WnS£(zn,

where
K 1 Q2 K
Sn = S”‘l,nST'Q,n T STK,n
and n € N. In this paper, motivated by Lau,

Miyake and Takahashi [9], Atsushiba and Taka-
hashi [2], Shimizu and Takahashi [16] and Taka-
hashi [21], in Theorem 3.1, we use the harmonic
concepts for improving the results proved in [4],
in other word we use the amenability concepts
and the theory of representations in our results
but V. Colao, G. L. Acedo and G. Marino have
not used these concepts in [4]. We introduce the
following general implicit algorithm for finding a
common element of the set of solutions of a sys-
tem of equilibrium problems SEP(p) for a family
o ={Gr;k =1,2---, K} of bifunctions and the
set of fixed points of a family {7;};cn of nonex-
pansive mappings from C' into itself and a rep-
resentation o = {1} : t € S} of a semigroup
S as nonexpansive mappings from C' into itself,
with respect to W-mappings and a left regular se-
quence {uy} of means defined on an appropriate
subspace of bounded real-valued functions of the
semigroup:

2n = eV f(2n) + (I — en A) T, Wi SE 2.,

where

... 8K

TK,n

K 1 Q2
Sn = Srl,n STZ,n
and n € N.
Our goal is to prove some results of strong conver-
gence for implicit schemes to approach a solution

x* of the problem (1.2) such that

z* € (1) Fix(Ty) NFix(S) N SEP ().
neN
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2 Preliminaries

Throughout this paper H denotes a Hilbert space.
Moreover we assume that A is a bounded strongly
positive operator on H with constant 7; that is
there exists 7 > 0 such that

(Az,2) > Tal]? (z € H).

For amap T': H — H we denote by Fix(T) :=
{x € H: x = Tx} the fixed point set of T". Note
that if T is a nonexpansive mapping, Fix(T) is
closed and convex (see [6]).

Let S be a semigroup. We denote by B(S) the
Banach space of all bounded real-valued functions
defined on S with supremum norm. For each s €
S and f € B(S) we define [5 and rs in B(S) by
LHW = fst) . (ra)(E) = £(ts), (L € 9).
Let X be a subspace of B(S) containing 1 and let
X* be its topological dual. An element p of X*
is said to be a mean on X if ||u||= p(1) = 1. We
often write u:(f(t)) instead of u(f) for p € X*
and f € X. Let X be left invariant (resp. right
invariant), i.e. [5(X) C X (resp. rs(X) C X) for
each s € §. A mean p on X is said to be left
invariant (resp. right invariant) if u(lsf) = u(f)
(resp. p(rsf) = p(f)) for each s € S and f €
X. X is said to be left (resp. right) amenable
if X has a left (resp. right) invariant mean. X
is amenable if X is both left and right amenable.
As is well known, B(S) is amenable when S is a
commutative semigroup (see page 29 of [19]). A
net {pq} of means on X is said to be left regular
if

lm 2320 — = 0.
for each s € S, where [} is the adjoint operator of
ls.

Let f be a function of semigroup S into a re-
flexive Banach space E such that the weak closure
of {f(t) : t € S} is weakly compact and let X be
a subspace of B(S) containing all the functions

t— <f(t),a:*> with * € E*. We know from [7]
that for any pu € X*, there exists a unique ele-
ment f, in E such that <fp,,$*> = ut<f(t),x*>
for all 2* € E*. We denote such f, by [ f(t)u(t).
Moreover, if p is a mean on X then from [8],

JF@)u(t) eco{f(t):t € S}.

Let C be a nonempty closed and convex sub-
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set of H. Then, a family o = {T; : s € S} of
mappings from C' into itself is said to be a rep-
resentation of S as nonexpansive mapping on C
into itself if satisfies the following :

(1) Tgx = TsTix for all s,t € S and = € C;

(2) for every s € S the mapping Ts : C — C'is
nonexpansive.

We denote by Fix(g) the set of common fixed
points of , that is Fix(o)={z € C: Tsx =z, (s €
S)}.

For an equilibrium function G : H x H —
R, SEP(G) := {x € H: G(x,y) > 0,(y € H)}
is the set of solutions of the related equilibrium
problem.

Let C' be a closed convex subset of a Hilbert
space H. Recall that the (nearest) projection Po
from H onto C assigns to each z € H the unique
point Pox € C satisfying the property

|z — Pox||= min|[z — y].
yeC

The following Lemma characterizes the projec-
tion Pg.

Lemma 2.1 ([19]). Let C be a closed convex
subset of a real Hilbert space H, x € H and y €
C. Then Pcx = y if and only if it satisfies the
inequality

<1:—y,y—z> >0 (zeQ).

Lemma 2.2 ([10]). Let A be a strongly positive
linear bounded operator on a Hilbert space H with
coefficient ¥ and 0 < p < ||A||7! Then |1 —pA||<
1—p7.

Theorem 2.1 ([18]). Let S be a semigroup, C
be a closed convexr subset of a Hilbert space H,
0={Ts: s €S} be a representation of S as non-
expansive mapping from C into itself such that

Fixz() # 0 and X be a subspace of B(S) such that
1 € X and the mapping t — <T(t)x,y> be an
element of X for each x € C and y € H, and
p be a mean on X. If we write T,z instead of
[Ty du(t), then the following hold.

(i) T, is a nonexpansive mapping from C into C.
(ii) Tyx = x for each x € Fix(p).

(ili) Tyx € co{Tyx : t € S} for each x € C.

(iv) If p is left invariant, then T), is a nonexpan-
sive retraction from C onto Fix(S).
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Theorem 2.2 ([5]). Let C be a nonempty closed
convex subset of a Hilbert space H and G : H X
H — R satisfy,

(A1) G(z,z) =0 for all x € C;

(A2) G is monotone, i.e. G(z,y) + G(y,x) <0
for all x,y € C;

(Az) For all x,y,z € C,

limsup G(tz+(1—t)z,y) < G(z,y);
t—0
(Aq) For all x € C,y — G(z,y) is convex and

lower semicontinuous.
Forxe H andr >0, set S, : H— C to be

Sr(z) ={2€C:G(z,y)+ %<y — 2,z — x>
>0, (yeO)},

then S, is well defined and the followings are
valid:

(1) Sy is single-valued;

(i) Sy is firmly nonexpansive, i.e.

152 = SrylP< (Sr = Syysz—y),

for all x,y € H;
(iii) FixS, =SEP(G);
(iv) SEP(G); is closed and convex.

Theorem 2.3 ([4]). Let {r,} C (0,00) be a se-
quence converging to r > 0. For a bifunction
G : Hx H — R, satisfying conditions (A1)- (A4),
define Sy and S, forn € N as in Theorem 2.5,
then for every x € H, we have

hrILnHST” — SrH: 0.

Let C be a nonempty subset of a Hilbert space H
and T : C — H be a mapping. Then T is said to
be demiclosed at v € H if for any sequence {x,}
in C, the following implication holds:

Tp > u € C, Tx, — v imply Tu = v, where
— (resp. —) denotes strong (resp. weak) conver-
gence.

Lemma 2.3 ([1]). Let C be a nonempty closed
convex subset of a Hilbert space H and suppose
that T : C' — H is nonexpansive. Then, the map-
ping I — T s demiclosed at zero.
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Remark 2.1 Every Hilbert space is a uniformly
conver Banach space, and therefore is a strictly
convex Banach space ( see pages 95, 98 of [19] ).

Definition 2.1 A wvector space X is said to sat-
isfy Opial’s condition, if for each sequence {x,}
i X which converges weakly to point x € X,

lim inf||z,, — z||< liminf||z, — y||
n—oo n—oo
(yeX, y#ux).

Note that every Hilbert space satisfies the Opial’s
condition (see [12] and [15]).

Definition 2.2 Let K be a nonempty subset of
a Banach space X and {x,} be a sequence in K.
The set of the asymptotic center of {x,} with re-
spect to K, defined by

A{en}) = { € K : lmsup|la, — a

= inf lim sup||z,, — }
inf timsupllen — |

Lemma 2.4 ([1]). Let X be a uniformly convex
Banach space satisfying the Opial’s condition and
K be a nonempty closed convex subset of X. If
a sequence {zp,} C K converges weakly to a point
20, then {zo} is the asymptotic center of {z,} with
respect to K.

Let C be a nonempty convex subset of a Banach
space. Let {T;};cn be a sequence of nonexpansive
mappings of C into itself and let {\;} be a real
sequence such that 0 < A\; < 1 for every ¢ € N.
Following [17], for any n > 1, we define a mapping
W, of C into itself as follows,

Un,n+1 =1,

Un,n = )\nTnUn,n—i-l + (1 - )\n)Ia

Unk = MNTpUp g1 + (1 — A1,
Uny2 = XToUp 3+ (1 — Xo)I,

W, = n,l = )\1T1Un,2 + (1 — )\1)[.

The following results hold for the mappings W,,.
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Theorem 2.4 ([17]). Let C be a nonempty
closed convex subset of a strictly convex Banach
space. Let {T;}ien be a sequence of nonexpansive
mappings of C into itself such that

N2, Fix(Ti) # 0 and let {\;} be a real sequence
such that 0 < \; < b < 1 for every i € N. Then
(1) W, is nonerpansive and Fix(W,) =
NiL, Fix(T;) foreachn > 1,

(2) for each x € C and for each positive
integer j, the limit lim U, jx ewxists.
n—oo

(3) The mapping W : C — C' defined by

Wz = lim Wy = lim U,; (xe€ C),
n—oo n—oo

is a nonexpansive mapping satisfying Fix(W) =

N2, Fix(T;) and it is called the W -mapping gen-

erated by {T;}ien, and {\;}ien-

Theorem 2.5 ([13]). Let C be a nonempty
closed convex subset of a Hilbert space H, {T;}2,
be a sequence of nonexpansive mappings of C' into
itself such that ;2 Fix(Ti) # 0,{"i} be a real se-
quence such that 0 < \; < b< 1, (i >1). If D is
any bounded subset of C, then

lim sup||Wx — W,x|= 0.

n—oo xeD

Throughout the rest of this paper, the open ball
of radius r centered at 0 is denoted by B,. For
e > 0 and a mapping 7' : D — H, we let F(T; D)
be the set of e-approximate fixed points of T, i.e.

F(T;D)={z € D: ||z —Tz||< €}

3 Main results

In this Section, we deal with the strong conver-
gence approximation scheme for finding a com-
mon element of the set of solutions of a system
of an equilibrium problem and the set of common
fixed points of a sequence of nonexpansive map-
pings and left amenable nonexpansive semigroup
in a Hilbert space. These results extend the main
result of [4] and many others.
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Theorem 3.1 Let S be a semigroup and let C
be a closed convex subset of a Hilbert space H.
Suppose that o = {Ts : s € S} be a representation
of S as monexpansive mapping from C into itself
and suppose Fix(o) # 0. Let X be a left invari-
ant subspace of B(S) such that 1 € X, and the
function t — (Tyx,y) is an element of X for each
xe€C andy € H. Let {un} be a left reqular se-
quence of means on X . Let {T;}ien be a sequence
of nonexpansive mappings from C into itself
such that T;(Fix(p)) C Fix(o)forevery i € N,
and p = {G : k =1,2,--- K} be a finite family
of bifunctions from H x H into R. Suppose that
A is a strongly positive bounded linear operator
with coefficient ¥ and f is an «a-contraction on
H. Moreover, let {ryn}, {en} and {\,} be real
sequences such that rp, > 0, 0 < ¢, < 1 and
0< A, <b< 1, and v is a real number such that
0<y< g Assume that,

(i) for every k € {1,2,---,K}, the function
Gy satisfies (A1) — (A4) of Theorem 2.5,

(ii) & = N, ey Fix(Tw) N Fix(S) N SEP(p) # 0,
(iii) lime, = 0 and,

(iv) for every k € {1,2,---,K}, limrg, ex-
n

ists and is a positive real number.

For every n € N, let W, be the mapping
generated by {T;} and {\,} as in (2.3), for
every k € {1,2,---,K} and n € N. Let S,’fkn
be the resolvent generated by G} and 1y, as in
Theorem 2.5. If {z,} is the sequence generated
by
zn = €Y f(zn) + (I — enA)TuanS;i{zn,

(3.4)

where SEK = S}LTLSEM X 'Sf;n for every k €
{1,2,---, K} and n € N. Then {z,} strongly con-
verges to x* € §, where z* is the unique solution

of the variational inequality

((A=apeto-a') 20 (weF),
or, equivalently,

2" = Py(I — (A -y f)a",

(3.5)



346

or, equivalently, z* is the unique solution of the

minimization problem

min <%<Aa?,l'> + h(:l?)),

TEF
where h is a potential function for ~f.

Since ¢, — 0, we may assume that ¢, <
min{!!A!\*l,%}. We observe that if ||p[= 1,
then

(I —exA)p, p)=1—€(Ap, p)
> 1— ef|Af|= 0.

Hence, if ||p||# 1 and p # 0, then we have

(I—enA)p , p)

— |Ip|2((T = end) -, Loy >0,

Il 2l

We also have ((I —e,A)p , p) = 0, if p = 0.
Hence ((I — e, A)p, p) >0, for all p € C.
By Lemma 2.2, we have

I —en A< 1 — €7

. We shall divide the proof into eight steps.

Step 1. The existence of z, which satisfies
(3.4).
Proof. This follows immediately from the fact
that for every n € N, the mapping N,, given by

Npz = epyf(z) + (I — e, AT, W, SK
(x € H),
is a contraction. To see this, put 8, = 1+€,7a—
€n7, then 0 < 8, < 1 (n € N). We have,
[Nnz — Nyl
<enylf(z) = )
(1= @) 1, WaS T w = T WaS
<enyallz —yll+(1 - eny)llz — yll
=1+ enya — enY)llz — yll= Bullz — .-
Therefore, by Banach Contraction Principle ([19],

p. 4), there exist a unique point z, such that
Npzn = 2n.-
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Step 2. {z,} is bounded.
Proof. Let p € §. We have

Iz = plIP= (envf(zn)
+(I- enA)T“anszn — D, Zn— p>
—ey(f(zn) = F(p) 20— )
+ 6n<7f(p) —Ap, zn — p>
+ (I = en A)(T,,, WaSE 20
— T WaSED) s 20— )
<enyallzn — pl*+(1 = en7) 20 — pl?

+ en<7f(p) —Ap, 2z —p>-

Thus,

lzn — plI< 7_1a,y<7f(p) —Ap, z —p>~ (3.6)

Hence,

1
|2n—pl|< = |vf(p)—Apl.

7 - ay
That is, the sequence {z,} is bounded.
Step 3. For every fixed k € {1,2,---, K}, we
have

: k
1111111Hzn —Srem

(3.7)

zn||= 0.

Proof. Let k € {1,2,---, K}, since by (ii) of The-
orem 2.5, kan is firmly nonexpansive, we con-
clude that

k
1S5 20—
IS 20— SEpl?

Tkn T Tk,n
k k
§<Srk,nzn = S Py i — p>
1

=5 ISk, .z = pI?

+ Uz = pIP=ll20 = SE zall?)-
Therefore,

Hzn—S’c

Tk,n

2nl*< Nlza—pl* =I5}, 20—pl*.
(3.8)
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If we put
L, = 2<7f(zn) — ATuanszn, Zn — p>, then
by using the inequality

o+ yIP< ll2lP+2(y, = + y),
we obtain

1z — pl®
=lenvf(zn)
+ (I — e AT, WSy, | S2,
Sfi(nzn —PH2
<N Ty, WSy, .57, ,

. Sf;nzn — pH2—|-€nLn
S”Sg;nzn _p”Q"i_GnLn-

So by (3.8), we have

||zn—kaynzn||2§ enLn.

That {Ly,}nen is a bounded sequence, implies
lim|[ 2y, — Sk znll= 0.

By induction we assume that (3.7) holds for every
k > k, and we prove it for k.
Indeed, we have

|2 _pH2

Tin " T2n

c-SE 2 = pl Henln

<|SE o SE oz —plPtenln.  (3.10)
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Observe that

1S Foee 8Kz

_|Ick K k
_HS’”E,TL S S’”E,nz”

+ Sgnzn —p|
<|ISEFL e Sf =zl
+ IS5 20— pl
<ISEEL o She iz = SEL el
+ISE 20 = zall+ISE. 20— pl]
<ISE2 oS =l

FISER 20— 2l HISE, 20— 1l

E«&»l,n

K
k k
<ISE za—pll+ Y 1S 20—zl

k=k+1
Inequality (3.10) gives,
20 = pI?
K
k
S( Z ”Srk,nzn — zn|
k=k+1

K
k k
+2|\S%zn—p||>( 3 ||srk,nzn—zn||)
k=k+1

£ ISE 20— plP+enLn
From this inequality and (3.8), we obtain

k
[|2n — Srz,nZnHQ

K
k
S( Z ”Srkmzn_zn”

k=k+1
B K
k k
+ 2HSTE”Zn _pH> < Z ||Srk,nzn - Zn”)
k=k+1
+ €L

Since by assumption,

K
: k
hin E 19y, ,.2n — 2n[|= 0,
k=k+1
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hence
lim||z, — Sfﬁ Zn||= 0
n N
as required.

Step 4. lim||z, — T}, Wnzn||= 0
n

Proof. To see this, put

My =2(7 () = AT, WS 2
Ty, Wazn )-

It is obvious that {Mp}n,en is a bounded se-
quence. By using (3.9), we have

l|2n — Tuanan2

=llenvf(zn)
+ (I — enA) Ty, WySE 2, — Ty Wiz ||
<|ISE 2, — 2| +en My,
and
||SKZn - ZnH
<|| T1n ~Sf,;nzn - Sr117n2n||
+ 1S ann — znl|
<|| o 'Sﬁ,nzn—znll

+ S rl,nzn — 2|

<ZH ren e~ Znll-

Using (3.7) and the fact that {Mp}nen is a
bounded sequence, we can conclude that,

TuananQ

K 2
<(1m Y7I1Sh, 20— ll)
k=1

+ lime, M, =0.
n

lim||z,, —
n

Step 5. lim ||z, — Tiz,||=0, for all t € S.
n—oo
Proof. Let p € § and put

My — 1) = Apll
7 —ay
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Let D={y € H : |ly — p||< Mp}. Tt is clear that
D is a bounded closed convex set, and {z, : n €
N} € D. It is also obvious that D is invariant
under {S} k= 1,2,...K,n € N}, W, for
every n € N, and . We will show that

limsup sup|| T,y — i1, yl|=0 (t €8S).

n—oo yeD

(3.11)

Let € > 0. By Theorem 2.1 of [3], there exists
0 > 0 such that
coFs(Ty; D)+Bs C Fe(Ty; D) (t €5S).

(3.12)
Also by Corollary 1.1 of [3], there exists a natural
number N such that

1 Y 1 Y
HN+ 1 ;Ttisy—ﬂ(m 1 z;T“Sy)H

1=

<6, (3.13)

for all t,s € S and y € D. Let t € S, since

{pn} is strongly left regular, there exists Ny € N
* 6

spch that [[p, — I pn || < Thosp for n = No and

1=1,2,---, N. Then, we have

SupHT n /N + 1 ZTt'LSy:u’n H

—sup sup \<Tuny,z>
yeD ||z||=1

N
([ T (o.2)

N

1
—sup sup |~ (un)s(Toy, 2)
yeD |z =1 N+1Z§ e

1 N

- m Z(/f‘n)S<Ttisy7 Z>’

Zsup sup |(pn)s(Tsy, 2)

i—0 YED [|z[I=1

- (l;ﬂn)8<Tsya Z)’
I || (Mo + |Ip1l)

(3.14)

< _
<, max [lun

<4 (Il > N()).



E. Soori /IJIM Vol. 5, No. 4 (2013) 341-35

By Theorem 2.3 we have
1 N

N+l Z Ty sypin(s)
i=0

N
€ co{N]‘+ : ;Tti(ny) Lse s}. (3.15)

It follows from (3.12)-(3.15) that

N
1

T,y € o Tyy:s€S}+B

unlY € CO N—I—l; yigly 1S € + Ds

C @Fg(Tt; D) + Bg C FE(Tt; D),

for all y € D and n > Ny. Therefore,

lim sup SUPHTt(Tuny) - TunyHS €.
n—oo yeD

Since € > 0 is arbitrary, we get (3.11).

Let t € S and ¢ > 0, then there exists § > 0,
which satisfies (3.12). Take Lo = (ya+||A||) Mo+
lvf(p)—Ap||. Now from (3.11) and condition (iii)
there exists Ny € N such that T,y € F5(T}; D)
for all y € D and ¢, < % for all n > Ny. We
note that

enllvf(2n) — ATuansfan
<en(I1F(z) = 2 @)+ (0) = Apl
+ || Ap = AT, W SE 2 )

<eu(rallz0 ol
+ 1f () — Apll+lAll1 2 — )
<en((va+ | AINMo + [7£(p) — Apl )

=epLo < g,
for all n > Nj. Observe that
20 =enyf(2n) + (I — €, AT, W, SK 2,
=T, WnSE 2z, + ¢, (’yf(zn)
— AT, W, 8K zn>
€F5(T; D) + Bs

CFs(Ty; D) + B;s
CF.(Ty; D),
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for all n > N;. This show that

lzn — Tiznl|< € (n>Nj).

Since € > 0 is arbitrary, we get lim, |z —
Tizn||= 0.

Step 6. The weak w-limit set of {z,} which is
denoted by w,{z,} is a subset of §.
Proof. Let 2 € wy{zn} and let {z,;} be a sub-
sequence of {z,} such that z,, — 2. We need
to show that 2 € §. In terms of Lemma 2.4 and
Step 5, we conclude that 2 € Fix(S). By Theo-
rems 2.2, 2.3, the mapping W : C — C, given by
Wax = liin W, satisfies

limsup||[Wp,z — WZ||= 0.

n— o0

(3.16)

Putting limr, , = 7, for every k € {1,2,---, K},
n

by Theorem 2.5, we have

(z € H). (3.17)

k.. _ 1 k
S x = hﬁn Sren®

Since 2 € Fix(S), by our assumption, we have
T;z € Fix(S) for all ¢ € N and then W, 2 €
Fix(S). Hence, by (ii) of Theorem 2.3, T, Wy,2 =
Wiz

Consider the set of the asymptotic center A(zy,)
of {z,} with respect to H. Since z,; — 2,
Lemma 2.4 implies that A(z,;) = {Z}. By the
definition of A(2y,), we have

limsupl|zn; — 2||< limsup||z,, — Tyzn, ||
Jj—00 j—00

(te9),

for all z € A(zy,). Since A(zn;) = {2}, by Step
5, we get z,, — 2. Using (3.16) and Step 4, we
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have

limsup||z,;, — WZ|

j—o00
<limsup||z,; — Ty ;W 2n; I
J—00
+ lim supHTunj W, zn; — Ty, W, 2|
j—o0
+ lim SUP”Tunj W2 = WZ||
Jj—o0
< lim Sllp”znj - TMnj an an ”

Jj—o0
+ limsup||z,, — 2|
Jj—0o0
+ limsup||Wp,; 2 — WZ||
j—o0
<limsup||z,; — 2||= 0.
Jj—00
This implies that W (2) = 2.
Using Theorem 2.4 and (3.17) and Step 3, we have

lim sup||z,, — Sf, 2|

J—00

<limsup||z,, — Sk

. Tk,njznj H
]—>OO

k A
Srens 2

+ limsup||S* ,, =

— TRy TG
J o0

+ lim sup||S¥

A k 4
- Tk,njz - kaZH
j—00

(3.18)

<limsup||z,; — 2||= 0.
Jj—00

This implies that Sffk (2) =
{1,2,---,K}.
Therefore, 2 € Fix(W) N (M, Fix(Sk)). In
terms of Theorems 2.4 and 2.5, we conclude that
z € (N2, Fix(T;)) N SEP(). Since z € Fix(S),
therefore, 2 € §.

Step 7. There exists a unique solution z* € §
of the variational inequality (3.5), such that

z for every k €

I’ := limsup <(fyf — A)x™, 2, — a:*> <0. (3.19)

Proof. Banach Contraction Mapping Principle
guarantees that Pz(I — (A — vf)) has a unique
fixed point z* which is, by Lemma 2.1, the unique
solution of the variational inequality :

(=", a=a") <0 (e
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Note that, from the definition of I' and the fact
that z, is a bounded sequence, we can select a
subsequence zp; of z, with the following proper-
ties:

(i) 1i]m <(7f — A)x", 2y, — x*> =T,

(ii) 2y, is weakly converge to a point Z;

by Step 6, we have 2 € § and then

r zli]m <(7f — A)x", 2, — x*>

:<(’yf —A)x*, z — x*> <0,
as x* € § is the unique solution of (3.5).
Step 8. {z,} strongly converges to x*.

Proof. Indeed, from (3.6), (3.19) and that
x* € §, we conclude

lim sup||z, — z*||?
n

1
< li — A)z*, 2, — ") <0.
Sy 1mnsup<(’yf )z 2, — @ >_O

That is z, — z*.

Theorem 3.2 Let H be a real Hilbert space,
T be a nonexpansive mapping of C into itself
such that Fix(T) # 0, {T;}ien be a sequence of
nonezxpansive mappings from C into itself such
that T;(Fix(T)) C Fix(T) for every i € N, and
o ={Gr : k= 1,2,--- K} be a finite family of
bifunctions from H x H into R. Suppose that
A is a strongly positive bounded linear operator
with coefficient 7, and f be an a-contraction on
H. Moreover, let {ri,}, {en} and {\,} be real
sequences such that r, > 0, 0 < €, < 1 and
0< A, <b< 1, and v s a real number such that
0<y< g Assume that,

(i) for every k € {1,2,---,K}, the function
Gy satisfies (A1) — (A4) of Theorem 2.5 ,

(ii) § := Nyen Fix(Tn) NFix(T) N SEP(p) # 0,
(iii) liﬁn en = 0 and,

(iv) for every k € {1,2,---,K}, limry, ez-
n

ists and is a positive real number.
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For every n € N, let W, be the mapping
generated by {T;} and {\,} as in (2.3), for
every k € {1,2,---,K} and n € N, let Sf?m
be the resolvent generated by Gy and ry, as in
Theorem 2.5. If {z,} is the sequence generated
by

1

Zn = en’)/f(zn) + (I - enA)ﬁ ZTkWnsz(Zn
k=1

(n € N).

Then {z,} strongly converges to z* € §, where x*
is the unique solution of the variational inequality

<(A—7f):17*,$ - 3:*> >0 (ze€3F).

Proof. Let S = {1,2,..}, = {T* : i € S}. For
f=(z1,2, ) € B(Y), define
() = = En: (n €N)
Un =0 2k n .

k=1

Then {u,} is a regular sequence of means on
B(S); for more details, see [19]. Next for each
x € H and n € N, we have

1 n
T, 2=~-—3 Tk
pn L n; x

Therefore, it follows from Theorem 3.1 that the
sequence {z,} converges strongly to z* € 3,
which is the unique solution of the variational in-
equality:

<(A77f)m*,a: fx*> >0 (ze€F).

Theorem 3.3 Let H be a real Hilbert space,
T be a nonexpansive mapping of C into itself
such that Fix(T) # 0, {Ti}ien be a sequence
of monexpansive mappings from C into itself
such that T;(Fix(T)) C Fix(T) for every i € N,
o ={Gk : k=1,2,---K} be a finite family of
bifunctions from H x H into R. Suppose that
A is a strongly positive bounded linear operator
with coefficient 7, and f be an a-contraction on
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H. Moreover, let {ryn}, {en} and {\,} be real
sequences such that rp, > 0, 0 < ¢, < 1 and
0 <A <b< 1, and v is a real number such that
0<y< g Assume that,

(i) for every k € {1,2,---,K}, the function
Gy satisfies (A1) — (A4) of Theorem t2.5,

(i) & := ,en Fix(Ty) N Fix(T) N SEP(p) # 0,
(iii) lirrln en =0 and,

(iv) for every k € {1,2,---,K}, limrg, ez-
n

ists and is a positive real number.

For every n € N, let W, be the mapping
generated by {T;} and {\,} as in (2.3), for
every k € {1,2,--- K} and n € N, let S,lfkn
be the resolvent generated by Gy, and 11, as n
Theorem 2.5. If {z,} is the sequence generated
by

2y =€ny f(2n)

1— n
(I - epA)—2

Z(an)kT’“Wnszn

1

o
a
noog_

(n €N),

where {a,, } is an increasing sequence in (0, 1) such
that lima, = 1. Then {z,} strongly converges to
n

z* € §, where x* is the unique solution of the
variational inequality

<(A —vf)a*, x —x*> >0 (z€3).

PI‘OOf. Let S = {1727"‘}7 0= {Tz 11 € S} For
f = (Zl,ZQ, . ) c B(S), deﬁne

() = S ()2

(n e N).
i3

Then {u,} is a regular sequence of means on

B(S); for more details, see ([19], p. 79). Next

for each x € H and n € N, we have

1 —a o0
Hn an, k:1( n)
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Therefore, it follows from Theorem 3.1 that the
sequence {z,} converges strongly to z* € §,
which is the unique solution of the variational in-
equality:

<(A —vf)x*, x — x*> >0 (ze€3F).

Theorem 3.4 Let H be a real Hilbert space,
and C' be a nonempty closed convex subset of a
Hilbert space H, and S =RT ={t e R: 0 <t <
+oo}, o={Tt:tc R}, and o = {T; : t € R*} be
a representation of S as nonexrpansive mappings
of C into itself and suppose Fix(p) # 0. Let
X be a left invariant subspace of B(R™Y) such

that 1 € X and the function t — <Tt:c,y>

element of X for each x € C, y € H, {T;}ien
be a sequence of nonexpansive mappings from
C' into itself such that T;(Fix(p)) C Fix(o)for i
eEN, p={Gr:k=1,2,--- K} be a finite family
of bifunctions from H x H into R. Suppose that
A is a strongly positive bounded linear operator
with coefficient 7, and f is an a-contraction on
H. Moreover, let {ry,}, {en} and {\,} be real
sequences such that rp, > 0, 0 < €, < 1 and
0< A, <b< 1, and v is a real number such that
0<y< g Assume that,

5 an

(i) for every k € {1,2,---,K}, the function
Gy satisfies (A1) — (A4) of Theorem 2.5,

(ii) § := Nyen Fix(Tw) N Fix(0)NSEP(p )# 0,
(iii) ligbn en =0 and,

(iv) for every k e {1,2,---,K}, limry, ez-
n

ists and is a positive real number.

For every n € N, let W, be the mapping
generated by {T;} and {\,} as in (2.3), for
every k € {1,2,---,K} and n € N, let kan
be the resolvent generated by Gy and ry, as n
Theorem 2.5. If {z,} is the sequence generated
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Zn :fn’Yf(Zn)
1 [on
+ (I - enA)/ TW,SE 2.t
0

n

(n 6N)7

where {a,} is an increasing sequence in (0, 00)
such that lima, = co. Then {z,} strongly con-
n

verges to z* € §, where x* is the unique solution
of the variational inequality

<(A—fyf)x*,x —J:*> >0 (xz€3F).

Proof. For f € B(R"), define

in(f) = / " fey

an

(n e N).

Then {p,} is a regular sequence of means on
B(R™); for more details, see ([19], p. 80). Next
for each x € H and n € N, we have

1 an
T,,r = / Tyt
n JOo

" (n € N).

Therefore, it follows from Theorem 3.1 that the
sequence {z,} converges strongly to z* € 3§,
which is the unique solution of the variational in-
equality:

<(A —vf)x*, x —:U*> >0 (z€3F).

Theorem 3.5 Let o = {1} : t € S} be a rep-
resentation of S as nonexpansive mappings of H
into itself such that Fix(o) # 0. Let X be a left
invariant subspace of B(S) such that 1 € X, and

the function t — <Ttm,y> s an element of X for

each x,y € H. Let {u,} be a left reqular sequence
of means on X . Suppose that A is a strongly posi-
tive bounded linear operator with coefficient ¥ and
f is an a-contraction on H. Moreover, let {e,}
and {\,} be real sequences such that 0 < €, < 1,
li7rlnen =0,0< X\, <b< 1, and v is a real num-

ber such that 0 < v < 2. If {z,} is the sequence
generated by

Zn = enVf(2n) + (I — € A) T, 2n  (n € N).
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Then {z,} strongly converges to x* € Fix(p).
Proof. Take Gy = 0 for every k € {1,2,--- K},
T; = I for every ¢ € N and C' = H in Theorem
3.1. Then we have S}, nSfQ,n e Sf;nzn = 2z, and

W, = I for all n € N. So from Theorem 3.1 the
sequences {z, } converges strongly to z* € Fix(p).
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