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Abstract

In recent years, there has been greater attempt to find numerical solutions of differential equations
using wavelet’s methods. The following method is based on vector forms of Haar-wavelet functions.
In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet opera-
tional matrices of the fractional order integration. Also the Haar-wavelet operational matrices of the
fractional order differentiation are obtained. Then we propose the Haar-wavelet operational matrix
method to achieve the Haar-wavelet time response output solution of fractional order linear systems
where a fractional derivative is defined in the Caputo sense. Using collocation points, we have a
Sylvester equation which can be solve by Block Krylov subspace methods. So we have analyzed the
errors. The method has been tested by a numerical example. Since wavelet representations of a vector
function can be more accurate and take less computer time, they are often more useful.

Keywords : Fractional control system; Haar wavelet; Sylvester equation.
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1 Introduction

F
ractional differential equations have general-
ized from integer order ones, which achieved

by replacing integer order derivatives by frac-
tional ones. In recent years, studies on appli-
cation of the FDE in science has been attract-
ing more attention [5, 22, 8, 27] and the reader
may refer to [22, 8] for the theory and applica-
tions of fractional calculus. For instance, Bagley
and Torvik formulated the motion of a rigid plate
immersing in a Newtonian fluid [22, 8, 20]. It
shows that the use of fractional derivatives for the
mathematical modelling of viscoelastic materials
is quite natulral [22]. It should be mentioned that
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the main reasons for the theoretical development
are mainly the wide use of polymers in various
fields of engineering [22]. Also in 1991, S. West-
erlund suggested using fractional derivatives for
the description of propagation of plane electro-
magnetic waves in an isotropic and homogeneous,
lossy dielectric and in the paper on electrochem-
ically polarizable media, published in 1993[22].
Caputo suggested the fractional-order version of
the relationship between electric field and electric
flux density [22].
Recently, fractional derivatives have been used to
new applications in neural networks and control
system [25].
A typical n-term linear non-homogeneous frac-
tional order differential equation (FDE) in time
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domain can be described as the following form,

an(D
αn
t y(t)) + · · ·+ a1(D

α1
t y(t))+

+a0(D
α0
t y(t)) = u(t).

(1.1)

A fractional-order system described by n-term
fractional differential Eq. (1.1) can be rewrit-
ten to the state-space representation in the form
[11, 30]:

aD
β
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
. (1.2)

For this reason the behavior of output in system
1.2 are useful.

Wavelets are mathematical tools that cut
up data, functions or operators into different
frequency components and then study each
component with a resolution matching its scale.
Much of the work on Haar functions was per-
formed in the 1930s. In 1909, Haar discovered
the simplest function that is called as Haar
wavelet. The integral of Haar family called Haar
operational matrix was derived by Chen and
Hsiao [7] in 1997. Recently, Operational matrix
method has became a very useful technique for
solving fractional differential equations [28, 23, 6]
and optimal control system [17].
In this paper, we will present Haar-wavelet time
response of the fractional order system of the
form

aD
α
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),

0 ≤ t ≤ η, x(0) =
(
λ1, λ2, · · · , λn

)T
,

(1.3)

with 0 < α ≤ 1, where A, B, C and D are n× n,
n×m, p×n and p×m matrices respectively and
u(t) is an m-vector function.The rest of the paper
has organized as follows: in Section 2 we recall
some necessary definitions and theorems. The
Function approximations and operational matri-
ces is presented in Section 3. In Section 4, we
express the method of the solution and the error
analysis are study in Section 5. Section 6 contain
one numerical example and Finally, the main con-
clusions are drawn in Section 7.

2 Preliminaries

In this Section, we present some basic definitions
and properties of fractional calculus [22, 9, 26].

Definition 2.1 A real function f(x), x ≥ 0 is
said to be in space Cµ, µ ∈ R if there exists a real
number p(> µ), such that f(x) = xpf1(x) where
f1(x) ∈ [0,∞) , and it is said to be in the space
Cm
µ iff fm ∈ Cµ,m ∈ N .

Definition 2.2 The Riemann-Liouville frac-
tional derivative of order α with respect to the
variable x and with the starting point at x = a is

aD
α
t f(x)

= 1
Γ(−α+m+1)

dm+1

dxm+1

∫ x
a (x− τ)m−αf(τ)dτ,

(2.1)
for 0 ≤ m ≤ α < m+ 1 and

aD
α
t f(x) =

dm+1

dxm+1
f(x)

for α = m+ 1 ∈ N .

Definition 2.3 The Riemann-Liouville frac-
tional integral of order α is

aD
−α
t f(x) =

1

Γ(α)

∫ x

a
(x− τ)α−1f(τ)dτ, α > 0.

(2.2)

Definition 2.4 The fractional derivative of f(x)
by means of Caputo sense is defined as

Dα
t f(x)

= 1
Γ(n−α)

∫ x
0 (x− τ)n−α−1f (n)(τ)dτ,

(2.3)

where n− 1 < α ≤ n, n ∈ N, x > 0, f ∈ Cn
−1.

For the Caputo’s derivative we have Dα
t C = 0, C

is a constant.

Definition 2.5 (Fractional Derivative of a Vec-
tor) If X(x) = (X1(x) · · ·Xn(x))

T is a vector
function, we define

Dα
xX(x) =

(
Dα

xX1(x), · · · , Dα
xXn(x)

)T
. (2.4)

Definition 2.6 The m-set of block-pulse func-
tions is defined as:

bi(t) =

{
1 ; ηi

m ≤ t ≤ η(i+1)
m

0 ; otherwise
(2.5)

for i = 0, 1, 2, · · · ,m− 1.

The functions bi are disjoint and orthogonal [9].
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Definition 2.7 (The Haar Wavelet Function)
Let [0, η) be an interval, we define h0(t) and
h1(t) on [0, η) as follows

h0(t) =
1√
η

{
1 ; 0 ≤ t < η,
0 ; otherwise,

h1(t) =
1√
η


1 ; 0 ≤ t < η

2 ,
−1 ; η

2 ≤ t < 1,
0 ; otherwise,

and for i = 2j + k , j ⩾ 0 , 0 ≤ k ≤ 2j − 1, we
define

hi(t) =
2

j
2

√
η
h1(2

jt− k).

The best way to understand wavelets is through
a multi-resolution analysis. Given a function
f ∈ L2(R) a multi-resolution analysis (MRA)
of L2(R) produces a sequence of subspaces
Vj , Vj+1, · · · such that the projections of f onto
these spaces give finer and finer approximations
of the function f as j → ∞.

Definition 2.8 (Multi-resolution Analy-
sis(MRA)) A multi-resolution analysis of
L2(R) is defined as a sequence of closed sub-
spaces Vj ⊂ L2(R), j ∈ Z with the following
properties
i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·.
ii) The spaces Vj satisfy

∪
j∈Z Vj is dense in

L2(R) and
∩

j∈Z Vj = 0.

iii) If f(x) ∈ V0,f(2
jx) ∈ Vj, i.e. the spaces Vj

are scaled versions of the central space V0.
iv) If f(x) ∈ V0,f(2

jx − k) ∈ Vj, i.e. all the Vj

are invariant under translation.
v) There exists ϕ ∈ V0 such that ϕ(x − k); k ∈ Z
is a Riesz basis in V0.

The space Vj is used to approximate general
functions by defining appropriate projection of
these functions onto these spaces. Since the
union of all the Vj is dense in L2(R), so it
guarantees that any function in L2(R) can be ap-
proximated arbitrarily close by such projections.
As an example the space Vj can be defined like

Vj = Wj−1 ⊕ Vj−1 = Wj−1 ⊕Wj−2 ⊕ Vj−2

= · · · =
⊕j−1

i=0 Wi ⊕ V0

then the scaling function h0(x) generates
an MRA for the sequence of spaces {Vj , j ∈ Z}

by translation and dilation as defined in def-
inition 2.8. For each j the space Wj serves as
the orthogonal complement of Vj in Vj+1. The
space Wj include all the functions in Vj+1 that
are orthogonal to all those in Vj under some
chosen inner product. The set of functions which
form basis for the space Wj are called wavelets
[13, 21].
The following theorem gives several equivalent
statements which permit us to check if an
orthonormal system is also a basis:

Theorem 2.1 Given an orthonormal system
x1, x2, · · · in E, the following are equivalent:
i) The set of vectors x1, x2, · · · is an orthonormal
basis for E.
ii) If < xi, y >= 0 for i = 1, 2, · · ·, then y = 0,
where < x, y > is the inner product of x and y.
iii) span(xi) is dense in E, that is, every vector in
E is a limit of a sequence of vectors in span(xi).
iv) For every y in E,

||y||2=
∑

i|< xi, y > |2,
which is called Parsevals equality.
v) For every y1 and y2 in E,

< y1, y2 >=
∑

i < xi, y1 > ∗ < xi, y2 >,
which is often called the generalized Parsevals
equality.

Proof. see [12].

Lemma 2.1 Every characteristic function of
the form χ[0,k/2n)(t) is a finite linear combination
of the hi(t).

Proof. We will induct on n. Let Pn be
the statement that for all integers k with
0 ≤ k ≤ 2n − 1 the characteristic function
χ[0, k

2n
η)(t) is finite linear combination of the

hi. P0 is true, since χ[0,η)(t) =
√

(η)h0(t).
Assume that Pn is true. We use this to show
that χ[0, k

2n+1 η)
is a finite linear combination

of hi. We first do the case when k ≤ 2n − 1.
Since Pn is true we have χ[0, k

2n
η)(t) =

∑
i aihi(t),

but χ[0, k
2n+1 η)

(t) = χ[0, k
2n

η)(2t), thus we can write

χ[0, k
2n+1 η)

(t) =

{ ∑
i aihi(t) ; t ≤ η

2
0 ; t > η

2

,

and therefore Pn+1 is true. Now we need
to take care of the case when k > 2n − 1. We
first observe that if k > 2n − 1 then

χ[0, k
2n+1 η)

= χ[0, 1
2
η) + χ[ 1

2
η, k

2n+1 η)
,
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We already know that χ[0, 1
2
η) is a finite lin-

ear combination of the hi, so we only need to
show that χ[ 1

2
η, k

2n+1 η)
is too. Observe that

χ[ 1
2
η, k

2n+1 η)
(t) = χ[0, k−2n

2n
η)(2t− η),

applying the assumption that Pn is true for
the above equality and the proof can be
completed.

Theorem 2.2 Any function y(t) ∈ L2[0, η) can
be decomposed as

y(t) =
∞∑
i=0

cihi(t), (2.6)

where the coefficients ci are determined by

ci = 2j
∫ η
0 y(t)hi(t)dt, i = 2j + k, j ⩾ 0, 0 ≤ k ≤

2j − 1.

Proof. Let f ∈ L2[0, η) such that∫ η
0 f(t)hi(t)dt = 0 for i = 0, 1, · · ·. there-
fore∫ k

2n
η

0 f(t)dt =
∫ η
0 χ[0, k

2n
η)(t)f(t)dt =∫ η

0 (
∑

i aihi(t))f(t)dt = 0.

The set of all numbers of the form k
2n η are

dense in R and for evry x ∈ R there is an
increasing sequence xi such that xi → x. This
shows that

∫ x
0 f(t)dt = 0 for all x ∈ [0, η) and

therefore f = 0, so theorem 2.9 shows that
hi, i = 0, 1, · · · is a basis for L2[0, η)■

Theorem 2.3 Assume that y(t) ∈ L2(R) with
the bounded first derivative on (0, 1) and ym(t) =∑2m+1

i=0 cihi(t), then

||y(t)− ym(t)||2

=
∑∞

i=m

∑∞
j=m cicj

∫∞
−∞ hi(t)hj(t)dt

≤ k
7c

22−
3
2
m ,

(2.7)

where c =
∫ 1
0 |th2(t)|dt and k is a constant and

||g(t)||= (
∫∞
−∞ g2(t)dt)

12.
Proof. The error at J th level may be defined as
|eJ(t)|= |y(t) − yJ(t)|=

∑∞
i=2J+1+1 cihi(t) where

yJ(t) =
∑2J+1

i=1 cihi(t). Thus we have

||eJ(t)||2

=

∫ ∞

−∞
(

∞∑
i=2J+1+1

cihi(t),

∞∑
l=2J+1+1

clhl(t))dt

=

∞∑
i=2J+1+1

∞∑
l=2J+1+1

cicl

∫ ∞

−∞
hi(t)hl(t)dt,

this shows that

||eJ(t)||2≤
∞∑

i=2J+1+1

|ci|2. (2.8)

But |ci|≤ c2−
3i
2 max(y′(η)) where c =∫ 1

0 |th2(t)|dt and η ∈ (k2−j , (k + 1)2−j)[14, 16].
Thus

||eJ(t)||2≤
∑∞

i=2J+1+1 kc
22−3i,

where |y′(t)|≤ k for all t ∈ (0, 1) and k is a
positive constant. From the last relation we have

||eJ(t)||2≤ kc2 172
−3m,

or

||eJ(t)||≤
√

k
7c2

− 3
2
m ■

In our survey, the fractional derivatives and
fractional integrals have considered in the Ca-
puto and Riemann-Liouville sense, respectively.
For more details see [22, 3]. Let us consider the
fractional differential equation

Dα
t x(t) = Ax(t) + q(t), (2.9)

with 0 < α < 1, an N × N matrix A, a given
function q : [0, h] → CN and an unknown solution
x : [0, h] → CN . Two following theorems shows
the form of the general solution of (2.9) where
Eα(t) is the Mittag-Leffler function.

Definition 2.9 The Mittag-Leffler function
with parameter α is given by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, ℜ(α) > 0, z ∈ C.

It is obvious that Eα(z) = ez for α = 1.
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Theorem 2.4 Let λ1, · · · , λN , be the eigenval-
ues of A and u(1), · · · , u(N) be the corresponding
eigenvectors. Then, the general solution of the
the homogeneous differential equation Dα

t x(t) =
Ax(t), has the form

x(t) =
N∑
l=1

clu
(l)Eα(λlx

α), (2.10)

with certain constants cl ∈ C. The unique so-
lution of this differential equation subject to the
initial condition x(0) = x0 is characterized by the
linear system

x0 = (u(1), · · · , u(N))(c1, · · · , cN )T . (2.11)

Proof. see [10].

For the inhomogeneous boundary value problem
we can state the following result.

Theorem 2.5 The general solution of the
boundary value problem (2.9) has the form x =
xhom + xinhom where xhom is the general solu-
tion of the associated homogeneous problem and
xinhom is a particular solution of the inhomoge-
neous problem.

Proof. see [10].

3 Function approximations and
operational matrices

The series expansion of y(t) in (2.6) contains
an infinite terms. If y(t) is piecewise constant
by itself, or may be approximated as piecewise
constant during each subinterval, then y(t) will
be terminate at finite terms, that is

y(t) ≃
m−1∑
i=0

cihi(t) = CT
mHm(t), (3.12)

where T indicates transposition and

Cm =
(
c0 c1 · · · cm−1

)T
is the Haar

coefficient vector of y(t) and Hm(t) =(
h0(t) h1(t) · · · hm−1(t)

)T
and m = 2j .

At collocation points ti = 2i+1
2m , i =

0, 1, · · · ,m − 1, one can define m × m Haar
matrix as

Hm×m

=
(
Hm(t0) Hm(t1) · · · Hm(tm−1)

)
.

Since Hm×m is singular [9, 26], the Haar
coefficients ci, i = 0, 1, 2, · · · ,m − 1 can be also
be determined by matrix inversion as follows

CT
m = ymH−1

m×m,

ym =
(
y(t0) y(t1) · · · y(tm−1)

)
.

(3.13)

The integration of Haar function vector Hm(t) is
given by∫ t

0
Hm(s)ds ≃ Pm×mHm(t), (3.14)

where Pm×m is the Haar wavelet operational
matrix of integration [26] and is given by

Pm×m = 1
2m

(
2mPm

2
×m

2
−Hm

2
×m

2

H−1
m
2
×m

2
0

)
.

Also the Haar wavelets can be expand into
m-set of block-pulse functions as

Hm(t) = Hm×mBm(t) (3.15)

where the block-pulse function vec-
tor Bm(t) is defined as Bm(t) =(
b1(t) b2(t) · · · bm−1(t)

)T
. Fractional

integration of the block-pulse function vector is
given as

(IαBm)(t) = FαBm(t), (3.16)

where Fα is the block-pulse operational matrix
of the fractional order integration [18]. The Haar
wavelet operational matrix of fractional order in-
tegration can be derive as following [19],

(IαHm)(t) = Pα
m×mHm(t), (3.17)

where Pα
m×m is the Haar wavelet operational ma-

trix of fractional order integration and can be ob-
tained by substituting (3.15) and (3.16) in (3.17)
as

Pα
m×m = Hm×mFαH−1

m×m. (3.18)

4 Method of solution

In this Section we consider the fractional order
system . From 1.3 we find that

Dαxi(t) = Aix(t) +Biu(t). (4.19)

Also from (3.12) we can approximate each xi(t)
by

xi(t) ≃ CT
i,mHm(t), (4.20)
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thus we can set

x(t) = CxHm(t), (4.21)

where Cx =
(
CT
1,m, CT

2,m, · · · , CT
n,m

)T
,

similarly u(t) = CuHm(t) where Cu can de-
rived by (3.13), now we have

(IαDαxi)(t) = Iα(Aix+Biu)(t)

⇒
xi(t) = AiCx(I

αHm)(t)+

+BiCu(I
αHm)(t) + xi(0),

(4.22)

using (3.16), (3.17) and (3.18) in (4.22) we have

xi(t)

= (AiCx +BiCu)Hm×mFαH−1
m×mHm(t)+

+xi(0),
(4.23)

or in matrix form

x(t)

= (ACx +BCu)Hm×mFαH−1
m×mHm(t)+

+x(0).
(4.24)

Now by (4.21) and (4.24) we find that

CxHm(t)

= (ACx +BCu)Hm×mFαH−1
m×mHm(t)+

+x(0),
(4.25)

dispersing (4.25) by the collocation points ti we
can obtain

CxHm×m

= (ACx +BCu)Hm×mFαH−1
m×mHm×m

+X0,

where X0 =
(
x(0) x(0) · · · x(0)

)
, thus we

have

CxHm×m(Hm×mFα)−1 −ACx

= BCu +X0(Hm×mFα)−1,
(4.26)

which is a Sylvester equation. This equation can
be solve by Block Krylov subspace methods [24].
From above discussion we can response output of
system as

y(t) = Cx(t) ≃ (CCx +DCu)Hm(t). (4.27)

5 The error analysis

Theorem 5.1 Assume that theorem 2.8 holds
for xi(t); i = 1, 2, · · · , n, then we have

||CxHm(t)− x(t)||2≤ n
k

7
c22−

3
2
m. (5.28)

Proof: The error may be defined as

||v(t)||= (

∫ ∞

−∞
vT (t)v(t))

1
2

(v(t) is a column vector). So

∥CxHm(t)− x(t)∥2

= ∥
(
CT
1,mHm(t) · · · CT

n,mHm(t)
)T −

−
( ∑∞

i=0 ci,1hi(t) · · ·
∑∞

i=0 ci,nhi(t)
)T ∥2

= ∥
∞∑

i=2m

(
ci,1hi(t) · · · ci,nhi(t)

)T ∥2

=

∫ ∞

−∞
(

∞∑
i=2m

ci,1hi(t)
∞∑

j=2m

cj,1hj(t) + · · ·+

+
∞∑

i=2m

ci,nhi(t)
∞∑

j=2m

cj,nhj(t))

=
n∑

l=1

∞∑
i=2m

∞∑
j=2m

ci,lcj,l

∫ ∞

−∞
hi(t)hj(t)

since h,is are orthonormal we can indicate

∥CxHm(t)− x(t)∥2=
n∑

l=1

∞∑
i=2m

c2i,l,

and since theorem 2.5 holds for each xi(t) we can
write

n∑
l=1

∞∑
i=2m

c2i,l ≤
n∑

l=1

klc
2 1

7
2−3J ,

so

∥CxHm(t)− x(t)∥2≤ (k1 + · · ·+ kn)

7
c22−3J .

■

From the above theorem, it is obvious that
the error bound is inversely proportional to m.
This ensures the convergence of the Haar wavelet
approximation when m is increased.
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Table 1: Haar wavelet numerical solution of example 6.1

m=32 m=64 m=128 exact

t y˙1(t) y˙2(t) y˙1(t) y˙2(t) y˙1(t) y˙2(t) y˙1(t) y˙2(t)

0.1 -4.9381 16.5918 -4.8503 16.6628 -4.7983 16.6632 -4.8341 16.6823
0.3 -4.3729 4.5574 -4.2037 3.5890 -4.2891 4.0012 -4.3060 4.0802
0.5 1.8293 -13.0698 1.7127 -13.1488 1.6339 -13.1337 1.5413 -13.0783
0.7 1.9040 1.6909 2.0606 0.9180 1.9617 1.5588 1.9400 1.7000
0.9 -4.7672 23.4380 -5.3226 24.0710 -5.3424 24.2568 -5.3226 24.2569

6 Examples

To demonstrate the efficiency and the practi-
cability of the proposed method based on Haar
wavelet operational matrix method, we consider
the following example. In order to show the effi-
ciency of method for solving system 1.3, we apply
it to solve different types of fractional linear sys-
tems whose exact solutions are known. We use
∥ . ∥2 to compare exact and numerical solution.

Example 6.1 In this example we consider a
fractional system with three equations,

Dα
t x(t) =

 −1 0 0
2 1 −9
3 6 1

x(t)

y =

(
1 0 −1
−1 2 3

)
x(t),

(6.29)

x(0) =

 −3
5
0

 , 0 ≤ t ≤ 1, 0 < α ≤ 1. The

general solution of (6.29) according to theorem
2.13, is given by

x(t) = c1u1E(λ1t
α) + c2u2E(λ2t

α)+

+c3u3E(λ3t
α),

y =

(
1 0 −1
−1 2 3

)
x(t),

(6.30)

where c1, c2, c3 are constants and λ1, λ2, λ3 are
eigenvalues and u1, u2, u3 are corresponding
eigenvectors of A. For α = 0.975 and m = 8 we
have

Cx =

( −2.8107 −2.4681 · · · −1.1778
4.1749 1.5822 · · · 5.1485
1.2002 2.6363 · · · 2.5816

)
.

Thus from (4.27) we have(
y1(t)
y2(t)

)
≃ CCxH8(t).

a)
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

−15

−10

−5

0

5

10

15

20

25

t

m=32

C
C

xH
32(

t)

b)
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

−15

−10

−5

0

5

10

15

20

25

t

m=128

C
C

xH
12

8(t
)

Figure 1: Output time response of example 6.1 by
Haar representation for m=32, 128.

The Haar domain solution along with the ac-
tual solution are shown in Fig. 1.a, 1.b for
m = 32, 128 respectively. Table 1 shows the nu-
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Figure 2: Absolute errors of y1(t) and y2(t) at t =
1
16 ,

3
16 , ...,

15
16 for m = 8, 32, 64, 128.

merical solutions for different values of m. Also
Fig. 2 shows the absolute errors for y1(t) and
y2(t) respectively at the collocation points ti for
m = 8, 32, 64, 128. From Table 1, we see that
we can achieve a good approximation for output
with the exact solution by using m = 64, 128. The
Haar domain solution along with the actual solu-
tion are shown in Fig. 1.a, 1.b for m = 32, 128
respectively. Table 1 shows the numerical solu-
tions for different values of m. Also Fig. 2 shows
the absolute errors for y1(t) and y2(t) respectively
at the collocation points ti for m = 8, 32, 64, 128.
From Table 1, we see that we can achieve a good
approximation for output with the exact solution
by using m = 64, 128.

7 Conclusion

In this paper,we introduced Haar-wavelet oper-
ational matrix method to fractional control sys-
tem. We translated the control system with ini-
tial condition into a Sylvester equation which
can be solve by Block Krylov subspace meth-
ods. From Section 5 we found that the error
bound is inversely proportional to m. This en-
sures the convergence of the Haar wavelet ap-

proximation when m is increased. An example
presented in Section 6 and the results obtained
are compared with exact solutions. Moreover if
we use distributed order fractional derivative in-
stead of fractional derivative, then what will be
the form of operational matrix represented in Sec-
tion 3?
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