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Abstract

The length of equal minimal and maximal blocks has effected on logarithm-scale logarithm against
sequential function on variance and bias of de-trended fluctuation analysis, by using Quasi Monte
Carlo(QMC) simulation and Cholesky decompositions, minimal block couple and maximal are founded
which are minimum the summation of mean error square in Horest power.
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1 Introduction

I
n last decade the de-trended fluctuation analy-
sis (DFA) were introduced by Peng [9], which

was as an important method for identifying
the long-range dependence in data with mul-
tiple trends. The long-range dependence data
are functions without summation auto covari-
ance with hyperbolic descend. The long-range
dependence is known as long memory and 1/f
noise. Horest (H) measures the power of long-
range dependence with indicator H and is cal-
culated by de-trended fluctuation analysis. frac-
tional Brownian motion series (FBm) and frac-
tional Gaussian noise (FGn) are ideals models,
which are shown the long-range dependence. The
DFA method is more credible than the tradi-
tional methods such as power spectrum, depen-
dence analysis and Horest method for determin-
ing long-range dependence in invariant signals.
The previous methods only use for fractional
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Gaussian noise signals or fractional Brownian mo-
tion. However, DFA should use for FBm or sum-
mation of FGn. The benefit of this method in
comparison with other methods is that by using
this it could be search the long-range dependence
even in un-invariant series. [3]

In this survey the focus is on finding the best
cutting block from de-trended fluctuation anal-
ysis minimized the mean square error of Horest
power. This function is performance by sequen-
tial treatment with using Cholesky decomposition
and Monte Carlo simulation. The Quasi Monte
Carlo simulation works such as Monte Carlo sim-
ulation but it uses quasi-random numerical se-
quences. Calculating of Monte Carlo is easy and
by repeating the accuracy decrease. Although,
the rate of improvement is low. For instance,
if we want increase the rate of accuracy to one
decimal. The repetition of simulation should 100
times, and if it increases till 3 decimal numbers
it should repeat 1 million times [10].

This error occurs because of using quasi num-
bers, although this is random but it is not uni-
form. The alternative method for increasing
the rate of Monte Carlo method is changing the
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sequential. This changes need to product se-
quences in definite interval and distribute uni-
form. This number of sequences is named in term
quasi-random. The methods, which use these
semi-random numbers, are called quasi Monte
Carlo methods [1]. In most of times the er-
ror of quasi Monte Carlo is less than the clas-
sic Monte Carlo method. The Monte Carlo con-
vergences rank O(N− 1

2 ) is independent of dimen-
sion, whereas the quasi Monte Carlo convergence
rank is O(log Nd N−1), so it depends on the
quasi dimension of simulation sequence. We use
these quasi Monte Carlo in Cholesky decompo-
sition and product the FBm series for analyzing
DFA.

2 Quasi-random sequences

The simple example of quasi-random sequences is
Wondercarpet sequences in one dimensional (d =
1). For producing this sequence n should write
in binary base. The nth point Xn is gained by
inverting n numbers of the other side of decimal
point [4].

2.1 Halton sequence

This is a basic sequence with lowest confusion
with multiple dimension. This is a generalization
of Wondercarpet sequences in d dimension. The
nth number of Halton sequences in one dimen-
sion for the first number pd is gained by follow
algorithm:

1. For all N , n=1,2,. . . ,N , n writes in base
pd .

n =
l∑

i=0

ai(n)p
i
d = a0p

0
d + a1p

1
d + ...+ alp

l
d

2. Inverting the ratio decimal point numbers.

ϕpd
(n) =

l∑
i=0

ai(n)

pi+1

3. In general a Halton sequences with d-
dimension in base is:

xn = (φ2(n), φ3(n), ..., φpd(n))

2.2 Sobol sequence

The d dimension Sobol sequence for all of its di-
mension uses prime number 2 as a basic. The

first dimension of this sequence is Wandercarpet
in bases 2 and the higher dimension is permuta-
tion from sequence in one dimension. For produc-
ing j th factor of Sobol sequence needs to primer
polynomial of degree n in Z.

xn + a1x
n−1 + a2x

n−2 + . . .+ an−1x+ 1,

which all coefficients are 0 or 1. The sequence
of positive integer numbers {m1,m2, . . .} have
return relation which is: mk = 2a1mk−1 ⊕
22a2mk−2 ⊕ . . . ⊕ 2n−1an−1mk−n+1 ⊕ 2smk−n ⊕
mk−n That ⊕is an indicator of summation of bit
by bit. The primary number {m1,m2, . . .} should
choose in the way that each mk , 1<k<n is an
odd number less than 2k. The direct numbers
{v1, v2, . . .} define vk = mk

2k
. Then, the j th fac-

tor from ith point or xij in one Sobol sequence
as follow:

xi,j = i1v1,j ⊕ i2v2,j ⊕ . . .

which ik ,is kth number of right hand when i is
on the base of i = (...i3i2i1)2 [7].

3 De-trended fluctuation anal-
ysis (DFA)

The steps of performance DFA are:
1. Suppose that Xt is a time series. The series

makes plural with Y (t) =
∑t

i=1(Xi − X̄) which

in
(
X̄ = N−1

∑N
i=1Xi

)
is sample mean but it is

not force to subtract the mean, because it deleted
by final de-trended.

2. The plural series divide to N/m uncommon
logarithm block with m size. On the other hand,
because of N is not multiply of time parameter
m, the small part of the end of series remains
which it is not correct to ignore it. Therefore,
this method should repeat. Hence, in this paper
the m and N to the power of 2, so the number of
final blocks N/m are integers [8].

3. In each block k=1,2,. . . ,N/m the least
square line ak + bkt is fitted and the remained
sample variance is calculated. F 2(k,m) =

1
m−1

∑m
t=1 (Y ((k − 1)m+ t) − (ak + bkt))

2, k =
1, ..., N/m.

The trend which is fitted ak+ bkt could replace
by polynomial degree 2, degree 3 or higher rank.
In this case DFA2 is equivalent to the polyno-
mial degree 2 , . . . and DFAr is correspond to the
polynomial degree r.
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4. By taking mean from F 2(k,m) on all blocks
[2].

The frequency function of qth is gained.

Fq(m) =

 1

N/m

N/m∑
k=1

(
F 2(k,m)

) q
2


1
q

,

which only define for m ≥ r + 2. This relation
named multiple fractals DFA. In this paper we
just focus on standard DFA. It means q=2, there-
fore

F (m) =

 1

N/m

N/m∑
k=1

(
F 2(k,m)

)
1
2

remaining variance is proportional to m2H . Thus,
the frequency function F(m) is proportional to
mH.

F (m) ∝ mH

The behavior of scalable frequency function is
surveying on logarithm-logarithm plots F(m)
against m. Therefore, the slope of regression line
log (F (m)) = c + H log(m) is Horest estimated
[5].

4 The Cholesky method for pro-
ducing the fractional Brown-
ian motion

The Cholesky decomposition uses for simulat-
ing systems with multiple dependence variables.
Therefore, by using this method it could be pos-
sible to product the fractional Brownian motion
series. Suppose Γ = 1

2{|k − 1|2H − 2 |k|2H +

|k + 1|2H} is covariance matrix of fractional
Brownian motion. We define Γ′ is a matrix
such as Γ without first column and row. Be-
cause Γ′ is symmetric positive definite matrix, so
the Cholesky decomposition could work, then we
have Γ′ = LL′. However, simulating of one sam-
ple FBm is equal to product the U vector with (N-
1) independent variable and multiplying LU. In

fact β̃ =
(
0, (LU)T

)T
which β̃ is a sample FBm.

For producing FBm in surveying block decompo-
sition of de-trended fluctuation analysis vector U
is indicate as quasi-random sequences. We intro-
duce these sequences as follow [2], [11].

5 The ChBlock decomposition
of de-trended fluctuation
analysis

For our treatments, we use Cholesky generation
FBm by using Sobol and Halton sequences. Be-
cause in de-trended fluctuation analysis the block
decomposition is only on the base of series length.
The optimum criterion should not only mini-
mum the bias but also variance for N .Hence,
the sum mean square error is a scale for rating
ability of method. If the bias square and vari-
ance are minimum then the MSE will be mini-
mum. MSE(Ĥ) = E(Ĥ−H)2 = (E(Ĥ)−H)2+
E(Ĥ − E(Ĥ))2 = bias2

Ĥ
+ varianceĤ MSE(Ĥ)

is considered as a function of both minimal and
maximal block (m+, m-).

Suppose DFA establishes on different equal dis-
tance c* minimum on log-log block scales. The
possible combination sets could define (m+, m-)

ℓ ≡ {(m−,m+) = (2l, 2u) : u− l+1 ≥ c∗∧ l =
l1, ..., log2N ∧ u = u1, ..., log2N}

The number of elements l in table 1 (see Ap-
pendix ) is #ℓ = a(a+ 1)/2 where a = log2N +
2− l1 − c∗

If the fitted trend is liner or sequence then the
smallest block is 2l1 = 4 and for multinomial
trend of degree 3 and 4 it is 2l1 = 8. Considering
different minimal blocks are c*=4 and defining
the following function:

℘(m−,m+) ≡
∑
H∈H

MSE(Ĥ)(m−,m+)

Now, the trend ofMSE(Ĥ) for the Horest indica-
tor with unknown posterior is defined. However,
because the DFA bias for un-invariant processes
is so strong, then we just consider an invariant
process. Hence, we calculate ℘(m−,m+) for H=
{0.5,. . . , 0.9}. It is obvious that MSE(Ĥ) is sen-
sitive to series length both N and H [6]. The
target -among simulating numbers- is finding pair
(m−,m+) which minimum the ℘ for long memory
time series with length N.

(m̃−, m̃+) = arg min ℘(m−,m+)

In this way, we consider all possible shapes
(m−,m+)for all N and use them in de-trended
fluctuation analysis. This loop repeats for 1000
times till finding (m−,m+) with minimum ℘ The
both blocks combination (4, 32) and (4, 64) are
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the best combination. The Table 2 (see Ap-
pendix) shows (m−,m+)for N=256 for each r=1
or r=2.

6 Conclusion

The Table 3 (see Appendix ) shows the best
combination blocks both minimal and maximal
blocks (m̃−, m̃+) for series FBm with length
p=8,. . . , 12, N=2p and 1000 times repeat by
using random quasi different generations. The
R software is used. When the Halton genera-
tion used the blocks combination (4,64) in dimen-
sion 3, has minimized the ℘(m−,m+) and after
that the block combination (4,32) has minimized
℘(m−,m+)too . However, in dimension 8 the
higher block combination (m̃−, m̃+) is equal to
(4,32) and the second higher block combination
is (4,64) [9]. In Sobol generation results in dimen-
sion 3 it could see (m̃−, m̃+) is a block combina-
tion (4,32) and after that (4,64), ℘(m−,m+) is
minimized. In dimension 8, the first higher block
combination is (4,64) and the second higher com-
bination is (4,32).Therefore, although it is differ-
ent among different dimension in quasi-random
generations of (4,32) and (4,64) in the best block
combination. Also, by increasing the number of
obvious, (m̃−, m̃+) is not change. For generating
and different dimension with equal N and rank
(#1,#2),℘(m−,m+) is so near to each other and
this expresses tend of DFA is similar to simulat-
ing processes. For determining the bias, the stan-
dard deviation and mean root error Ĥ, the Sobol
generation with dimension 3 and 8 are chosen for
producing FBm. Considering that ℘(m−,m+) for
H={0.5. . . 0.9} is calculated. In addition, the be-
havior of estimator in Table 4 (see Appendix) for
Sobol sequence with dimension 3 and block com-
bination (4,32) are studied. By increasing the se-
ries length from N=210 to N=212 for each H=1/2
the standard deviation from 0.035 to 0.014 and R-
MSE for N=210,. . . ,212 from 0.040 to 0.023 are
decreased. In Table 5 (see Appendix) for Sobol
sequence with dimension 8 and better block com-
bination (4,64) by increasing the series length the
standard deviation and the mean root error Ĥ are
decreased. For N=4096 and dimension 8 by in-
creasing H from 0.5 to 0.9 the bias decrease from
0.018 to 0.003 [13]. The exit of Table 4 and 5 have
brought in for more clarifying. By comparing fig-
ures (see Appendix) and tables for dimension 3

and 8 it could be infer that by increasing H from
0.5 to 0.9 the bias is decreased and by increas-
ing N, the standard deviation and R-MSE are
decreased [12].

Appendix

Figure 1: Standard deviation (right) and bias
(left) Sobol generation with dimension 3.

Figure 2: Standard deviation (right) and bias
(left) Sobol generation with dimension 8.
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