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Abstract

In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with
fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy
differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-
differential equations has been investigated by some authors (see for example [5, 6]), but these methods
have been done for fuzzy problems with triangular fuzzy initial value. Therefore by extending the
r-cut solutions of the original problem we will obviate this deficiency. The presented idea is based
on: if a second order fuzzy differential equation satisfy the Lipschitz condition then the initial value
problem has a unique solution on a specific interval, therefore our main purpose is to present a method
to find an interval on which the solution is valid.

Keywords : Fuzzy differential equations (FDE); Strongly generalized H-differentiability; r-cut solutions.
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1 Introduction

T
he topic of fuzzy differential equations (FDE)
has been rapidly growing in recent years.

Kandel and Byatt [20] applied the concept of
fuzzy differential equations (FDE) to analyze
the fuzzy dynamic problems. The FDE and
the initial value problem (Cauchy problem) were
treated by Kaleva [21, 22], Seikkala [25], He
and Yi [17], Kloeden [23] and some others (see
[10, 11, 12, 15, 18]). The numerical methods for
solving fuzzy differential equations are introduced
in [1, 2, 3, 4, 7, 9]. Buckley and Feuring [13] in-
troduced two analytical methods for solving n-
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order linear differential equations with fuzzy ini-
tial value conditions.
A new approach for solving first order fuzzy dif-
ferential equations with extending 1-cut solution
of original problem is introduced by Allahviran-
loo and salahshour [6]. See [5] for a method for
fuzzy integro-differential equations with extend-
ing o-cut and 1-cut solutions of the original prob-
lem, but these methods have been done for fuzzy
problems with triangular fuzzy initial value.
In this paper by extending r-cut solutions of the
original problem we will obviate this deficiency.
In [8] we see that, if a second order fuzzy differen-
tial equation satisfy the Lipschitz condition, then
the initial value problem has a unique solution on
a specific interval. The presented method in this
paper is an analytical method and with a specific
method, we try to find a solution, that the solu-
tion is valid. According to the definition of gen-
eralized derivative, a fuzzy second order differen-
tial equation can be transformed to a four-crisp
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differential equations. Since the initial differen-
tial equations satisfy the Lipschitz condition, the
obtained solution is unique. The solutions are
obtained from a fuzzy initial value problem. To
show that these are fuzzy solutions, we find the
intervals in which each solution is a fuzzy solu-
tion.
The structure of this paper is organized as follow.
In section 2, some basic definitions and notations
will be given. In section 3, second order fuzzy dif-
ferential equation is introduced and our method
is presented in details. In section 4, the proposed
method is illustrated by examples. Conclusion is
at the end of section 5.

2 Basic Definitions and Nota-
tions

In this section, we give some necessary definitions
and notations which will be used throughout the
paper.

Definition 2.1 Let X be a nonempty set. A
fuzzy set u in X is characterized by its member-
ship function u : X → [0, 1]. Thus u(x) is inter-
preted as the degree of membership of an element
x in the fuzzy set u for each x ∈ X.

Let denote by E the class of fuzzy subsets of the
real axis (i.e. u : R → [0, 1]) satisfying the follow-
ing properties:

• u is normal, that is, there exists s0 ∈ R such
that u(s0) = 1,

• u is convex fuzzy set (i.e. u(ts+ (1− t)r) ≥
min{u(s), u(r)}, ∀t ∈ [0, 1], s, r ∈ R),

• u is upper semi-continuous on R,

• cl{s ∈ R|u(s) > 0} is compact, where cl de-
notes the closure of a subset.

E is called the space of fuzzy numbers with
bounded r-level intervals. This means that if v ∈
E then the r-level set

v[r] = {s|v(s) ≥ r},

is a closed bounded interval which is denoted by

v[r] = [v(r), v(r)] for r ∈ (0, 1],

and

v[0] =
∪

r∈(0,1]

v[r].

Lemma 2.1 [24] If u, v ∈ E, then for
r ∈ (0, 1],

(u+ v)[r] = [u(r) + v(r), u(r) + v(r)],

(u.v)[r] = [min k,max k],

where

k = {u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)}.

Definition 2.2 [19] The Hausdorff distance be-
tween fuzzy numbers is given by

D : E × E −→ R+
∪

{0},

D(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v(r)|},

where

u[r] = [u(r), u(r)], v[r] = [v(r), v(r)] ⊂ E

is utilized.

Then it is easy to see that D is a metric in E and
has the following properties (see[10]).

• D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ E,

• D(k⊙u, k⊙v) = |k|D(u, v), ∀k ∈ R, u, v ∈
E,

• D(u ⊕ v, w ⊕ e) ≤ D(u,w) +
D(v, e), ∀u, v, w, e ∈ E,

• (D,E) is a complete metric space.

Definition 2.3 [10] Let x, y ∈ E. If there exists
z ∈ E such that x = y + z, then z is called the
H-difference of x and y and it is denoted by x⊖y.

Definition 2.4 [10] Let f : (a, b) −→ E and
t0 ∈ (a, b). We say that f is strongly generalized
H-differentiable at t0, if there exists an element
f

′
(t0) ∈ E, such that:

(1) for all h > 0 sufficiently near to 0, ∃f(t0 +
h) ⊖ f(t0), ∃f(t0) ⊖ f(t0 − h) such that the
following limits hold.

lim
h−→0+

f(t0 + h)⊖ f(t0)

h

= lim
h−→0+

f(t0)⊖ f(t0 − h)

h
= f

′
(t0), (2.1)
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(2) for all h < 0 sufficiently near to 0, ∃f(t0) ⊖
f(t0 + h), ∃f(t0 − h) ⊖ f(t0) such that the
following limits hold.

lim
h−→0+

f(t0)⊖ f(t0 + h)

h

= lim
h−→0+

f(t0 − h)⊖ f(t0)

h
= f

′
(t0). (2.2)

If f(t) is (n)-differentiable at t0, we denote its
first derivatives by D1

nf(t0), for n = 1, 2.
In the special case when f is a fuzzy-valued func-
tion, we have the following results.

Theorem 2.1 [10] Let f(t) be fuzzy-valued func-
tions and denote f(t)[r] = (f(t; r), f(t; r)), for
each r ∈ [0, 1]. Then

• if f(t) is (1)-differentiable, then f(t; r) and

f(t; r) have second order derivative and

f
′
(t)[r] = [f

′
(t; r), f

′
(t; r)].

• if f(t) is (2)-differentiable, then f(t; r) and

f(t; r) have second order derivative and

f
′
(t)[r] = [f

′
(t; r), f

′
(t; r)].

Theorem 2.2 [10] let f : (a, b) −→ R and g :
(a, b) −→ E be two differentiable functions (g is
generalized differentiable as in Definition 2.4).

• If f(t).f
′
(t) > 0 and g is (1)-differentiable,

then f.g is (1)-differentiable and

(f.g)
′
(t) = f

′
(t).g(t) + f(t).g

′
(t). (2.3)

• If f(t).f
′
(t) < 0 and g is (2)-differentiable,

then f.g is (2)-differentiable and

(f.g)
′
(t) = f

′
(t).g(t) + f(t).g

′
(t). (2.4)

The main properties of the H-derivatives of first
part of the above theorem, some of which still
hold for the second part, are well known and can
be found in [21] and some other properties of the
second part can be found in [14].
Notice that we say fuzzy-valued function f is (1)-
differentiable if satisfy in the first form (1) in Def-
inition 2.4. and we say f is (2)-differentiable if
satisfy in the second form (2) in Definition 2.4.

3 Second Order Fuzzy Differ-
ential Equations

In this section, we are going to investigate a so-
lution of fuzzy differential equations (FDE).
Consider the following second order fuzzy differ-
ential equation:

y
′′
(t) = f(t, y(t), y

′
(t)),

y(t0) = u0,

y
′
(t0) = v0,

(3.5)

where f : (a, b) × E × E −→ E is linear fuzzy-
valued function with positive coefficients, u0, v0 ∈
E and the involved derivatives are strongly gen-
eralized H-differentiable which is defined in Defi-
nition 2.4.

Theorem 3.1 [19] Let f(t) and f
′
(t) are two

differentiable fuzzy-valued functions and denote
f(t)[r] = [f(t; r), f(t; r)], for each r ∈ [0, 1]. Then

• if f(t) and f
′
(t) are (1)-differentiable, or

f(t) and f
′
(t) are (2)-differentiable, then

f(t; r) and f(t; r) have second order and

second order derivatives and f
′′
(t)[r] =

[f
′′
(t; r), f

′′
(t; r)].

• if f(t) is (1)-differentiable and f
′
(t) is (2)-

differentiable, or f(t) is (2)-differentiable
and f

′
(t) is (1)-differentiable, then f(t; r)

and f(t; r) have second order and sec-
ond order derivatives and f

′′
(t)[r] =

[f
′′
(t; r), f

′′
(t; r)].

Definition 3.1 [19] Let f : (a, b) → E and
n,m = 1, 2. One says f is (n,m)-differentiable
at t0 ∈ (a, b), if D1

nf exists on a neighborhood of
t0 as a fuzzy function and it is (m)-differentiable
at t0. The second derivatives of f are denoted by

D
(2)
n,mf(t0) for n,m = 1, 2.

Definition 3.2 [19] Let y : (a, b) → E be fuzzy
function and n,m ∈ {1, 2}. One says that y
is an (n,m)-solution for problem (3.5) on (a, b),

if D1
ny and D

(2)
n,my exist on (a, b) and D

(2)
n,my =

f(t, y(t), D1
ny(t)), y(t0) = u0, D1

nỹ(t0) = v0.

Theorem 3.2 [19] let f : (a, b) −→ R and g :
(a, b) −→ E be second order differentiable func-
tions (g is generalized differentiable as in Defini-
tion 2.4).
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• If f(t).f
′
(t) > 0, f

′
(t).f

′′
(t) > 0 and g

is (1, 1)-differentiable, then f.g is (1, 1)-
differentiable and

(f.g)
′′
(t)

= f
′′
(t).g(t)+2f

′
(t).g

′
(t)+f(t).g

′′
(t). (3.6)

• If f(t).f
′
(t) < 0, f

′
(t).f

′′
(t) < 0 and g

is (2, 2)-differentiable, then f.g is (2, 2)-
differentiable and

(f.g)
′′
(t)

= f
′′
(t).g(t)+2f

′
(t).g

′
(t)+f(t).g

′′
(t). (3.7)

Theorem 3.3 [8] Let f : (a, b) × E × E −→
E be continuous, and suppose that there exist
M1,M2 > 0 such that:

D(f(t, x1, x2), f(t, y1, y2))

≤ M1D(x1, x2) +M2D(x1, x2),

for all t ∈ (a, b), x1, x2, y1, y2 ∈ E. Then the ini-
tial value problem (3.5) has a unique solution on
(a, b) for each case.

Now, we describe our method for solving a FDE
(3.5). First, we solve a FDE (3.5) in the sense of
r-cut as follows:

D
(2)
n,my[r](t) = f(t, y[r](t), Dr

ny
[r](t)),

y[r](t0) = u
[r]
0 ,

Dr
ny

[r](t0) = v
[r]
0 ,

0 ≤ r ≤ 1, t0 ∈ (a, b), n,m = 1, 2.
(3.8)

Let y[r](t) be an (n,m)-solution for problem
(3.8). To find it, based on type of differentiabil-
ity we have the following crisp systems, called
(n,m)-systems as follows:

(1, 1)-system

y
′′
(t; r) = f(t, y(t; r), y

′
(t)),

y′′(t; r) = f(t, y(t; r), y′(t; r)),

y(t0; r) = u0(r), y(t0; r) = u0(r),

y
′
(t0; r) = v0(r), y′(t0; r) = v0(r),

0 ≤ r ≤ 1.
(3.9)

(1, 2)-system

y′′(t; r) = f(t, y(t; r), y
′
(t; r)),

y
′′
(t; r) = f(t, y(t; r), y′(t; r)),

y(t0; r) = u0(r), y(t0; r) = u0(r),

y
′
(t0; r) = v0(r), y′(t0; r) = v0(r),

0 ≤ r ≤ 1.
(3.10)

(2, 1)-system

y′′(t; r) = f(t, y(t; r), y′(t; r)),

y
′′
(t; r) = f(t, y(t; r), y

′
(t; r)),

y(t0; r) = u0(r), y(t0; r) = u0(r),

y′(t0; r) = v0(r), y
′
(t0; r) = v0(r),

0 ≤ r ≤ 1.
(3.11)

(2, 2)-system

y
′′
(t; r) = f(t, y(t; r), y′(t; r)),

y′′(t; r) = f(t, y(t; r), y
′
(t; r)),

y(t0; r) = u0(r), y(t0; r) = u0(r),

y′(t0; r) = v0(r), y
′
(t0; r) = v0(r),

0 ≤ r ≤ 1.
(3.12)

Theorem 3.4 If f is satisfy the Lipschitz con-
dition, then there is an interval I that the solu-
tion of (n,m)-system is an (n,m)-solution for the
problem (3.5) on the interval I.

Proof : Since f satisfy the Lipschitz condition,
the initial value problem (3.5) has a unique (n,m)-
solution such as y[r] = [y(r), y(r)] on the interval
I ([8]). From the Definition 3.2. and theorems
2.1. and 3.1. y[r] = [y(r), y(r)] is a solution of
(n,m)-system. On the other hand, since f satisfy
the Lipschitz condition, then according to [16],
the (n,m)-system has a unique solution such as
y∗[r] = [y∗(r), y∗(r)] and it can be shown that
y = y∗. Then y∗ is an (n,m)-solution for the
problem (3.5) on the interval I.
We can choose the interval I such that a solution



P. Darabi et al. /IJIM Vol. 8, No. 3 (2016) 293-301 297

of (3.5) be valid on it as fallow:
I = (a, b), b = min{ t | ∃ εi > 0 ; yi(t − εi; r) −
yi(t − εi; r) > 0 , yi(t + εi; r) − yi(t + εi; r) <
0 , i = 0, 1, 2}.
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4 Examples

In this section, some examples are given to illus-
trate our method and show that our approach is
coincide with the exact solutions. Moreover we
plot the obtained solutions and derivatives based
on the r-cut representation at each case.

Example 4.1 (see [19]) consider the following
second order fuzzy differential equation:
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
y
′′
(t) = σ0, σ0

[r] = [r − 1, 1− r],

y(0)[r] = [r − 1, 1− r],

y
′
(0)[r] = [r − 1, 1− r], t ≥ 0.

(4.13)

By our method, 1-cut and 0-cut systems are de-
rived as follows respectively:

Case(I): Suppose that y(t) and y
′
(t) are (1)-

differentiable functions. By solving ODE (3.9) we
get:

y(t; r) = (r − 1)(
t2

2
+ t+ 1),

y(t; r) = (1− r)(
t2

2
+ t+ 1),

and

y(t)[r] = [r − 1, 1− r](
t2

2
+ t+ 1),
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by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for t ≥ 0 and y′(t) has valid level sets for
t ≥ 0 and also y′′(t) has valid level sets for t ≥ 0,
then by intersection of these valid level sets we
get y(t) that is a (1,1)-solution for the original
problem on [0,+∞). (See Figure 1).

Case(II): Let y(t) be a (1)-differentiable
function and y

′
(t) be a (2)-differentiable func-

tion. By solving ODE (3.10) , we get:
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and

y(t)[r] = [r − 1, 1− r](− t2

2
+ t+ 1),

by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for t ≥ 0 and y′(t) has valid level sets for
0 ≤ t ≤ 1 and also y′′(t) has valid level sets for
t ≥ 0, then by intersection of these valid level
sets we get y(t) that is a (1,2)-solution for the
original problem on [0, 1]. (See Figure 2).

Case(III): Let y(t) be a (2)-differentiable
function and y

′
(t) be a (1)-differentiable func-

tion. By solving ODE (3.11) we get:

y(t; r) = (r − 1)(− t2

2
− t+ 1),
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y(t; r) = (1− r)(− t2

2
− t+ 1),

and

y(t)[r] = [r − 1, 1− r](− t2

2
− t+ 1),

by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for 0 ≤ t ≤

√
3 − 1 and y′(t) has valid level

sets for t ≥ 0 and also y′′(t) has valid level sets
for t ≥ 0, then by intersection of these valid level
sets we get y(t) that is a (2,1)-solution for the
original problem on [0,

√
3− 1]. (See Figure 3).

Case(IV): Suppose that y(t) and y
′
(t) are

(2)-differentiable functions. By solving ODE
(3.12), we get:

y(t; r) = (r − 1)(
t2

2
− t+ 1),

y(t; r) = (1− r)(
t2

2
− t+ 1),

and

y(t)[r] = [r − 1, 1− r](
t2

2
− t+ 1),

by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for t ≥ 0 and y′(t) has valid level sets for
0 ≤ t ≤ 1 and also y′′(t) has valid level sets for
t ≥ 0 , then by intersection of these valid level
sets we get y(t) that is a (2,2)-solution for the
original problem on [0, 1]. (See Figure 4).

Using 1-cut and 0-cut solutions we show
that the discussed method can be applied to
solve the fuzzy differential equations.

Example 4.2 Let us consider the following sec-
ond order FDE:

y
′′
(t) = y(t),

y(0)[r] = [r2, 2− r2],

y
′
(0)[r] = [r2 − 1, 1− r2] t ≥ 0.

(4.14)

Based on the proposed approach, 1-cut and 0-cut
systems are derived as follows respectively:

Case(I):
Suppose that y(t) and y

′
(t) are (1)-differentiable

functions. By solving ODE (3.9), we get:

y(t; r) =
1

2
e−t + et(r2 − 1/2),

y(t; r) =
1

2
e−t − et(r2 − 3/2),

by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for t ≥ 0 and y′(t) has valid level sets for
t ≥ 0 and also y′′(t) has valid level sets for t ≥ 0
, then by intersection of these valid level sets we
get y(t) that is a (1,1)-solution for the original
problem on [0,+∞). (See Figure 5).

Case(II):
Let y(t) be a (1)-differentiable function and y

′
(t)

be a (2)-differentiable function. By solving ODE
(3.10) , we get:

y(t; r) = cosh(t) + 2r.sinh(log(r)).sin(t)
+ 2r.sinh(log(r)).cos(t),

y(t; r) = cosh(t)− 2r.sinh(log(r)).sin(t)
− 2r.sinh(log(r)).cos(t),

by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for t ≥ 0 and y′(t) has valid level sets for
0 ≤ t ≤ π

4 and also y′′(t) has valid level sets for
t ≥ 0, then by intersection of these valid level
sets we get y(t) that is a (1,2)-solution for the
original problem on [0, π4 ]. (See Figure 6).

Case(III):
Let y(t) be a (2)-differentiable function and y

′
(t)

be a (1)-differentiable function. By solving ODE
(3.11), we get:

y(t; r) = cosh(t)− 2r.sinh(log(r)).sin(t)
+ 2r.sinh(log(r)).cos(t),

y(t; r) = r.cosh(t) + 2r.sinh(log(r)).sin(t)
− 2r.sinh(log(r)).cos(t),

by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for 0 ≤ t ≤ π

4 and y′(t) has valid level sets
for t ≥ 0 and also y′′(t) has valid level sets for
0 ≤ t ≤ π

4 , then by intersection of these valid
level sets we get y(t) that is a (2,1)- solution for
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the original problem on [0, π4 ]. (See Figure 7).

Case(IV):
Suppose that y(t) and y

′
(t) are (2)-differentiable

functions. By solving ODE (3.12) , we get:

y(t; r) =
1

2
et + (r2 − 1/2)e−t,

y(t; r) =
1

2
et − (r2 − 3/2)e−t,

by drawing the 0-cut solutions of the first and
second derivatives we see that y(t) has valid level
sets for t ≥ 0 and y′(t) has valid level sets for
t ≥ 0 and also y′′(t) has valid level sets for t ≥ 0,
then by intersection of these valid level sets we
get y(t) that is a (2,2)-solution for the original
problem on [0,+∞). (See Figure 8).

5 Conclusions

In this paper a new approach for solving sec-
ond order fuzzy differential equations (FDE) with
fuzzy initial value under strongly generalized H-
differentiability is considered. The presented idea
is based on: if a second order fuzzy differential
equation satisfy the Lipschitz condition then the
initial value problem has a unique solution on a
specific interval. We obtain this solution by trans-
forming the fuzzy initial value of the generalized
derivatives to the four-crisp differential equations
and then solve them. Using solutions of the first
and second derivatives we choose an interval such
that the differential equations’s solution is valid
on it.
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