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Abstract

This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-
hemivariational inequality. The solutions of this inequality are discussed in a subset K of a reflexive
Banach space X. Firstly, we prove the existence of solutions in the case of bounded closed and convex
subsets. Secondly, we also prove the case when K is compact convex subsets. Finally, we enhance the
main results by the application of some differential inclusions.
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1 Introduction

I
t is well known that many problems in nonlin-
ear analysis and optimization can be formu-

lated as the variational inequality problems. As
an important and useful generalization of varia-
tional inequality, hemivariational inequality was
first introduced by P.D. Panagiotopoulos at the
beginning of the 1980s (see [25] and [26]). Within
a very short period of time, this theory wit-
nessed a remarkable development in both pure
and applied mathematics. It has been proved
to be very efficient to describe a variety of some
thing, such as mechanical problems, engineering
sciences, economics, differential inclusion and op-
timal control (see [5, 6, 8, 12, 20, 22, 27, 30, 33]).

Generally, the applications of hemivariational
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inequality theory have been intensively studied by
many authors (see [3, 4, 10, 16, 24, 27, 32]). Our
study of new type of variational-hemivariational
inequalities which arise from hemivariational in-
equalities if some constraints have to be taken
into account.

In order to do it is very useful to understand
several problems of mechanics and engineering for
non-convex, and non-smooth energy functionals
(see [18, 19, 21, 23, 28, 31]).

The main purpose of this work is to give a new
contribution in this area. In particular, we estab-
lish the existence and uniqueness of solutions for
new type of variational-hemivariational inequali-
ties. It is worth mentioning that we do not deal
with a classical technique to proof our results.
Thus, several difficulties occur in finding an ap-
plication to the main results, because the classical
methods fail to be applied directly.

In order to achieve the aim, the study is di-
vided into the following sections. In Section 2,
we refer to some definitions and results that will
assist us in the study. In Section 3, we prove
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the existence and uniqueness of solutions for the
problem. The proof of the first result is based on
arguments of lower quasi-hemicontinuous and α-
monotone operators. However, the second result
of this section relies essentially on the Schauder’s
fixed point Theorem. In the last section of this
paper, we illustrate the applicability of our ap-
proach by a differential inclusion in the special
case of our main results.

2 Preliminaries

Throughout this paper, unless stated otherwise,
we always assume that E is Banach space and E∗

is a topological dual space of E, while ⟨., . ⟩ and
∥ . ∥ denote the duality pairing between E and
E∗ and norm in E∗, respectively.

For the convenience of the reader, we are going
to review some definitions and results that will
be used in our analysis.

Definition 2.1 A functional J : E → R is said
to be locally Lipschitz if every point u ∈ E pos-
sesses a neighborhood W such that

|J(a)− J(b)| ≤ Mu∥a− b∥E ∀a, b ∈ W

for a constant Mu ≥ 0 which depends on W .

Definition 2.2 Assume that J : E → R is lo-
cally Lipschitz. The generalized derivative of J
at the point u ∈ E in the direction z ∈ E is de-
noted by J0(u, z), i.e.,

J0(u; z) = lim sup
a→u
λ↘0

J(a+ λz)− J(a)

λ

Definition 2.3 Assume that E is a Banach
space and J : E → R is locally Lipschitz func-
tional. We say that J is regular (in the sense
of Clarke) at u ∈ E if for each z ∈ E the
one sided directional derivative J

′
(u, z) exists and

J0(u, z) = J
′
(u, z). We say that J is regular

where J is regular at every point u ∈ E.

Definition 2.4 Let X be a Banach space. A
mapping Λ : X → R is said to be

[(i)]lower semicontinuous (for short ,(l.s.c))
at x0 ∈ X, if

Λ(x0) ≤ lim inf
n

Λ(xn)

upper semicontinuous (for short ,(u.s.c)) at
x0 ∈ X, if

Λ(x0) ≥ lim sup
n

Λ(xn)

for any sequence xn of X such that xn → x0.

1.2. Proposition 2.1 Let J : E → R be a function
on a Banach space E, which is locally Lipschitz
of rank Mu near the point z ∈ E, then

i) the z 7→ J0(u, z) is subadditive, finite, pos-
itively homogeneous and satisfies

J0(u, z) ≤ Mu ∥ z ∥;

ii) J0(u, z) is upper semicontiuous as a func-
tion of (u, z).

One can found it’s proof in [9].

Definition 2.5 The generalized gradient of J at
u ∈ E, which is a subset of a dual space E∗, is
defined by

∂J(u) =

{
ξ ∈ E∗ : ⟨ξ, z⟩ ≤ J0(u; z), ∀z ∈ E

}
.

Monotone and generalized monotone play cru-
cial role in several branches of mathematics such
as variational analysis, engineering, optimization,
and differentiability theory of convex functions,
etc (see [2, 15, 17, 24, 34, 35]). Let us mention
some of these generalizations of α-monotone
(resp., uniformly monotone) operators which we
shall use to prove as follows:

Definition 2.6 [2] Let T : E ⊸ E∗ be a set-
valued and α : E × E → R a bifunction. Then
T is said to be α- monotone if ⟨x∗ − y∗, x− y⟩ ≥
α(x, y), for all x, y ∈ E, x∗ ∈ T (x) and y∗ ∈
T (y).

Definition 2.7 [2, 34] Let α : E × E → R be
bifunction. A single-valued T : E → E∗ is said
to be

[(i)]α- monotone, if
⟨T (x)− T (y), x− y⟩ ≥ α(x, y), for all x, y ∈
E,
strong monotone, if there exists γ > 0 such
that
⟨T (x)− T (y), x− y⟩ ≥ γ∥u − v∥2, for all
x, y ∈ E.

In next definition B. Alleche and V. Radulscu
[4] introduced a generalization of lower semicon-
tinuous of set-valued function when the space E
is a real topological Hausdoroff vector space.
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1.2. Definition 2.8 [4] Assume that T : E ⊸ E∗ is a
set-valued mapping. Then T is called lower quasi-
hemicontinuous at x ∈ E, if whenever w ∈ E and
(λn)n a sequence in (0, 1) such that lim

n→∞
λn = 0,

there exists a sequence (w∗
n)n converging to some

element x∗ ∈ T (x) such that w∗
n ∈ T (x+ λn(w −

x)) for every n. The set valued function T is said
lower quasi-hemicontinuous on a subset C of E if
T is lower quasi-hemicontinuous at every point of
C.

Similarly, one can define a single-valued T from
the space E to E∗ is lower quasi-hemicontinuous
on E, if whenever z ∈ E and (λn)n a sequence in
(0, 1) such that lim

n→∞
λn = 0, then T (x+λn(z−x))

converging to T (x) ∈ E∗ ∀x ∈ E.

Let us end this section with two theorems that
will be used to prove our results. The first is the
Schauder,s fixed point Theorem (see [7]) while the
second represents notions of a KKMmapping and
the well-known intersection Lemma that is due to
Ky Fan [12] will be needed.

Theorem 2.1 [7] Assume that K is a convex
compact set in a Banach space E and that G :
K → K is a continuous mapping. Then G has a
fixed point in the set K.

Theorem 2.2 [14] LetK be a nonempty subset
of a Hausdorff topological vector space E and let
Λ : K ⊸ E be a KKM mapping. If Λ(x) is
closed in E for every x ∈ K and compact for
some u0 ∈ K, then

∩
u∈K

Λ(u) ̸= ϕ.

We understand the family of all the subsets of
E is said to be a KKM mapping if for any finite
subset {u1, u2, · · ·, un} of K, co{u1, u2, · · ·, un} ⊂
n∪

i=1
Λ(ui), where co{u1, u2, · · ·, un} denotes the

convex hull of {u1, u2, · · ·, un}.

3 Main results

Assume that K is a nonempty bounded, closed
and convex subset of a real reflexive Banach space
X. Our aim is to study the following inequality
of nonlinear variational-hemivariational.

Find v ∈ K and v∗ ∈ T (v) for every u ∈ K
such that

⟨v∗, u− v⟩ −H(v) +H(u) + J0(Av;Aθ(v, u)) ≥ 0.
(3.1)

We suppose that there exists a linear compact
operator A : X → E and θ : X × X → X is
single-valued function and that J : E → R is a
regular locally Lipschitz functional.

In order to solve problem (3.1), we assume that
the following hypotheses fulfilled:

H1: The mapping θ(·, ·) : X ×X → X satis-
fies the following conditions (i) θ(u, u) = 0
for all u ∈ X;
(ii) θ(·, u) is linear operator for all u ∈ X;
(iii) θ(v, um) ⇀ θ(v, u), whenever um ⇀ u.

H2: α : X × X → R is a bifunc-
tion such that for all u, v ∈ K,
lim
n→∞

α(v+λn(u−v),v)
λn

= 0 wherever, (λn)n

is a sequence in (0, 1) such that lim
n→∞

λn = 0

and lim sup
n

α(u, vn) ≥ α(u, v) whenever

(vn)n is a sequence in K converging to v.
H3 : T is α- monotone and lower quasi-
hemicontinuous on K with respect to weak
∗-topology X∗.
H4: H : X → R ∪ {+∞} is a convex
and l.s.c on K, K ∩ domH ̸= H, where
domH = {x ∈ X : H(x) < +∞} is the
effective domain of H.

Remark 3.1 It is clear that the mapping u 7→
J0(v, θ(v, u)) is convex for all v ∈ E. It fol-
lows from the convexity of J0(u, v) and linearity
of θ(., u).

Remark 3.2 Since A is a linear compact opera-
tor we obtain that Avn converges strongly to some
Av ∈ K. Therefore, Aθ(vn, u) converges strongly
to Aθ(v, u) in which u ∈ K. By applying this
fact, together with Proposition 2.1 (ii), one can
get that

lim sup
n

J0(Avn;Aθ(vn, u)) ≤ J0(Av;Aθ(v, u)).

(3.2)

We present an example of linear compact opera-
tor which satisfies hypothesis H1.

Example 3.1 Let A : X → X be a linear com-
pact operator, r > 0, s ∈ X, and define a functi-
nal g : X → X by g(x) := rA(x) + s. Let us
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define the functional θ : X ×X → X as follows:

θ(v, u) := g(u)− g(v), ∀u, v ∈ X.

In this case, θ(v, u) satisfies the conditions
(i), (ii) and (iii) from H1.

An example of a bifunction α that satisfy the con-
ditions (H2) and (H3) is the following.

Example 3.2 Letting α(u, v) := γ∥u − v∥2,
where u ̸= v , γ > 0 and r ≥ 2.
To satisfied the hypothsis H2,

lim
n→∞

α(v + λn(u− v), v)

λn

= lim
n→∞

γ∥(v + λn(u− v)− v)∥2

λn
.

= lim
n→∞

γλn∥u− v∥2

= 0.

Since the norm is continuous, then the property
lim sup

n
α(u, vn) ≥ α(u, v) holds, whenever (vn)n

is a sequence in K converging to v.

To satisfied the hypothsis H3. Letting T =
∆p : W 1,p

0 (Ω) → W−1,q(Ω), where ∆pv =
div(|∇v|p−2∇v), p > 1 is a real constant, and Ω
is a bounded domain of RN , N ≥ 1 with smooth
boundary ∂Ω, where W 1,p(Ω) is Sobolev space
and W−1,q(Ω) its dual space, 1

p + 1
q = 1.

If whenever z ∈ W 1,p
0 (Ω) and lim

n→∞
λn = 0 such

that λn ∈ (0, 1), then it is clear that ∆p(x+λn(z−
x)) ⇀ ∆p(x) ∈ W 1,q(Ω). So, ∆p is lower quasi-

hemicontinuous at x ∈ W 1,p
0 (Ω) because ∆p is

continuous (see [2] page 44).

Since the p−Laplacian is strong monotone, (see
[1]), then for every u, v ∈ W 1,p

0 (Ω),

⟨∆pu−∆pv, u− v⟩ ≥ γ∥u− v∥2.

Then T is α- monotone operator.

In what follows, the authors point out the fact
that when K is a nonempty, closed, bounded and
convex subset of a reflexive Banach space. How-
ever, by weakening of hypotheses of K we do to
impose certain one of generalized monotonicity,
so called α-monotonicity beside one of generalized
continuity (see [4]) to establish the existence of
at least one solution for nonstandard variational-
hemivariational inequality.

Theorem 3.1 Let us consider the nonempty,
closed, bounded and convex set K ⊂ X. If the
conditions H1,H2,H3 and H4 are hold, then the
problem (3.1) admits at least one solution.

Let us define the set-valued mapping Ψ : K ⊸ K
as follows:

Ψ(u) :=

{
v ∈ K : inf

u∗∈T (u)
⟨u∗, u− v⟩ −

H(v) +H(u) + J0(Av;Aθ(v, u)) ≥

α(u, v)

}
. (3.3)

For this mapping we verify the assumptions of
Theorem 2.2.
Claim 1: Ψ(u) is a KKM mapping. Arguing by
contradiction let us assume that Ψ is not KKM.
According to the definition of KKM mapping
there exists a finite subset {u1, u2, · · ·, un} ⊂ K

and put v0 =
n∑

k=1

tkuk where tk ∈ (0, 1) for every

k = 1, n and
n∑

k=1

tk = 1, such that v0 /∈
n∪

k=1

Ψ(uk).

This is equivalent to

inf
u∗∈T (uk)

⟨u∗, uk − v0⟩ −H(v0) +H(uk) +

J0(Av0;Aθ(v0, uk)) < α(uk, v0). (3.4)

One can choose u∗k ∈ T (uk), for every k = 1, n in
which

⟨u∗
k, uk − v0⟩ −H(v0) +H(uk) +

J0(Av0;Aθ(v0, uk)) < α(uk, v0). (3.5)

On the other hand, T is α-monotone operator
and thus, for every k = 1, n we get

⟨u∗k − v∗0, uk − v0⟩ ≥ α(uk, v0)

> ⟨u∗k, uk − v0⟩ −
H(v0) +H(uk) +

J0(Av0;Aθ(v0, uk)).

Then for every v∗0 ∈ T (v0),

⟨v∗0, uk − v0⟩ −H(v0) +H(uk) +

J0(Av0;Aθ(v0, uk)) < 0. (3.6)

Using Remark 3.1, H1(i) and H4, for every
v∗0 ∈ T (v0),
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0 = ⟨v∗0, v0 − v0⟩ −H(v0) +H(v0) +

J0(Av0;Aθ(v0, v0))

=

⟨
v∗0,

n∑
k=1

tk(uk − v0)

⟩
−H(v0) +

H(

n∑
k=1

tkuk) + J0(Av0;Aθ(v0,

n∑
k=1

tkuk))

≤
n∑

k=1

tk

[
⟨v∗0, uk − v0⟩ −H(v0) +

H(uk) + J0(Av0;Aθ(v0, uk))

]
< 0,

which is a contradiction. Therefore, the set- val-
ued mapping u 7→ Ψ(u) is a KKM mapping.

Claim 2: Ψ(u) = Ψ(u), for every u ∈ K.
Assume that v ∈ Ψ(u) and u ∈ K. Let (vn)n be
a sequence in Ψ(u) converging to v. Assume that
u∗ ∈ T (u). Then for all n ≥ 1, then

⟨u∗, u− vn⟩ −H(vn) +H(u) +

J0(Avn;Aθ(vn, u) ≥ α(u, vn). (3.7)

Taking into account H4 and Remark 3.2 for
each v ∈ K, then

α(u, v) ≤ lim sup
n

α(u, vn)

≤ lim sup
n

[ ⟨u∗, u− vn⟩ −H(vn) +

H(u) +

J0(Avn;Aθ(vn, u))]

≤ ⟨u∗, u− v⟩ −H(v) +H(u) +

J0(Av;Aθ(v, u)).

Therefore, v ∈ Ψ(u), and Ψ(u) is a weakly closed
subset of K, for each u ∈ K.

On the other hand, K is a weakly compact set
as it is a bounded, convex and closed subset of
the real reflexive Banach space X. Therefore,
Ψ(u) is a weakly compact subset of K, for
each u ∈ K. Then by Theorem 2.2, we have∩
u∈K

Ψ(u) ̸= ∅.

Let v0 ∈
∩

u∈K
Ψ(u). This implies that v0 ∈ K

and for every z ∈ K, we have

inf
z∗∈T (z)

⟨z∗, z − v0⟩ −H(v0) +H(z) +

J0(Av0;Aθ(v0, z)) ≥ α(z, v0). (3.8)

Assume that u ∈ K is arbitrary and define
zn = v0 + λn(u − v0) such that (λn)n is a se-
quence in (0, 1) such that lim

n→∞
λn = 0. By using

lower quasi-hemicontinuouity of T on K, we have

z∗n
w∗
−→v∗0 ∈ T (v0) for each z∗n ∈ T (zn).

Since u → J0(λv0, λu) is positively homoge-
neous, so from Remark 3.1 one can obtain that
the mapping u 7→ J0(Av,Aθ(v, u)) is convex.
Then the left side is as follows

λn ⟨z∗n, u− v0⟩ −H(v0) +

H(v0 + λn(u− v0)) +

λnJ
0(Av0;Aθ(v0, u))

+ (1− λn)J
0(Av0;Aθ(v0, v0))

≤ λn ⟨z∗n, u− v0⟩ −H(v0) +H(v0)

+λn[H(u)−H(v0)]

+λnJn(Av0;Aθ((v0, u))

= λn[ ⟨z∗n, u− v0⟩ −H(v0) +H(u)

+J0(Av0;Aθ(v0, u))].

Hence,

α(v0 + λn(u− v0), v0)

λn
≤ ⟨z∗n, u− v0⟩

−H(v0) +H(u) + J0(Av0;Aθ(v0, u)).

(3.9)

By approaching n → +∞, one can obtain

⟨v∗0, u− v0⟩ −H(v0) +H(u)

+J0(Av0;Aθ(v0, u)) ≥ 0. (3.10)

As for uniqueness of solutions authors present
the next result.

Theorem 3.2 In addition to the hypotheses
H2, H3 and H4, we assume that the following
hypotheses are fulfilled:

H5 : there exists M > 0 such that
⟨v∗1 − v∗2, v1 − v2⟩ ≥ M∥v2 − v1∥2 for
all v1, v2 ∈ X.
H6 : there exists a positive constant S ≤ M
such that |J0(x0; v)|≤ S

2 ∥v∥.
H7 : ∥Aθ(v1, v2)∥≤ ∥v1 − v2∥2.

Then (3.1) has a unique solution.

Towards to a contradiction, let us assume that
v1, v2 ∈ K are two solutions to (3.1). So, if write
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in (3.1) for v1 with u = v2, we have

⟨v∗1, v2 − v1⟩ −H(v1) +H(v2) +

J0(Av1;Aθ(v2, v1)) ≥ 0, (3.11)

and then for v2 with u = v1, we have

⟨v∗2, v1 − v2⟩ −H(v2) +H(v1) +

J0(Av2;Aθ(v1, v2)) ≥ 0. (3.12)

By multiplying each of the equations (3.11) and
(3.12) by −1 and summing together, one can get

0 ≥ ⟨v∗2 − v∗1, v2 − v1⟩ − J0(Av1;Aθ(v2, v1))

−J0(Av2;Aθ(v1, v2))

≥ M∥v2 − v1∥2−|J0(Av1;Aθ(v2, v1))|−
|J0(Av2;Aθ(v1, v2))|

≥ M∥v2 − v1∥2−
S

2
∥Aθ(v1, v2)∥

−S

2
∥Aθ(v1, v2)∥

≥ (M − S)∥v2 − v1∥2.

which shows that ∥v2−v1∥2≤ 0 since M −S ≥ 0.
Consequently, we have v1 = v2 ∈ K.

In the next result, we prove the problem (3.1)
admits at least one solution in the case K is a
compact convex subset of X without using any
monotonicity conditions on T in a Banach space
X. We shall assume that the following hypothe-
ses fulfilled.

In order to prove our result, we need the fol-
lowing assertion:

H8 : T is l.s.c on K with respect to weak
∗-topology X∗.

Theorem 3.3 Assume that K is a nonempty
compact convex subset of the Banach space X. If
the hypotheses H4 and H8 hold, then the problem
(3.1) admits at least one solution.

Towards to a contradiction, we assume that
problem (3.1) has no solution. Then, for each
v ∈ K, there exists u ∈ K such that

sup
v∗∈T (v)

⟨v∗, u− v⟩ −H(v) +H(u)

+J0(Av;Aθ(v, u)) < 0. (3.13)

Let us define the set-valued mapping
Γ : K ⊸ K as follows:

Γ(u) := {v ∈ K : inf
v∗∈T (v)

⟨v∗, u− v⟩ −H(v)

+H(u) + J0(Av;Aθ(v, u)) ≥ 0}. (3.14)

Claim 1. The set Γ(u) is a nonempty and
closed for each u ∈ K.
Easily, Γ(u) is nonempty since u ∈ Γ(u) for each
u ∈ K according to definition of set Γ. Assume
that {vn}n≥1 ⊂ Γ(u) is a sequence which con-
verges weakly to v. We must prove that v ∈ Γ(u),
for each n ≥ 1, and for each v∗n ∈ T (vn), we have

⟨v∗n, u− vn⟩ −H(vn) +H(u) +

J0(Avn;Aθ(vn, u)) ≥ 0. (3.15)

Let v∗ ∈ T (v) be fixed and let v∗n ∈ T (vn). Us-
ing the lower semicontinuity of T and H, and
Remark 3.2 , v ⊂ Γ(u). Let us point out the fact
that T is l.s.c at x ∈ X if, and only if every gener-
alized sequence (vn)n converges to v and for every
v∗ ∈ T (v), then there exists generalized sequence
(v∗n)n converges to v∗ such that v∗n ∈ T (vn) for
every n ∈ N ( see [29]). To do this, passing to
limsup as n → ∞ in (3.15) we obtain

0 ≤ lim sup
n

[ ⟨v∗n, u− vn⟩ −H(vn) +H(u)

+J0(Avn;Aθ(vn, u))]

≤ lim
n

⟨v∗, u− vn⟩ − lim inf
n

H(vn) +H(u)

+ lim sup
n

J0(Avn;Aθ(vn, u))

≤ ⟨v∗, u− v⟩ −H(v) +H(u) +

J0(Av;Aθ(v, u)).

Therefore, v ∈ Γ(u), and Γ(u) is a weakly
closed subset of K.
According to (3.13) for each v ∈ K, there exists
u ∈ K such that v ∈ [Γ(u)]c = X − Γ(u). There-
fore, the family {[Γ(u)]c} is an open covering of
the compact set K, for each u ∈ K. This means
that there exists a finite subset {u1, u2, · · ·, uN}
of K such that {[Γ(ur)]c} is a finite subcover of
K for every r = 1, N .

Assume that Dr(v) := dis(v; Γ(ur)) (i.e., the
distance between v and the set Γ(ur)) for every
r = 1, N and let Sr : K → [0, 1] be a function
defined as follows:

Sr(v) :=
Dr(v)

N∑
i=1

Di(v)

.

Notice that Sr is a Lipschitz continuous function
for every r = 1, N , Sr(v) ∈ [0, 1], for all v ∈ K
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and
N∑
r=1

Sr(v) = 1. Let M : K → K be a mapping

defined by:

M(v) :=
N∑
r=1

Sr(v)ur

Claim 2: The mapping M is continuous.
To do this, we can obtain for any v1, v2 ∈ K the
following estimation:

∥M(v1)−M(v2)∥

= ∥
N∑
r=1

(Sr(v1)− Sr(v2)) ur∥

≤
N∑
r=1

∥ur∥∥Sr(v1)− Sr(v2)∥

≤ Jr

N∑
r=1

∥ur∥∥v1 − v2∥

≤ J∥v1 − v2∥.

This shows that M is continuous map. Taking
into account Theorem 2.1, there exists v0 ∈ K
such that M(v0) = v0.
Let us consider the functional N : K → R as
follows:

N(v) := sup
v∗∈T (v)

⟨v∗,M(v)− v⟩ −H(v)

+H(M(v)) + J0(Av;Aθ(v,M(v))).

By applying Proposition 2.1, Remark 3.1, the
convexity of H and the way the map M was con-
structed for each v ∈ K, one can obtain

N(v) = sup
v∗∈T (v)

⟨
v∗,

N∑
r=1

Sr(v)(ur − v)

⟩

−H(v) +H(
N∑
r=1

Sr(v)ur)

+J0(Av;Aθ(v,
N∑
r=1

Sr(v)ur)).

≤
N∑
r=1

Sr(v)

[
sup

v∗∈T (v)

⟨v∗, ur − v⟩ −

H(v) +H(ur) + J0(Av;Aθ(v, ur))

]
.

On the other hand, since K ⊂
N∪
r=1

[Γ(ur)]
c for

every r = 1, N , there exists at least one index

r0 = 1, N such that v ∈ [Γ(ur0)]
c. This shows

that N(v) < 0 for all v ∈ K which contradicts
the fact that N(v0) = 0.

Remark 3.3 Notice that the solutions of
variational-hemivariational inequality on un-
bounded domains exist if we expand the
conditions for the bounded domains with a coer-
civity condition. As, if we put some coercivity
conditions, it will ensure that Theorem 3.1 or
Theorem 3.3 will also satisfy when the set K is
unbounded (for details, see [10], [11] and [13]).

4 Application to differential in-
clusion problems

It is worth mentioning that, there has been an
increased interest in differential problems gov-
erned by higher order operators. In this sec-
tion, we apply our main results, expressed in the
previous section to a partial differential inclu-
sion problem. Let us consider the usual Sobolev
space as W 1,p(Ω) and Banach; W−1,q(Ω) its dual
space, where 1

p + 1
q = 1. The p− Laplacian

operator −∆p : W 1,p
0 (Ω) → W−1,q(Ω), where

∆pv = div(|∇v|p−2∇v), p > 1 is a real constant,
and Ω is a bounded domain of RN , N ≥ 1 with
smooth boundary ∂Ω.

In order to highlight the application, we
present below problem in the partial differential
inclusions.{

−∆pv − g(x) ∈ ∂J(v), if x ∈ Ω
v = 0 on ∂Ω.

(4.16)
such that g : Ω → R is continuous function with
compact support. For technical reasons, let us
define H : W 1,p

0 (Ω) → R as follows:

H(ξ) :=

∫
Ω
−g(x)ξ(x)dx.

Let K be a nonempty, closed, bounded and con-
vex subset of Sobolev space W 1,p

0 (Ω). In fact,
our purpose is to find at least one solution of
the following variational-hemivariational inequal-
ity problem under circumstances θ(v, u) := u− v
and A is surjective: Find v ∈ K as a weak solu-
tion of problem 4.1 such that

−
∫
Ω
|∇v|p−2∇v∇(u− v)dx+H(u)−

H(v) + J0(v;u− v)dx ≥ 0, (4.17)



248 Ayed E. Hashoosh et al, /IJIM Vol. 9, No. 3 (2017) 241-250

for all u ∈ K.
To apply the first main result in differential

inclusion, we must prove that any solution of
(3.1) is solution to (4.17), show that the assump-
tions which depend in Theorem 3.1 are satisfied.
To do this, the authors considered the letting
T := ∆p and α(u, v) := γ∥u − v∥2, where u ̸= v
and γ > 0. Taking into account Example 3.2,
then the bifunction α satisfies Hypothesis (H2)
and the operator T := ∆p satisfies Hypothesis
(H3). It remains to prove that H is a convex and
lower semi continuous function, we assume that
u1, u2 ∈ W 1,p

0 (Ω), t ∈ (0, 1),

H(tu1 + (1− t)u2)

= −
∫
Ω
g(x)(tu1(x) + (1− t)u2(x))dx

= t

[
−

∫
Ω
g(x)u1(x)dx

]
+ (1− t)

[
−

∫
Ω
g(x)u2(x)dx

]
= tH(u1) + (1− t)H(u2).

Also, if un ⇀ u ∈ W 1,p
0 (Ω)

|H(un)−H(u)|

= |−
∫
Ω
g(x)(un(x)− u(x))dx|

≤
(∫

Ω
|g(x)|q

) 1
q

.

(∫
Ω
|un(x)− u(x)|p

) 1
p

≤ M∥un − u∥Lp

≤ M∥un − u∥
⇀ 0.

Therefore, all conditions of Theorem 3.1 are
achieved.

Similarly, one can apply the second main The-
orem 3.3 in differential inclusion, that is because
∆p is continuous (see [8] page 44), so H8 is satis-
fied.
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