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Abstract

In this paper an coupled Burgers’ equation is considered and then a method entitled interval finite-
difference method is introduced to find the approximate interval solution of interval model in level wise
cases. Finally for more illustration, the convergence theorem is confirmed and a numerical example
is solved.
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1 Introduction

T
he partial differential equations have an im-
portant role in many scientific fields. One

of the models that is a special form of incom-
pressible Navier-Stokes equation without having
pressure term and continuity equation is the non-
linear coupled Burgers’ equation. The Burgers’
equation as an important member of family of
partial differential equations is derived from fluid
dynamics, and is widely used for various physical
applications, such as traffic flow, gas dynamics
and shock waves and Coupled Burgers equation
is a simple model of physical flows that could
be used in many physical fields like interaction
between two viscous fluids. Several numerical
methods are introduced to solve the differential
equations which one of them is interval method
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[10]. An interval method based on the theory of
backward finite difference method to find the ap-
proximate solution of one-dimensional heat con-
duction equation was proposed by Jankowska [7].
Then the first approach to an interval version
of Crank-Nicolson method to solve above men-
tioned equation with Dirichlet boundary condi-
tions was introduced in [9]. A similar method for
constructing an interval method to solve a partial
differential equation was introduced by Hoffmann
[6]. In this research the conventional central-
difference method is used with interval method
to solve the Poisson equation. An overview of
the researches on interval methods for solving the
initial and boundary value problems is presented
in [10, 12]. Also the following researchers have
been published about the related interval arith-
metic models [1, 2, 8, 4, 5, 13, 14, 11]. In this
paper we will consider one dimensional interval
coupled nonlinear Burgers’ equations (1.1), (1.2)
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in generalized form:

∂u

∂t
+ δ

∂2u

∂x2
+ ηu

∂u

∂x
+ α

(
u
∂v

∂x
+ v

∂u

∂x

)
= 0,

(1.1)

∂v

∂t
+ µ

∂2v

∂x2
+ ξv

∂v

∂x
+ β

(
u
∂v

∂x
+ v

∂u

∂x

)
= 0,

(1.2)

subject to the initial conditions (x ∈ Ω):

u(x, 0) = [a1(x), ā1(x)], (1.3)

v(x, 0) = [a2(x), ā2(x)],

and interval Dirichlet boundary conditions (t >
0):

u(x, t) = [b1(x, t), b̄1(x, t)], (1.4)

v(x, t) = [b2(x, t), b̄2(x, t)], x ∈ Ω,

where Ω = {x : c ≤ x ≤ d} is the computational
domain, δ, µ, η and ξ are real constants, and α
and β are arbitrary constants depending on the
system parameters. The interval functions u(x, t)
and v(x, t) are undetermined velocity components
that should be determined and their uncertainty
are related to a1, a2, b1, b2, ā1, ā2, b̄1 and b̄2. It is

clear that the known function
∂u

∂t
is unsteady in-

terval term, u
∂u

∂x
is the nonlinear convection in-

terval term,
∂2u

∂x2
is the diffusion interval term and

its uncertainty should be considered based on two
types of interval differentiability. The rest of the
paper is organized as follows. In section 2 some
concepts, definitions, theorems and lemmas are
mentioned that are used in this study. In section
3, main research of the paper is introduced. In
section 4 an example is solved and the subject
ends by conclusion in section 5. .

2 Preliminaries

All the following required definitions in this sec-
tion are referred to [3, 15].

Definition 2.1 An interval number(IN) U is de-
fined as the set of real numbers such that

U = [u, ū] = {u′ ∈: u ≤ u′ ≤ ū}. (2.5)

Definition 2.2 We define distance between two
interval numbers U = [u, ū] and V = [v, v̄] as:

d(U, V ) =

√
(u− v)2 + (ū− v̄)2

2
(2.6)

Indeed it is a modified version of Euclidean dis-
tance between two interval numbers. We know
that the Euclidean distance on the interval num-
bers is as follow:

dE(U, V ) =
√

(u− v)2 + (ū− v̄)2

Obviously, if interval numbers U = [u, ū] and
V = [v, v̄] are real numbers, i.e., u = u = ū and
v = v = v̄, then we conclude dE(U, V ) ̸= |u − v|
whereas d(U, V ) = |u− v|.

Therefore, the function d(·, ·) preserve the tradi-
tional distance in real space. Whereas the func-
tion has dE(., .) not such property, we call it
“modified Euclidean”.

Definition 2.3 The distance between two inter-
val number vectors U = (u1, u2, . . . , un)

T and
V = (v1, v2, . . . , vn)

T is as follow:

D(U, V ) = max
1≤i≤n

d(Ui, Vi), (2.7)

where the function d(·, ·) is defined in Definition
2.2.

Definition 2.4 The n× n linear system
a11U1 + a12U2+ . . .+ a1nUn = V1,
a21U1 + a22U2+ . . .+ a2nUn = V2,
...

...
an1U1 + an2U2+ . . .+ annUn = Vn,

(2.8)

where the coefficient matrix A = (aij)n×n is an
n×n real valued matrix and Vi = [vi, v̄i], 1 ≤ i ≤
n are interval numbers is called an interval linear
system (ILS). We denote the ILS in compact form
as

AU = V, (2.9)

where U = (u1, u2, . . . , un)
T and V =

(v1, v2, . . . , vn)
T are the interval number vectors.

Let conv(R) be a space of all nonempty closed in-
tervals U = [u1, u2] ⊂ R with the following Haus-
dorff metric:

h([u1, u2], [v1, v2]) = max {|v1, u1|, |v2, u2|}.
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Definition 2.5 Let U, V ∈ IN , an interval num-
ber Z such that U = V + Z is called a Hukuhara
difference of the intervals U and V is denoted by

U
h
− V .

Lemma 2.1 Let diameter of U ∈ IN is (U) =
ū − u. The Hukuhara difference of the sets U =
[u, ū] and V = [v, v̄] exists iff (U) ≥ (V ) and is
equal to

[u− v, ū− v̄].

Proof.

(U) = ū− u, (V ) = v̄ − v

(U) ≥ (V )

ū− u ≥ v̄ − v

−u+ v ≥ −ū+ v̄

−(−u+ v ≥ −ū+ v̄)

u− v ≤ ū− v̄

z ≤ z̄ ⇒ [z, z̄] ⇒ [u− v, ū− v̄]

⇒ u = v + z, ū = v̄ + z̄

Conversely:

Z = U
h
− V = [u− v, ū− v̄] = [z, z̄]

z ≤ z̄

u− v ≤ ū− v̄

u− ū ≤ v − v̄

−(u− ū ≤ v − v̄)

ū− u ≥ v̄ − v

U ≥ V

Let U : I → conv(R) be an interval-valued map-
ping; (t0−∆, t0+∆) ⊂ I be a ∆-neighborhood of
a point t0 ∈ I; ∆ > 0. For any t ∈ (t0−∆, t0+∆)
consider the following Hukuhara differences if
these differences exist.

U(t)
h
− U(t0), t ≥ t0, (2.10)

U(t0)
h
− U(t), t ≥ t0, (2.11)

U(t0)
h
− U(t), t ≤ t0, (2.12)

U(t)
h
− U(t0), t ≤ t0, (2.13)

The differences (2.10) and (2.11) [(2.12) and
(2.13)] are called the right [left] differences. From
the definition of the Hukuhara difference it fol-
lows that both one-sided differences exist only in

the case when U(t) ≡ F+{f(t)} for t ∈ [t0, t0+∆)
or t ∈ (t0 −∆, t0]. If all differences (2.10)-(2.13)
exist, then U(t) ≡ F + {f(t)} in ∆-neighborhood
of the point t0. If for all t ∈ (t0−∆, t0+∆) there
exists only one of the one-sided differences, then
using the properties of the Hukuhara difference,
we get that the mapping diam U : I → R+ in the
∆-neighborhood of the point t0 can be:

[a)]non-decreasing on (t0 −∆, t0 + ∆); non-
increasing on (t0−∆, t0+∆); non-decreasing
on t ∈ (t0 − ∆, t0) and non-increasing on
(t0, t0+∆); non-increasing on t ∈ (t0−∆, t0)
and non-decreasing on (t0, t0 +∆);

Hence, for each of the above mentioned cases only
one of combinations of differences is possible:

1.2.3.4.1. (2.10) and (2.12);

2. (2.11) and (2.13);

3. (2.11) and (2.12);

4. (2.10) and (2.13).

Consider four types of limits corresponding to one
of the difference types:

lim
t→t0

1

t− t0
(U(t)

h
− U(t0)) (2.14)

lim
t→t0

1

t− t0
(U(t0)

h
− U(t)) (2.15)

lim
t0→t

1

t0 − t
(U(t0)

h
− U(t)) (2.16)

lim
t0→t

1

t0 − t
(U(t)

h
− U(t0)) (2.17)

So it is possible to say that in the point t0 not
more than two limits can exist (as we assumed
that there exist only two of four Hukuhara dif-
ferences). Considering all above, only following
combinations of limits exist:

1. (2.14) and (2.16);

2. (2.15) and (2.17);

3. (2.15) and (2.16);

4. (2.14) and (2.17).

Definition 2.6 The generalized Hukuhara dif-
ference of two interval numbers U and V is de-
fined as follows:

I- type :
Z = U − V
[z, z̄] = [u− v, ū− v̄]

II- type :
−Z = V − U
[z, z̄] = [ū− v̄, u− v]



218 M. Norouzi et al, /IJIM Vol. 9, No. 3 (2017) 215-224

3 Numerical Scheme (II-FDM)

In this section, we illustrate the interval implicit
finite-difference method (II-FDM). To this end
suppose uni and vni denote the discrete approx-
imations of u(x, t) and v(x, t), respectively, at
the grid point (i∆x, n∆t) for i = 0, 1, 2, . . . , nx,
n = 0, 1, 2, . . . ,∆x = 1/nx, ∆x is the grid size in
x-direction, and ∆t represents the time step. In
this method we will approximate the derivatives
using forward and central differences as follow:

un+1
t = (

un+1
i − uni

∆t
),

un+1
x =

(
un+1
i+1 − un+1

i−1

2∆x

)
,

un+1
xx =

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)
vn+1
t = (

vn+1
i − vni

∆t
),

vn+1
x =

(
vn+1
i+1 − vn+1

i−1

2∆x

)
,

vn+1
xx =

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)
(3.18)

By substituting equation (3.18) in (1.1), (1.2) we
have:

un+1
i − uni

∆t
+ δ

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)

+ (ηun+1
i + αvn+1

i )

(
un+1
i+1 − un+1

i−1

2∆x

)

+ aun+1
i

(
vn+1
i+1 − vn+1

i−1

2∆x

)
= 0 (3.19)

vn+1
i − vni

∆t
+ µ

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)

+ (ξvn+1
i + βun+1

i )

(
vn+1
i+1 − vn+1

i−1

2∆x

)

+ avn+1
i

(
un+1
i+1 − un+1

i−1

2∆x

)
= 0 (3.20)

The nonlinear systems of interval equations ob-
tained from equations (3.19) and (3.20) can be
written in the form:

β(ω) = 0 (3.21)

Where β =
(
β1

β2

)
, ω =

(
ω1

ω2

)
(
β1ω1

β2ω2

)
=

(
0

0

)
, (3.22)

β1 = (β
1ℓ
, β

2ℓ
, . . . , β

2nℓ
)T ,

β2 = (β̄1r, β̄2r, . . . , β̄2nr)
T ,

ωn+1
1 = (un+1

1 , vn+1
1 , un+1

2 , vn+1
2 , . . . ,

un+1
nℓ , vn+1

nℓ )T

ωn+1
2 = (ūn+1

1 , v̄n+1
1 , ūn+1

2 , v̄n+1
2 , . . . ,

ūn+1
nr , v̄n+1

nr )T

and

β = (β
1ℓ
, β

2ℓ
, . . . , β

2nℓ
, β̄1r, β̄2r, . . . , β̄2nr)

T

are the nonlinear equations containing interval
parameters. With applying the Newton’s method
on (3.22), the following steps are being taken:

1. Set ω(0) =
(ω(0)

1

ω
(0)
2

)
an initial approximation.

2. While for k = 0, 1, 2, . . . until convergence
do:

• solve

J(ω(k))∆ω(k) = −β(ω(k)),(
j1
j2

)
·
(
ω
(k)
1

ω
(k)
2

)(
∆ω

(k)
1

∆ω
(k)
2

)

= −
(
β1
β2

)(
ω
(k)
1

ω
(k)
2

)
,{

j1ω
(k)
1 ·∆ω

(k)
1 = −β1ω

(k)
1

j2ω
(k)
2 ·∆ω

(k)
2 = −β2ω

(k)
2

• set ω(k+1) = ω(k) +∆ω(k),(
ω
(k+1)
1

ω
(k+1)
2

)
=

(
ω
(k)
1

ω
(k)
2

)
+

(
∆ω

(k)
1

∆ω
(k)
2

)
,{

ω
(k+1)
1 = ω

(k)
1 +∆ω

(k)
1

ω
(k+1)
2 = ω

(k)
2 +∆ω

(k)
2

In general form the Jacobian matrix J(ω(k)) =(j1(ω(k)
1 )

j2(ω
(k)
2 )

)
is as follows:

[
A2nℓ B2nℓ

C2nr D2nr

]
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where A and B are 2nl square matrix and C,
D are 2nr square matrix and ∆(ω(k)) is the
correction vector. Newton’s iteration at each
time-step is stopped when ∥β(ω(k))∥ ≤ ξ. Con-
sidering different kinds of differentiability in in-
terval arithmetic, we have the following theo-
rems. In the all cases two types of differentia-
bility of ut, ux, uxx, vx, vt and vxx are considered.
. Then using definitions of finite difference meth-
ods based on forward and central differences, we
have many cases of FDMs (many cases) where in
this research only four cases of them are consid-
ered and the others are similar.

Theorem 3.1 Let u, v ∈ IN, (u = [u, ū], v =
[v, v̄]) and suppose that ut, ux, uxx, vx, vt, vxx are
I-type differentiable. Then the equations (1.1),
(1.2) convert to:

ut + δuxx + (ηu+ αv)ux + αu vx = 0
vt + µvxx + (ξu+ βv)vx + αv ux = 0
ūt + δūxx + (ηū+ αv̄)ūx + αūv̄x = 0
v̄t + µv̄xx + (ξū+ βv̄)v̄x + αv̄ūx = 0

Proof. Lets suppose that ut, ux, uxx, vx, vt and
vxx are I-type differentiable, then:

u = [u, ū], ut = [ut, ūt], ux = [ux, ūx],

uxx = [uxx, ūxx], v = [v, v̄], vt = [vt, v̄t],

vx = [vx, v̄x] and vxx = [vxx, v̄xx].

By substituting in equations (1.1), (1.2) we have:
Lower:

ut + δuxx + (ηu+ αv)ux + αu vx = 0

vt + µvxx + (ξu+ βv)vx + αv ux = 0

Upper:

ūt + δūxx + (ηū+ αv̄)ūx + αūv̄x = 0

v̄t + µv̄xx + (ξū+ αv̄)v̄x + αv̄ūx = 0

Therefore, the proof of Theorem is completed.

Now using equation (3.18) we have the fol-
lowing results and the finite-differences for the
derivatives are given as:

un+1
t =

un+1
i − uni

∆t

=

[
un+1
i − uni

∆t
,
ūn+1
i − ūni

∆t

]
= [un+1

t , ūn+1
t ],

un+1
x =

(
un+1
i+1 − un+1

i−1

2∆x

)

=

[(
un+1
i+1 − un+1

i−1

2∆x

)
,

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)]
= [un+1

x , ūn+1
x ]

un+1
xx =

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)

=

[(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)
,(

ūn+1
i+1 − 2ūn+1

i + ūn+1
i−1

(∆x)2

)]
= [un+1

xx , ūn+1
xx ]

vn+1
t =

vn+1
i − vni

∆t

=

[(
vn+1
i − vni

∆t

)
,

(
v̄n+1
i − v̄ni

∆t

)]
= [vn+1

t , v̄n+1
t ]

vn+1
x =

(
vn+1
i+1 − vn+1

i−1

2∆x

)

=

[(
vn+1
i+1 − vn+1

i−1

2∆x

)
,

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)]
= [vn+1

x , v̄n+1
x ]

vn+1
xx =

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)

=

[(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)
,(

v̄n+1
i+1 − 2v̄n+1

i−1

(∆x)2

)]
= [vn+1

xx , v̄n+1
xx ]
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Lower:

un+1
i − uni

∆t
+ δ

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)

+ (ηun+1
i + αvn+1

i )

(
un+1
i+1 − un+1

i−1

2∆x

)

+ αun+1
i

(
vn+1
i+1 − vn+1

i−1

2∆x

)
= 0

vn+1
i − vni

∆t
+ µ

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)

+ (ξvn+1
i + βun+1

i )

(
vn+1
i+1 − vn+1

i−1

2∆x

)

+ αvn+1
i

(
un+1
i+1 − un+1

i−1

2∆x

)
= 0

Upper:

ūn+1
i − ūni

∆t
+ δ

(
ūn+1
i+1 − 2ūn+1

i + ūn+1
i−1

(∆x)2

)

+ (ηūn+1
i + αv̄n+1

i )

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)

+ αūn+1
i

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)
= 0

v̄n+1
i − v̄ni

∆t
+ µ

(
v̄n+1
i+1 − 2v̄n+1

i + v̄n+1
i−1

(∆x)2

)

+ (ξv̄n+1
i + βūn+1

i )

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)

+ αv̄n+1
i

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)
= 0

Now case 2:

Theorem 3.2 Let u, v ∈ IN, (u =
[u, ū], v = [v, v̄]) and let’s suppose that
ut, ux, uxx, vx, vtand vxx are II-type differen-
tiable. Then the equations (1.1), (1.2) convert
to: 

ūt + δūxx + (ηu+ αv)ūx + αuv̄x = 0
v̄t + µv̄xx + (ξu+ βv)v̄x + αvūx = 0
ut + δuxx + (ηū+ αv̄)ux + αū vx = 0
vt + µvxx + (ξū+ βv̄)vx + αv̄ ux = 0

Proof. Lets suppose that ut, ux, uxx, vx, vt and
vxx are II-type differentiable, then:

u = [u, ū], ut = [ūt, ut], ux = [ūx, ux],

uxx = [ūxx, uxx], v = [v, v̄], vt = [v̄t, vt],

vx = [v̄x, vx] and vxx = [v̄xx, vxx].

For this case suppose that ut, ux, uxx, vx, vt and
vxx are II-type differentiable. In this case the
lower and upper forms of the equations (1.1),
(1.2) are as follows:

Lower:

ūt + δūxx + (ηu+ αv)ūx + αuv̄x = 0

v̄t + µv̄xx + (ξu+ βv)v̄x + αvūx = 0

Upper:

ut + δuxx + (ηū+ αv̄)ux + αū vx = 0

vt + µvxx + (ξū+ βv̄)vx + αv̄ ux = 0

Therefore, the proof of Theorem is completed.

Now again using equation (3.18) we have
the following results:

un+1
t = [ūn+1

t , un+1
t ], un+1

x = [ūn+1
x , un+1

x ],

un+1
xx = [ūn+1

xx , un+1
xx ], v = [v, v̄],

vn+1
t = [v̄n+1

t , vn+1
t ], vn+1

x = [v̄n+1
x , vn+1

x ]

and vn+1
xx = [v̄n+1

xx , vn+1
xx ].

Lower:

ūn+1
i − ūni

∆t
+ δ

(
ūn+1
i+1 − 2ūn+1

i + ūn+1
i−1

(∆x)2

)

+ (ηun+1
i + αvn+1

i )

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)

+ αun+1
i

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)
= 0

v̄n+1
i − v̄ni

∆t
+ µ

(
v̄n+1
i+1 − 2v̄n+1

i + v̄n+1
i−1

(∆x)2

)

+ (ξvn+1
i + βun+1

i )

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)

+ αvn+1
i

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)
= 0
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Upper:

un+1
i − uni

∆t
+ δ

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)

+ (ηūn+1
i + αv̄n+1

i )

(
un+1
i+1 − un+1

i−1

2∆x

)

+ αūn+1
i

(
vn+1
i+1 − vn+1

i−1

2∆x

)
= 0

vn+1
i − vni

∆t
+ µ

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)

+ (ξv̄n+1
i + βūn+1

i )

(
vn+1
i+1 − vn+1

i−1

2∆x

)

+ αv̄n+1
i

(
un+1
i+1 − un+1

i−1

2∆x

)
= 0

case3

Theorem 3.3 Let u, v ∈ IN, (u = [u, ū], v =
[v, v̄]) and suppose that ux is I-type differentiable
and the others are II-type differentiable. Then the
equations (1.1), (1.2) convert to:


ūt + δūxx + (ηu+ αv)ux + αu v̄x = 0
v̄t + µv̄xx + (ξu+ βv)v̄x + αv ux = 0
u+ δuxx + (ηū+ αv̄)ux + αūvx = 0
vt + µvxx + (ξū+ βv̄)vx + αv̄ux = 0

Proof. Suppose that ux is I-type differentiable
and the others are II-type differentiable, then:

u = [u, ū], ut = [ūt, ut], ux = [ux, ūx],

uxx = [ūxx, uxx], v = [v, v̄], vt = [v̄t, vt],

vx = [v̄x, vx] and vxx = [v̄xx, vxx].

In this case we have a system of equations where
in each equation two endpoints are appeared.

Lower:

ūt + δūxx + (ηu+ αv)ux + αu v̄x = 0

v̄t + µv̄xx + (ξu+ βv)v̄x + αv ux = 0

Upper:

u+ δuxx + (ηū+ αv̄)ux + αūvx = 0

vt + µvxx + (ξū+ βv̄)vx + αv̄ux = 0

Therefore, the proof of Theorem is completed.

By approximation of the derivatives using
equation (3.18) we have : Lower:

ūn+1
i − ūni

∆t
+ δ

(
ūn+1
i+1 − 2ūn+1

i + ūn+1
i−1

(∆x)2

)

+ (ηun+1
i + αvn+1

i )

(
un+1
i+1 − un+1

i−1

2∆x

)

+ αun+1
i

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)
= 0

v̄n+1
i − v̄ni

∆t
+ µ

(
v̄n+1
i+1 − 2v̄n+1

i + v̄n+1
i−1

(∆x)2

)

+ (ξvn+1
i + βun+1

i )

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)

+ αvn+1
i

(
un+1
i+1 − un+1

i−1

2∆x

)
= 0

Upper:

un+1
i − uni

∆t
+ δ

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)

+ (ηūn+1
i + αv̄n+1

i )

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)

+ αūn+1
i

(
vn+1
i+1 − vn+1

i−1

2∆x

)
= 0

vn+1
i − vni

∆t
+ µ

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)

+ (ξv̄n+1
i + βūn+1

i )

(
vn+1
i+1 − vn+1

i−1

2∆x

)

+ αv̄n+1
i

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)
= 0

case4

Theorem 3.4 Lets u, v ∈ IN, (u = [u, ū], v =
[v, v̄]) and suppose that ut, ux, uxx are I-type dif-
ferentiable and the others are II-type differen-
tiable. Then the equations (1.1), (1.2) convert
to:


ut + δuxx + (ηu+ αv)ux + αu v̄x = 0
v̄t + µv̄xx + (ξu+ βv)v̄x + αv ux = 0
ūt + δūxx + (ηū+ αv̄)ūx + αūvx = 0
vt + µvxx + (ξū+ βv̄)vx + αv̄ūx = 0
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Proof. Lets suppose that ut, ux, uxx

are I-type differentiable and the others are II-
type differentiable, then:

u = [u, ū], ut = [ut, ūt], ux = [ux, ūx],

uxx = [uxx, ūxx], v = [v, v̄], vt = [v̄t, vt],

vx = [v̄x, vx] and vxx = [v̄xx, vxx].

In this case we have a system of equations where
in each equation two endpoints are appeared.
Lower:

ut + δuxx + (ηu+ αv)ux + αu v̄x = 0

v̄t + µv̄xx + (ξu+ βv)v̄x + αv ux = 0

Upper:

ūt + δūxx + (ηū+ αv̄)ūx + αūvx = 0

vt + µvxx + (ξū+ βv̄)vx + αv̄ūx = 0

Therefore, the proof of Theorem is completed.

By approximation of the derivatives using
equation (3.18) we have : Lower:

un+1
i − uni

∆t
+ δ

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)

+ (ηun+1
i + αvn+1

i )

(
un+1
i+1 − un+1

i−1

2∆x

)

+ αun+1
i

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)
= 0

v̄n+1
i − v̄ni

∆t
+ µ

(
v̄n+1
i+1 − 2v̄n+1

i + v̄n+1
i−1

(∆x)2

)

+ (ξvn+1
i + βun+1

i )

(
v̄n+1
i+1 − v̄n+1

i−1

2∆x

)

+ αvn+1
i

(
un+1
i+1 − un+1

i−1

2∆x

)
= 0

Upper:

ūn+1
i − ūni

∆t
+ δ

(
ūn+1
i+1 − 2ūn+1

i + ūn+1
i−1

(∆x)2

)

+ (ηūn+1
i + αv̄n+1

i )

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)

+ αūn+1
i

(
vn+1
i+1 − vn+1

i−1

2∆x

)
= 0

vn+1
i − vni

∆t
+ µ

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2

)

+ (ξv̄n+1
i + βūn+1

i )

(
vn+1
i+1 − vn+1

i−1

2∆x

)

+ αv̄n+1
i

(
ūn+1
i+1 − ūn+1

i−1

2∆x

)
= 0

4 Numerical Example

As an example, consider the following coupled
Burgers’ equation:

∂u

∂t
+

∂2u

∂x2
+ u

∂u

∂x
+ 2

(
u
∂v

∂x
+ v

∂u

∂x

)
= 0,

∂v

∂t
+

∂2v

∂x2
+ v

∂v

∂x
+ 2

(
u
∂v

∂x
+ v

∂u

∂x

)
= 0,

Subject to the initial conditions:

u(x, 0) =
[
min {(1 + 0.4(0.2)) sinx,

(1− 0.4(0.2)) sinx},
max {(1 + 0.4(0.2)) sinx,

(1− 0.4(0.2)) sinx}
]

v(x, 0) =
[
min {(1 + 0.4(0.2)) sinx,

(1− 0.4(0.2)) sinx},
max {(1 + 0.4(0.2)) sinx,

(1− 0.4(0.2)) sinx}
]

To compute the numerical solution, the following
parameters are used in this example:

∆x = 0.0635, ∆t = 0.001

Due to the symmetry in the problem, u and v
have similar graph which is displayed in the fol-
lowing figure.
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Figure 1

5 Conclusion

In this research for generalization, an interval
difference method is introduced to solve inter-
val coupled Bergers’ equation. Based on interval
arithmetics the interval difference method is used
to transform the coupled equations to a system
of interval numbers which is solved using New-
ton’s method. Since the type of differentiability
should be considered for the interval derivatives,
many kinds of cases are appeared. For simplic-
ity only four cases were considered and discussed.
Finally a numerical example shows the accuracy
and stability of the proposed method.
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