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Abstract

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional
logistic differential equation. This approach is based on combination of two different methods, i.e.
the iterative method [35] and the spectral method. The method reduces the differential equation
to systems of linear algebraic equations and then the resulting systems are solved by a numerical
method. The solutions obtained are compared with Adomian decomposition method and iterative
method used in [35] and Adams method [36].

Keywords : Adomian decomposition method (ADM); Iterative method (IM); Spectral method; Frac-
tional logistic equation; Collocation method.
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1 Introduction

T
o describe population growth in a limited en-
vironment, Verhulst [28] first presented the

classical logistic equation and it has been very
popular in population dynamics so far. We can
apply the fractional derivative operator on the
logistic equation to obtain the fractional order
logistic model. Pierre Verhulst published this
model in 1838 for the first time [14]. We can
describe the continuous logistic model by first
order ordinary differential equation. The dis-
cerete logistic model is a simple iterative equa-
tion which shows the chaotic property in certain
regions [11, 29]. There are many variations of the
population modeling. To describe the periodic
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doubling and chaotic characteristic in dynamical
system we can use Verhulst model which is a clas-
sic example [11]. This model indicates that the
population growth may be restricted by some fac-
tors like population density [12, 23].

Many studies are focussed on ordinary and par-
tial fractional equations thanks to their recurrent
appearance in different applications in fluid me-
chanics, viscoelasticity, biology, physics and en-
gineering [13]. Most recently, a large amount of
literatures are developed regarding the usage of
fractional differential equations in non-linear dy-
namics. Consequently, the solutions of fractional
differential equations of physical interest have
been of great importance. We can not find ex-
act solutions for most fractional differential equa-
tions, so approximate and numerical techniques
are applied [15, 16, 19, 20, 21, 22]. Recently
to solve the fractional differential equations sev-
eral numerical and approximate methods, such
as variational iteration method [17], iterative
method [35], homotopy perturbation method [24],
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Adomian decomposition method [8], homotopy
analysis method and collocation method [18, 26]
have been employed.

We consider fractional logistic equation of the
following form:

Dαy(x) = µy(x)(1− y(x)),

y(0) = y0.
(1.1)

where µ > 0, x > 0, 0 < α ≤ 1.
The important application of the logistic equa-
tion is that it is a model of population growth.
The population size at time x is denoted with
y(x) and the constant µ > 0 defines the growth
rate. Another application of Logistic equation is
in medicine, where the logistic differential equa-
tion is used to model the growth of tumors. This
application can be considered as an extension of
the above mentioned use in the frame work of
ecology. The existence and the uniqueness of the
solution to the proposed problem (1.1) are intro-
duced in details in [6].

In this paper, we describe preliminaries in Sec.
2, in Sec. 3.1 we describe the iterative method
and in Sec. 3.2 we give a description of shifted
fractional-order Legendre functions. In Sec. 3.3
we use collocation method to obtain the approx-
imate solution for differential equation with ini-
tial conditions as a linear combination of Legen-
dre functions. In Sec. 3.4, we describe the new
spectral-iterative method (NSIM) which is a com-
bination of two different methods, one iterative
and the other spectral. We study the numerical
results in Sec. 4 and review the estimation of the
errors in Sec. 5.

2 Preliminaries

Definition 2.1 In order to proceed, we need
the following definitions of fractional derivatives
and integrals. First, we introduce the Riemann-
Liouville definition of fractional integral operator
Jα
a .

Let α ∈ R+. The operator Jα
a , defined on the

usual Lebesgue space L1 [a, b] by

Jα
a f(x) =

1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt, (2.2)

J0
af(x) = f(x),

for a ≤ x ≤ b, is called the Riemann-Liouville
fractional integral operator of order α.

Properties of the operator Jα
a can be found in

[1]. For f ∈ L1 [a, b] , α, β ≥ 0 and

γ > −1, we mention only the following:

(1) Jα
a f(x) exists for almost every

x ∈ [a, b] ,

(2) Jα
a J

β
a f(x) = Jα+β

a f(x),

(3) Jα
a J

β
a f(x) = Jβ

a Jα
a f(x),

(4) Jα
a (x− a)γ = Γ(γ+1)

Γ(α+γ+1)(x− a)α+γ .

Definition 2.2 The fractional derivative of f(x)
in the Riemann-Liouville sense is defined as

Dα
a f(x) = DmJm−α

a f(x)

=
dm

dxm
1

Γ(m− α)

∫ x

a
(x− t)m−α−1f(t)dt, (2.3)

where m ∈ N and satisfies the relations

m− 1 < α ≤ m, and f ∈ L1 [a, b] .

Properties of the operator Dα
a can be found in

[1, 4]. For m − 1 < α ≤ m ,x > a and γ > −1
we mention only the following:

(1) Dα
a (x− a)γ = Γ(γ+1)

Γ(γ−α+1)(x− a)γ−α,

(2) Dα
aJ

α
a f(x) = f(x).

3 New spectral iterative
method

Table 1.
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Table 2.

Table 3.

3.1 Iterative method

Consider the following nonlinear differential
equation:

L[y] +N [y] = f(x), (3.4)

where L is a linear operator and N is a nonlinear
operator from a Banach space E into E, f is a
given function in E and we are looking for y ∈ E
satisfying (3.4).
Daftardar and Jafari [35], suggest that the solu-
tion of y(x) be expanded by the infinite series
solution

y(x) =

∞∑
k=0

yk(x), (3.5)

and the nonlinear operator N in Eq. (3.4) is de-
composed as follows:

N(y) =

∞∑
i=0

Ai(y0, y1, · · · , yi), (3.6)

where A0 = 0 and Ai are obtained by

Ai = N

(
i∑

k=0

yk

)
−N

(
i−1∑
k=0

yk

)
.

Substituting (3.5) and (3.6) into (3.4) gives the
following recursive scheme:

L[y0] = f(x),

L[yi+1] = −Ai, i = 0, 1, · · · .
(3.7)

We define the M +1−th term approximation so-
lution as

ϕM (x) =
M∑
i=0

yi(x), (3.8)

Table 4.

Table 5.

where, if convergence happen,

y(x) = lim
M→∞

ϕM (x).

3.2 Shifted fractional-order Legendre
function

The Legendre polynomials, denoted by ln(x), are
orthogonal with respect to the weight function
w(x) = 1 over I = [−1, 1], namely [9],∫ 1

−1
ln(x)lm(x)dx =

2

2n+ 1
δnm,

where

δnm =


1, n = m,

0, O.W.

In order to use these polynomials on the inter-
val [0, 1], we define the so-called shifted Legendre
polynomials by introducing the change of variable
x = 2t− 1. Let the shifted Legendre polynomials
ln(x) be denoted by Ln(t). The shifted Legen-
dre polynomials are orthogonal with respect to
the weight function w(t) = 1 in the interval [0, 1]
with the orthogonality property∫ 1

0
Ln(t)Lm(t)dt =

2

2n+ 1
δnm.

Then Li(t) can be obtained as follows:

Ln+1(t) =
(2n+ 1)(2t− 1)

n+ 1
Ln(t)

− n

n+ 1
Ln−1(t), n = 1, 2, ...
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Table 6.

Table 7.

L0(t) = 1, L1(t) = 2t− 1. (3.9)

Note that Ln(0) = (−1)n and Ln(1) = 1. The
shifted fractional-order Legendre functions de-
fined by introducing the change of variable t = xα

with α > 0 on shifted Legendre polynomials, are
denoted by FLα

i (x)[10].
Hence FLα

i (x) satisfy the following recurrence
relation

FLα
n+1(x) =

(2n+ 1)(2xα − 1)

(n+ 1)
FLα

n(x)

− n

n+ 1
FLα

n−1(x), n = 1, 2, 3, ...,

FLα
0 (x) = 1, FLα

1 (x) = 2xα − 1.

3.3 Collocation method

Consider the linear fractional differential equa-
tion:

n∑
k=0

Dαky(x) = g(x), (3.10)

where αk ∈ (k, k + 1], with initial conditions

y(i)(0) = βi, i = 0, 1, · · · , n. (3.11)

The unknown function y(t) in problem (3.10), can
be approximated by a truncated series of Legen-
dre functions,

ym(t) =

m∑
j=0

cjFLα
j (t), (3.12)

Table 8.

Table 9.

where cj are unknowns. Here, the main purpose
is to find cj . In order to achieve this end, putting
(3.12) in (3.10) and (3.11) we obtain:

m∑
j=0

cj

n∑
k=0

DαkFLα
j (t) = g(t), (3.13)

m∑
j=0

cjFLα(i)

j (0) = βi, i = 0, 1, · · · , n. (3.14)

Relation (3.14) forms a system with n + 1
equations and m + 1 unknowns, to construct
the remaining m − n equations, we substitute

Legendre-Guass points
{
ti

}m−n

i=1
in (3.13), to ob-

tain m − n equations. So, reduces the obtaining
to the solution of the system AC = b, where A, C
and b are A =

[
A1
A2

]
, C = [c0, c1, · · · , cm]T ,

b =
[
b1
b2

]
and matrices A1(m−n)×(m+1) and

A2(n+1)×(m+1) are defined by

A1[i, j] =

n∑
k=0

DαkFLα
j (ti), i = 1, 2, · · · ,m− n,

j = 0, 1, · · · ,m,

A2[i, j] = FLα(i)

j (0), i = 0, 1, · · · , n,

j = 0, 1, · · · ,m,

and vectors b1(m−n)×1, b2(m−n)×1 are defined by
b1[i] = g(ti), i = 1, 2, · · · ,m− n,
b2[i] = βi, i = 0, 1, · · · , n.
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Table 10.

Table 11.

3.4 The methodology

Consider the fractional logistic equation

Dαy(x) = µy(x)(1− y(x)), (3.15)

where α ∈ (0, 1] [27], with initial condition

y(0) = β. (3.16)

The nonlinear equation (3.15), can be written by
Dαy(x)− µy(x) = −µy2(x),

y(0) = β.
(3.17)

Substituting the y(x) =
∑∞

k=0 yk(x) in the non-
linear fractional logistic equation, we have:

∞∑
k=0

Dαyk(x)−
∞∑
k=0

µyk(x) = −µ

( ∞∑
k=0

yk(x)

)2

= −
∞∑
k=0

Ak,

where A0 = 0 and

Ak = −µ(

k−1∑
l=0

yl)
2 + µ(

k∑
l=0

yl)
2.

The solution of problem (3.17), is

y(x) =

∞∑
k=0

yk(x)

Table 12.

Figure 1: Comparing the exact solution and ap-
proximate solution by NSIM and Adams method.

where yk(x) satisfies in

Dαyk(x)− µyk(x) = −Ak, (3.18)

k = 0, 1, · · · .

We solve the above linear equation using the
spectral method. The function yk(x) can be ap-
proximated as

yk(x) =

∞∑
j=0

c
(k)
j FLα

j (x),

where the unknown coefficients c
(k)
j are deter-

mined by using the collocation method. The
residual function associated to the equation
(3.18) is

RESyk(x) = Dαyk(x)− µyk(x) +Ak,

k = 0, 1, · · · .

By imposing the initial condition (3.16), we have

∞∑
j=0

c
(k)
j FLα

j (0) =


β, k = 0,

0, k = 1, 2, · · · .

For all k, the matrix form of the above system
is:

MC(k) = b(k),
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Figure 2: α = 1
2 , µ = 1

5 , β = 1
4

Figure 3: α = 1
4 , µ = 1

4 , β = 1
10

M = [mij ](n+1)(n+1),

C(k) = [c
(k)
0 , c

(k)
1 , ..., c(k)n ]t,

b(k) = [b
(k)
0 , b

(k)
1 , ..., b(k)n ]t.

Suppose that
{
xi

}n

i=1
are zeros of Legendre poly-

nomial of degree n, we have

m0j = FLα
j (0),

j = 0, 1, 2, ..., n,

mij = DαFLα
j (xi)− µFLα

j (xi),

j = 0, 1, 2, ..., n, i = 1, 2, ..., n.

For i = 1, 2, 3, ..., n, k = 1, 2, 3, ... ,
we have

b
(0)
0 = β, b

(0)
i = 0,

and
b
(k)
0 = 0, b

(k)
i = −Ak(xi).

The approximate solution of (3.15) with
L+ 1 terms is

yL,n =

L∑
k=0

yk(x), (3.19)

Figure 4: α = 3
10 , µ = 1

4 , β = 1
10

Figure 5: α = 4
5 , µ = 1

2 , β = 1
5

where

yk(x) =
n∑

j=0

c
(k)
j FLα

j (x). (3.20)

4 Numerical study

Consider the following logistic initial value
problem:


Dαy(x) = µy(x)(1− y(x)),

y(0) = β.
(4.21)

We demonstrate the effectiveness of the proposed
method (NSIM) by applying it on four values of
α, β and µ for above problem. For each case, the
maximum norm of the residual error of yL,n(x)
is presented. Tables 1, 2, 3 and 4 shows the ob-
tained numerical results of the (NSIM), tables 5,
6, 7 and 8 shows the obtained numerical results of
the (IM) and tables 9, 10, 11 and 12 shows the ob-
tained numerical results of the (ADM). The exact

solution of (4.21) is y(x) = e0.5x

1+e0.5x
for α = 0.5,
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µ = 0.5 and β = 0.5. The figure 1 shows the so-
lutions obtained by (NSIM) and Adams method
with h = 0.001 and exact solution.

All the computations associated with the
method have been performed by a personal com-
puter having the Intel Pentium 4, 2.8 GHz pro-
cessor, 1GB RAM and using Maple 13 with 32
digits precision.

5 Estimation of the errors

The approximate solution of (4.21) is yL,n(x) and
the exact solution is y(x). Substituting yL,n(x)
and y(x) in (4.21), we obtain the following results.

Dαy(x)− µy(x)(1− y(x)) = 0,

y(0) = β,
(5.22)


DαyL,n(x)− µyL,n(x)(1− yL,n(x)) = R(x),

yL,n(0) = β,
(5.23)

where R(x) is the residual error. From (5.22)
and (5.23) we obtain


DαEL,n(x) = µEL,n(x)(1 + EL,n(x)

−2yL,n(x)) +R(x),

EL,n(0) = 0,

(5.24)

where EL,n = yL,n(x) − y(x) is error of solution.
The solution of the (5.24) is an estimate of the
error of yL,n(x). To hove convergence we should
have |R(x)|≃ |EL,n(x)| and limL,n→∞ |EL,n(x)|=
0.
We calculate EL,n(x) by Adams method for h =
0.1 and compare with residual error of NSIM for
L = 20 in figures 2, 3, 4 and 5.

6 Conclusion

In this paper we proposed a new method to
solve logistic equations of fractional order. This
method was based on combination of iterative
and spectral methods, which reduced nonlinear
differential equations to systems of linear alge-
braic equations. The obtained approximate so-
lutions have shown the effectiveness of our new
method.

References

[1] I. Podlubny, Fractional Differential Equa-
tions, Academic Press, San Diego, CA, 1999.

[2] K. B. Oldham, J. Spanier, The Fractional
Calculus, Academic Press, New York, Lon-
don, 1974.

[3] K. S. Miller, B. Ross, An Introduction to the
Fractional Calculus and Fractional Differen-
tial Equations, Wiley, New York, 1993.

[4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo,
Theory and applications of fractional differ-
ential equatins, Elsevier, Amsterdam, 2006.

[5] R. Gorenflo, F. Mainardi, Fractional cal-
culus: integral and differential equations
of fractional order in: A. Carpinteri, F.
Mainardi (Eds.), Fractals and Fractional
Calculus in Continuum Mechanics, Springer-
Verlag, Wien/New York (1997) 223-276.

[6] R. Groreflo, A. Y. Luchko, The initial value
problem for some fractional differential equa-
tions with the Caputo derivative, Fachbreich
Mathematik und Informatik, Freic Universi-
tat Berlin, 1998.

[7] F. Mainardi, Fractional Calculus: some ba-
sic problems in continuum and statistical
mechanics, in: A. Carpinteri, F. Mainardi
(Eds), Fractals and Fractional Calculus
in Continuum Mechanics, Springer-Verlag,
Wien/New York (1997) 291-348.

[8] V. Daftardar-Gejji, H. Jafari, Adomian de-
composition: a tool for solving a system
of fractional differential equations, J. Math.
Anal. Appl. 301 (2005) 508-518.

[9] J. Shen, T. Tang, High Order Numerical
Methods and Algorithms, Chinese Science
Press, Beijing, 2005.

[10] S. Kazem, S. Abbasbandy, Sunil Kumar,
Fractional-order Legendre functions for solv-
ing fractional-order differential equations,
Apl. Math. Modelling 37 (2013) 5498-5510.

[11] K. T. Alligood, T. D. Sauer, J. A. Yorke, An
Introduction to Dynamical Systems, Springer
(1996).



222 A. Shoja et al. /IJIM Vol. 8, No. 3 (2016) 215-223

[12] M. Ausloos, The Logistic map and the route
to chaos: From the Beginnings to Modern
Applications XVI, 411 (2006).

[13] R. L. Bagley, P. J. Torvik, On the appearance
of the fractional derivative in the behavior of
real materials, J. Appl. Mech. 51 (1984) 294-
298.

[14] J. M. Cushing, An Introduction to Structured
Population Dynamics, Society for Industrial
and Applied Mathematics (1998).

[15] K. Diethelm, An algorithm for the numerical
solution of differential equations of fractional
order, Electron Trans. Numer. Anal. 5 (1997)
1-6.

[16] A. M. A. El-Sayed, A. E. M. El-Mesiry, H. A.
A. El-Saka, On the fractionalorder Logistic
equation, Appl. Math. Letters 20 (2007) 817-
823.

[17] J. H. He, Variational iteration method-a kind
of non-linear analytical technique: some ex-
amples, International Journal of Non-Linear
Mechanics 34 (1999) 699-708.

[18] M. M. Khader, On the numerical solutions
for the fractional diffusion equation, Com-
munications in Nonlinear Science and Nu-
merical Simulation 16 (2011) 2535-2542.

[19] M. M. Khader, Introducing an efficient mod-
ification of the variational iteration method
by using Chebyshev polynomials, Application
and Applied Mathematics: An International
Journal 7 (2012) 283-299.

[20] M. M. Khader, Introducing an efficient
modification of the homotopy perturbation
method by using Chebyshev polynomials,
Arab Journal of Mathematical Sciences 18
(2012) 61-71.

[21] M. M. Khader, N. H. Sweilam, A. M.
S. Mahdy, An efficient numerical method
for solving the fractional diffusion equation,
Journal of Applied Mathematics and Bioin-
formatics 1 (2011) 1-12.

[22] M. M. Khader, A. S. Hendy, The approxi-
mate and exact solutions of the fractional-
order delay differential equations using Leg-
endre pseudospectral method, International

Journal of Pure and Applied Mathematics
74 (2012) 287-297.

[23] H. Pastijn, Chaotic Growth with the Logis-
tic Model of P.-F. Verhulst, Understanding
Complex Systems, (2006), The Logistic Map
and the Route to Chaos, Pages 3-11.

[24] N. H. Sweilam, M. M. Khader, R. F. Al-Bar,
Numerical studies for a multiorder fractional
differential equation, Physics Letters A 371
(2007) 26-33.

[25] N. H. Sweilam, M. M. Khader, On the con-
vergence of VIMfor nonlinear coupled sys-
tem of partial differential equations, Int. J.
of Computer Maths. 87 (2010) 1120-1130.

[26] N. H. Sweilam, M. M. Khader, A. M. S.
Mahdy, Numerical studies for fractional-
order Logistic differential equation with two
different delays, Accepted in Journal of Ap-
plied Mathematics, to appear in 2012.

[27] S. Bhalekar, V. Daftardar-Gejji, Solving
Fractional-Order Logistic Equation Using a
New Iterative Method, International Journal
of Differential Equations(Hindawi), (2012).

[28] P. F. Verhulst, Notice sur la loi que la pop-
ulation suit dans son accroissement, Corre-
spondence Math. Phys. 10 (1838) 113-121.

[29] L. R. Devaney, An introduction to chaotic
dynamical system, Benjamin 1985.

[30] S. Bhalekar, V. Daftardar-Gejji, Solving a
System of Nonlinear Functional Equations
Using Revised New Iterative Method, In-
ternational Journal of Computational and
Mathematical Sciences 6 (2012).

[31] H. Jafari, S. Seifi, An Iterative Method for
Solving a System of Nonlinear Algebraic
Equations, Journal of Applied Mathematics,
Islamic Azad University of Lahijan 5 (2008).

[32] S. Bhalekar, V. Daftardar-Gejji, Conver-
gence of the New Iterative Method, Interna-
tional Journal of Differential Equations Vol-
ume 2011, Article ID 989065.

[33] H. Jafari, M. Ahmadi, and S. Sadeghi, Solv-
ing Singular Boundary Value Problems Us-
ing Daftardar-Jafari Method, Applications



A. Shoja et al. /IJIM Vol. 8, No. 3 (2016) 215-223 223

and Applied Mathematics: An International
Journal (AAM) 7 (2012) 357-364.

[34] M. Aslam. Noor, K. Inayat. Noor, E. Al-
Said, M. Waseem, Some New Iterative Meth-
ods for Nonlinear Equations, Mathematical
Problems in Engineering Volume 2010, Arti-
cle ID 198943.

[35] V. Daftardar-Gejji, H. Jafari, An itera-
tive method for solving nonlinear functional
equations, Journal of Mathematical Analysis
and Applications 316 (2006) 753-763.

[36] K. Diethelm, An algorithm for the numerical
solution of differential equations of fractional
order, Elec. Transact. Numer. Anal. 5 (1997)
1-6.

Ahmad Shoja is currently a Ph.D.
student at Science and Research
Branch, Islamic Azad University,
Tehran, Iran. His research inter-
ests include the numerical solving
of fractional differential equation
with Spectral-Iterative methods.

Esmaeil Babolian is professor of
applied mathematics and Fac-
ulty of Mathematical sciences and
computer, Kharazmy University,
Tehran, Iran. Interested in numer-
ical solution of functional Equa-
tions, numerical linear algebra and

mathematical education.

Alireza Vahidi is associated pro-
fessor of applied mathematics.
Yadegare-Emam Branch, Islamic
Azad University, Tehran, Iran. In-
terested in numerical solution of
integral and differential equations.


	Introduction
	 Preliminaries
	New spectral iterative method
	Iterative method
	Shifted fractional-order Legendre function
	Collocation method
	 The methodology

	 Numerical study
	 Estimation of the errors
	Conclusion

