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Abstract

In this paper, we have proposed a new iterative method for finding the solution of ordinary differential
equations of the first order. In this method we have extended the idea of variational iteration method
by changing the general Lagrange multiplier which is defined in the context of the variational itera-
tion method.This causes the convergent rate of the method increased compared with the variational
iteration method. To prevent consuming large amount of the CPU time and computer memory and to
control requires significant amounts of computations, the Taylor expansion of the iterative functions
in each iteration are applied. Finally to extend the convergence region of the truncated series, also the
Pade approximants are used. Error analysis and convergence of the method are studied. Some exam-
ples are given to illustrate the performance and efficiency of the proposed method. For comparison,
the results obtained by the our method and the variational iteration method are presented.

Keywords : First order ordinary differential equations; Variational iteration method; Lagrange multi-
plier; Pade approximant.
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1 Introduction

D
ifferential equations involving partial differen-
tial equations and ordinary differential equa-

tions have significant role in most branches of ap-
plied sciences such as stochastic realization the-
ory, optimal control, robust stabilization and fi-
nancial mathematics, etc. Except for certain par-
ticular equations, most of the interesting equa-
tions have no closed form solution, so the numer-
ical approaches are the only way to get some ap-
proximations to the solution.
In this paper, we consider the following scalar ini-
tial value problems of the first order

y′(t) = f(t, y(t)), t ∈ [t0, T ], y(t0) = Y0,
(1.1)
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where f(t, y) is a sufficiently smooth function and
Y0, t0, and T are given real numbers.
Although the solution of equation (1.1) can be
obtained by applying classic numerical meth-
ods such as Runge-Kutta and multistep methods
[4, 11], however by fast development of computer
algebra systems and computer hardwares much
attention of many scientists and engineers have
drawn to analytical asymptotic techniques such
as Adomian’s decomposition method (ADM) [6,
8], homotopy perturbation method (HPM) [2, 3],
homotopy analysis method (HAM) [12], and vari-
ational iteration method (VIM) [7, 9, 10], and so
on.
In this paper, we extend the idea of variational it-
eration method by allowing the general Lagrange
multiplier defined in the context of the variational
iteration method [9] to change in each iteration.
This causes the obtained sequence to have faster
convergence than VIM.
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This paper is organized as follows:
In Section 2, we specify the new iterative equa-
tion. The sufficient conditions for convergence of
the proposed method are proved in the Section
3. Section 4 includes some numerical examples
to show efficiency of our technique and Section 5
ends this paper with a brief conclusion.

2 Description of the method

To propose the new iterative formula, let y0(t) be
an initial approximate solution such that y0(t0) =
Y0 and ∥e0∥∞ be small in which e0(t) := y0(t) −
Y (t). As done in VIM, to improve the approxi-
mate solution the following estimate can be used
in which the integral term plays a role of correc-
tion

ynew(t) = y0(t)−∫ t
t0
λ(t, τ)(y′0(τ)− f(τ, y0(τ)))dτ.

(2.2)

The function λ(t, τ) was introduced in VIM
and called the general Lagrange multiplier [9]. A
proper choice of λ(t, τ) can lead to a better ap-
proximate solution. Here the function λ(t, τ) is
determined in a different manner than VIM.
Since ∂f(t,y)

∂y ∈ C(D), the mean value theorem
gives

f(t, y0(t)) = f(t, Y (t))+

e0(t)
∂
∂yf(t, θy0(t) + (1− θ)Y (t)),

(2.3)

for some θ ∈ (0, 1).
Substituting y0(t) = Y (t) + e0(t) and (2.3) into
(2.2) we get

ynew(t) = Y (t) + e0(t)−∫ t
t0
λ(t, τ) d

dτ e0(τ)dτ +
∫ t
t0
λ(t, τ)e0(τ)

∂
∂yf(τ, θy0(τ) + (1− θ)Y (τ))dτ.

Using the integration by parts on the first integral
leads to

ynew(t) = Y (t) + (1− λ(t, t))e0(t)+∫ t
t0
( ∂
∂τ λ(t, τ) + λ(t, τ) ∂

∂yf(τ, θy0(τ)+

(1− θ)Y (τ))e0(τ)dτ.

It is easily seen that by vanishing the coefficient
of e0 a better approximation is obtained. This
gives the following conditions which can be used

to determine λ(t, τ),

∂
∂τ λ(t, τ)+

λ(t, τ) ∂
∂yf(τ, θy0(τ) + (1− θ)Y (τ)) = 0,

for some θ ∈ (0, 1),

λ(t, t) = 1.

The exact solution of the above first order linear
IVP is

λ(t, τ) =

exp(−
∫ τ
t (

∂
∂yf(δ, θy0(δ) + (1− θ)Y (δ))dδ).

As Y (δ) is unknown, we use y0(δ) to have a value
for λ(t, τ), hence this gives the following approx-
imation

y1(t) = y0(t)−∫ t
t0
λ0(t, τ)(y

′
0(τ)− f(τ, y0(τ)))dτ,

where λ0(t, τ) = exp(−
∫ τ
t

∂
∂yf(δ, y0(δ))dδ).

Repeating the above scheme defines the following
iterative method

yn+1(t) = yn(t)−∫ t
t0
λn(t, τ)(y

′
n(τ)− f(τ, yn(τ)))dτ, n ≥ 0,

(2.4)

where λn(t, τ) = exp(−
∫ τ
t

∂
∂yf(δ, yn(δ))dδ) and

y0(t) is an initial approximation such that
y0(t0) = Y0. According to (2.4) yn(t0) =
Y0 for n ≥ 1.
In the following theorem, another equivalent for-
mula with (2.4) is introduced.

Theorem 2.1 Let f(t, y) ∈ C(D) and ∂
∂yf(t, y)

∈ C(D). The sequence of functions {yn} gener-
ated by (2.4) satisfies in the following relation

yn+1(t) = σn(t)(Y0 +
∫ t
t0
σn(τ)

−1(

f(τ, yn(τ))− ∂
∂yf(τ, yn(τ))yn(τ))dτ),

(2.5)

where

σn(t) = exp(

∫ t

t0

∂

∂y
f(δ, yn(δ))dδ). (2.6)

Proof. Applying integration by parts on (2.4),
the following relation is inferred

yn+1(t) = λn(t, t0)Y0 +
∫ t
t0
( ∂
∂τ λn(t, τ)yn(τ)

+λn(t, τ)f(τ, yn(τ)))dτ.

(2.7)
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The outcome of derivative from the definition of
λn(t, τ) in (2.4) is

∂

∂τ
λn(t, τ) = − ∂

∂y
f(τ, yn(τ))λn(t, τ). (2.8)

Inserting (2.8) in (2.7) leads to

yn+1(t) = λn(t, t0)Y0 +
∫ t
t0
λn(t, τ)(

f(τ, yn(τ))− ∂
∂yf(τ, yn(τ))yn(τ))dτ.

(2.9)

According to (2.6), the function λn(t, τ) can be
expressed as

λn(t, τ) = σn(t)σn(τ)
−1, (2.10)

particularly λn(t, t0) = σn(t).
Using (2.10) in (2.9), the equation (2.5) is
inferred.2

Since calculating the sequence {yn} via (2.4)
or (2.5) requires significant amounts of compu-
tations, the Taylor expansion of yn in each iter-
ation can be used. For this purpose, let f be
a function which its higher-order partial deriva-
tives exist, and the exact solution of (1.1), Y , be-
longs to C∞[t0, T ]. Further let Pm be the space
of polynomials of degree at most m and Pm be an
operator from C∞[t0, T ] to Pm which is defined

as Pm(y)(t) =
∑m

k=0
y(k)(t0)

k! (t − t0)
k. Thus we

propose the following recursive relation in which
{mn}∞n=0 is an increasing sequence of positive in-
teger numbers

ŷn(t) := σn(t)(Y0 +
∫ t
t0
σn(τ)

−1(

f(τ, yn(τ))− ∂
∂yf(τ, yn(τ))yn(τ))dτ),

yn+1 := Pmn(ŷn)(t)

=
∑mn

k=0
ŷ
(k)
n (t0)
k! (t− t0)

k, n ≥ 0.

(2.11)

Although the iterated functions obtained by
(2.11) are identical with some high order trun-
cated Taylor series of the exact solution, but it is
well known that their region of convergence are
limited. Hence to extend the convergence region,
here the Pade approximants are used which usu-
ally improve the convergence rate and accuracy
of the truncated series [5]. Some softwares like
Maple which support the symbolic computations
can be easily used to evaluate the Pade approxi-
mants of any degree [M/N ] for the Taylor trun-
cated series. Since the first few iterated solutions
obtained by (2.11) have high order terms of Tay-
lor series, The high degree diagonal Pade approx-
imants can be calculated.

3 Error Analysis

Since M = max(t,y)∈D|
∂
∂yf(t, y)|, we have

| ∂
∂yf(t, y)|≤ M, for all (t, y) ∈ D. Clearly, a conse-
quence of using mean value theorem is that f(t, y)
satisfies the Lipschitz condition with respect to its
second variable

|f(t, y1)− f(t, y2)|≤ M |y1 − y2|, (3.12)

for all (t, y1), (t, y2) ∈ D. Furthermore, for all n ≥
1, λn(t, τ) is a continuous function and

λn(t, τ) = exp(−
∫ τ
t

∂
∂yf(δ, yn(δ))dδ)

≤ exp(M |t− τ |) ≤ exp(M(T − t0)),
(3.13)

for all (t, τ) ∈ [t0, T ]× [t0, T ].

Theorem 3.1 Let f(t, y) ∈ D, ∂
∂yf(t, y) ∈

C(D), and Λ := max
t,τ∈[t0,T ]

n≥0

λn(t, τ). Let y0 be a con-

tinuous function and the sequence {yn}∞n=0 has
been generated by relation (2.4) or (2.5). Let
m0 := min

t∈[a,b]
y0(t), M0 := max

t∈[a,b]
y0(t), [m0,M0]⊂

[c, d] and r > 0 be a positive number such that
[m0 − r,M0 + r] ⊂ [c, d]. Further assume that a
neighborhood Nr(y0) = {y ∈ C1[a, b] : ∥y−y0∥∞≤
r} exists such that ∥y1 − y0∥∞≤ (1 −K)r where
K := 2ΛM(T − t0). If K < 1, then the sequence
{yn}∞n=0 ⊂ Nr(y0) is uniformly bounded.

Proof. First it is shown that {yn}∞n=0 is a subset
of Nr(y0) by induction. Obviously this is valid for
n = 0 and n = 1 by assumptions of the theorem.
Now let yj ∈ Nr(y0), j = 0, 1, · · · , n. Taking
derivative from relation (2.4) yields that

y′n+1(t) = f(t, yn(t))−
∫ t
t0

∂
∂tλn(t, τ)(

y′n(τ)− f(τ, yn(τ)))dτ,

(3.14)

for all n ≥ 0. Hence inserting (2.8) in (3.14) and
using (2.4) imply that

y′n+1(t) = f(t, yn(t))+
∂
∂tf(t, yn(t))(yn+1(t)− yn(t)).

(3.15)

Further putting (3.15) in (3.14) with n− 1 leads
to

yn+1(t) = yn(t) +
∫ t
t0
λn(t, τ)(f(τ, yn−1(τ))

−f(τ, yn(τ)) +
∂
∂tf(τ, yn−1(τ))

(yn(τ)− yn−1(τ)))dτ.

(3.16)
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With the aid of (3.16), (3.13) and (3.12), we infer
that

|yn+1(t)− yn(t)|
≤ 2ΛM

∫ t
t0
|yn(τ)− yn−1(τ)|dτ

≤ 2ΛM(T − t0)∥yn − yn−1∥∞,

for all n ≥ 1, and whereby

∥yn+1 − yn∥∞≤ K∥yn − yn−1∥∞
≤ Kn∥y1 − y0∥∞.

So

∥yn+1 − y0∥∞
≤

∑n
i=0∥yi+1 − yi∥∞

≤
∑n

i=0K
i∥y1 − y0∥∞

≤ (1−K)
∑n

i=0K
ir

= (1−Kn+1)r ≤ r,

which prove that yn+1 ∈ Nr(y0).
Finally, for all n ≥ 1 we get

∥yn∥∞≤ ∥yn − y0∥∞+∥y0∥∞
≤ 1

1−K ∥y1 − y0∥∞+∥y0∥∞. 2

The following theorem concerns the convergence
of the sequence {yn}∞n=0 obtained by (2.4) or
(2.5).

Theorem 3.2 Let the assumptions of Theorem
3.1 satisfy, then the sequence {yn}∞n=0 generated
by (2.4) or (2.5) is uniformly convergent to the
exact solution of (1.1).

Proof. The exact solution Y (t) satisfies in a sim-
ilar relation with (2.4),

Y (t) = Y (t)−∫ t
t0
λn(t, τ)(Y

′(τ)− f(τ, Y (τ)))dτ.

(3.17)

Subtracting (3.17) from (2.4) leads to

yn+1(t)− Y (t) = I1(t) + I2(t),

where

I1(t) := yn(t)− Y (t)−∫ t
t0
λn(t, τ)(y

′
n(τ)− Y ′(τ))dτ,

I2(t) :=
∫ t
t0
λn(t, τ)(

f(τ, yn(τ))− f(τ, Y (τ)))dτ.

By applying the method of integration by parts
on the integral in I1(t) and using (2.8) we have

I1(t) =
∫ t
t0

∂
∂τ λn(t, τ)(yn(τ)− Y (τ))dτ

=
∫ t
t0
λn(t, τ)

∂
∂yf(τ, yn(τ))

(Y (τ)− yn(τ))dτ.

Thus for all t ∈ [t0, T ] we get

|I1(t)|≤ MΛ(T − t0)∥Y − yn∥∞. (3.18)

With aid of (3.12) and the bound of λn(t, τ), the
following inequality is obtained

|I2(t)|≤ MΛ(T − t0)∥Y − yn∥∞, (3.19)

for all t ∈ [t0, T ]. Hence from (3.18) and (3.19),
we infer

∥Y − yn+1∥∞≤ 2MΛ(T − t0)∥Y − yn∥∞.

The convergence is obtained as a consequence of
the hypothesis of the theorem and the Banach
fixed point theorem. 2
The next theorem deals with the convergence of
sequences obtained from (2.11).

Lemma 3.1 Let f be a function of two vari-
ables which its higher-order partial derivatives ex-
ist. Suppose that the sequence {yn}∞n=0 is defined
by (2.4) or (2.5) and the exact solution of (1.1)

satisfies Y ∈ C∞[t0, T ]. If y
(i)
n (t0) = Y (i)(t0),

i = 0, 1, · · · , k, then y
(i)
n+1(t0) = Y (i)(t0), i =

0, 1, · · · , k + 1.

Proof.
The proof is by induction. Obviously yn+1(t0) =
Y (t0). Furthermore from the first derivative of
(2.4)

y′n+1(t) = f(t, yn(t))−∫ t
t0

∂
∂tλn(t, τ)(y

′
n(τ)− f(τ, yn(τ)))dτ,

(3.20)

we have y′n+1(t0) = f(t0, yn(t0)) = f(t0, Y (t0)) =
Y ′(t0). Assume that it is true for k ≥ 0, that is

y
(i)
n+1(t0) = Y (i)(t0), i = 0, 1, · · · , k.

According to (3.20) and (2.8), the (k + 1)th
derivative of (2.4) can be expressed as

y
(k+1)
n+1 (t) = dk

dtk
(f(t, yn(t))− ∂

∂yf(t, yn(t))×∫ t
t0
λn(t, τ)(y

′
n(τ)− f(τ, yn(τ)))dτ).

(3.21)
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By virtue of (2.4) we have

y
(k+1)
n+1 (t) = dk

dtk
f(t, yn(t))−

dk

dtk

(
∂
∂yf(t, yn(t))(yn+1(t)− yn(t))

)
.

(3.22)

Putting t = t0 into (3.22) and then using the
Leibnitz formula and the induction hypothesis
lead to

y
(k+1)
n+1 (t0) =

dk

dtk
f(t0, yn(t0))

= dk

dtk
f(t0, Y (t0)).

(3.23)

Consequently y
(k+1)
n+1 (t0) = Y (k+1)(t0).

Theorem 3.3 Let the assumptions of Lemma
3.1 be satisfied and ∥Y − PnY ∥∞→ 0 as n → ∞.
Then for some increasing sequence {mn}∞n=0 the
sequence obtained by (2.11) converges to the exact
solution of (1.1), that is ∥yn − Y ∥∞→ 0 as n →
∞.

Proof.
There is an increasing sequence of nonnegative in-
tegers {mn}∞n=0 such that yn+1 = PmnY, n ≥ 0.
In fact since y0(t0) = Y (t0), a nonnegative inte-
ger l ≥ 0 exists such that Ply0(t) = PlY (t), hence
according to the Lemma 3.1 for some m0 ≥ l+1,
we have y1(t) = Pm0 ŷ0(t) = Pm0Y (t).
By proceeding similarly, we obtain an mn ≥
mn−1 + 1 such that yn+1(t) = Pmn ŷn(t) =
PmnY (t). Therefore by assumption of the theo-
rem, ∥yn+1−Y ∥∞= ∥PmnY −Y ∥∞→ 0 as n → ∞.
2

4 Illustrative examples

In this Section, some examples are given to illus-
trate the performance and efficiency of the pro-
posed method. For comparison, the results ob-
tained by our method and VIM are presented. In
all of the examples starting function is the con-
stant function y0(t) = Y0 and furthermore the
Pade approximants are used on the last iteration
of the method.

Example 4.1 [1] Consider the following
quadratic Riccati differential equation{

y′(t) = f(t, y(t)) = 2y(t)− y2(t)− 1,

y(0) = 0.
(4.24)

The exact solution of equation (4.24) was found
to be

Y (t) = 1 +
√
2 tanh(

√
2t+

1

2
log(

√
2− 1√
2 + 1

)),

which has the following Taylor expansion series
about t = 0,

Y (t) = t+ t2 + 1
3 t

3 − 1
3 t

4 − 7
15 t

5 − 7
45 t

6+
53
315 t

7 + 71
315 t

8 + 197
2835 t

9 − 1213
14175 t

10 − 2419
22275 t

11

− 2051
66825 t

12 + 263701
6081075 t

13 + 2223841
42567525 t

14+

O(t15).

We consider y0(t) = 0 as initial approximation
and we take m1 = 2;mn = 2mn−1 + 2, n ≥ 2.
According to (2.11), the three first iterations are
as follows:

y1(t) = t+ t2,

y2(t) = t+ t2 + 1
3 t

3 − 1
3 t

4 − 7
15 t

5 − 7
45 t

6,
y3(t) = t+ t2 + 1

3 t
3 − 1

3 t
4 − 7

15 t
5 − 7

45 t
6+

53
315 t

7 + 71
315 t

8 + 197
2835 t

9 − 1213
14175 t

10 − 2419
22275 t

11

− 2051
66825 t

12 + 263701
6081075 t

13 + 2223841
42567525 t

14.

Figure 1: The plot of approximate solutions and
exact solution for Example 4.1.

As can be seen, the fourteen first terms of third
iteration exactly matches the Taylor expansion of
Y (t). Whereas the third iteration of He’s varia-
tional iteration method is [1]

t+ t2 + 1
3 t

3 − 1
3 t

4 − 7
15 t

5 − 7
45 t

6 + 53
315 t

7+
673
2520 t

8 +O(t9).

It should be noted that due to consuming large
amount of the CPU time and computer memory,
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Figure 2: The plot of errors for Example 4.1.

calculating the more iterations of He’s method to
obtain higher accuracy approximations is almost
impossible [1]. Comparing the two last equations
confirms accuracy and convergence rate of the
new method.
Figure 2 shows the plot of errors for the third
iteration of the proposed method y4(t) and Pade
approximantns [55 ](t), [

10
10 ](t) and [1515 ](t) which are

calculated from y4(t). To compare, the approxi-
mate solutions and the exact solution have been
plotted in Figure 1.

Example 4.2 [2] Consider the following nonlin-
ear differential equation

{
y′(t) + (t2 − 1)y(t) = t2e−2ty3(t),

y(0) = 1.
(4.25)

The exact solution is y(t) = et. According to
(2.11), with y0(t) = 1 as initial approximation
and m1 = 5,mn = 2mn−1 + 3, n ≥ 2, the follow-
ing expansions are obtained which show the fast

convergence.

y1(t) = 1 + t+ 1
2 t

2 + 1
6 t

3 + 1
24 t

4,

y2(t) = 1 + t+ 1
2 t

2 + 1
6 t

3 + 1
24 t

4 + 1
120 t

5

+ 1
720 t

6 + 1
5040 t

7 + 1
40320 t

8 + 1
362880 t

9+
+ 1

3628800 t
10 + 1

39916800 t
11 + 1

479001600 t
12,

y3(t) = 1 + t+ 1
2 t

2 + 1
6 t

3 + 1
24 t

4 + 1
120 t

5

+ 1
720 t

6 + 1
5040 t

7 + 1
40320 t

8 + 1
362880 t

9+
1

3628800 t
10 + 1

40320 t
8 + 1

39916800 t
11+

1
479001600 t

12 + 1
6227020800 t

13+
+ 1

87178291200 t
14 + 1

1307674368000 t
15+

1
20922789888000 t

16 + 1
355687428096000 t

17+
+ 1

6402373705728000 t
18+

1
121645100408832000 t

19+
1

2432902008176640000 t
20+

1
51090942171709440000 t

21

+ 1
1124000727777607680000 t

22+
1

25852016738884976640000 t
23+

+ 1
620448401733239439360000 t

24+
1

15511210043330985984000000 t
25+

1
403291461126605635584000000 t

26+
+ 1

10888869450418352160768000000 t
27+

1
304888344611713860501504000000 t

28.

Taylor series of the third iteration of VIM with
starting function y0(t) = 1 is

1 + t+ 1
2 t

2 + 1
6 t

3 − 23
24 t

4 + 121
120 t

5−
1091
720 t6 + 1387

720 t7 +O(t8).
(4.26)

Figure 3: The plot of errors for Example 4.2.

Comparing the two last equations confirms ac-
curacy and convergence rate of the new method.
Figure 3. shows the plot of errors for the third
iteration of the proposed method y3(t) and Pade
approximantns [55 ](t), [1010 ](t) and [1414 ](t) which
are calculated from y3(t).

Example 4.3 [2] Consider the following nonlin-
ear differential equation{

y′(t) = 1
1+y2(t)

+ y2(t) + sin(t),

y(0) = 0.
(4.27)
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The exact solution is y(t) = tan(t). According
to (2.11), with y0(t) = 0 as initial approximation
and m1 = 3,mn = 2mn + 5, n ≥ 1, the following
expansion is obtained in the third iteration which
shows the fast convergence.

y1(t) = t+ 1
3 t

3,

y2(t) = t+ 1
3 t

3 + 2
15 t

5 + 17
315 t

7 + 62
2835 t

9+
1382

155925 t
11

y3(t) = t+ 1
3 t

3 + 2
15 t

5 + 17
315 t

7 + 62
2835 t

9+
1382

155925 t
11 + 21844

6081075 t
13 + 929569

638512875 t
15+

6404582
10854718875 t

17 + 443861162
1856156927625 t

19+
18888466084

194896477400625 t
21 + 113927491862

2900518163668125 t
23+

58870668456604
3698160658676859375 t

25+
8374643517010684

1298054391195577640625 t
27.

Taylor series of the third iteration of VIM with
starting function y0(t) = 0 is

1 + t+ 1
3 t

3 + 2
15 t

5 + 17
315 t

7 + 62
2835 t

9+
1382

155925 t
11 − 144476

6081075 t
13 +O(t15).

(4.28)

Comparing the two last equations confirms accu-
racy and convergence rate of the new method.
Figure 4. shows the plot of errors for the third
iteration of the proposed method y3(t) and Pade
approximantns [55 ](t), [

10
10 ](t) and [1414 ](t) which are

calculated from y3(t).

Figure 4: The plot of errors for example 4.3.

5 Conclusion

In this study, an iteration method is introduced
for finding the solution of ordinary differential
equations with initial condition. In the first re-
cursive relation the idea of VIM has been ex-
tended by updating the Lagrange multipliers in
each iteration. To retain proper CPU time and
computer memory, the Taylor expansion of the
iterative function is added in the other recursive
relation. Also, at the end of the iterations the
Pade approximant is used to extend the region of

validity of the last iterative function. The con-
vergence of the sequence obtained by each of the
relations are discussed separately. The capabil-
ity of the method is successfully shown with im-
plementation of the method on some examples.
By comparison of the numerical results obtained
by the present method and the VIM, the perfor-
mance and superiority of the method have been
confirmed.
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