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Abstract

In this paper, the variational iteration method for solving nth-order fuzzy integro-differential equations
(nth-FIDE) is proposed. In fact the problem is changed to the system of ordinary fuzzy integro-
differential equations and then fuzzy solution of nth-FIDE is obtained. Some examples show the
efficiency of the proposed method.
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1 Introduction

M
any authors have been worked about varia-
tional iteration method (VIM), see [7, 8, 14,

9] for more details. VIM is an iterative method
which used the Lagrange multipliers. Also several
modifications of VIM can be found in [3, 4, 6].
Because of facility and easy to use, VIM widely
employed to various problems. Very recently Ab-
basbandy et al. have been considered VIM for
solving n-th order fuzzy differential equations [2].
In this manuscript, the VIM is extent to solve
nth-FIDE and obtain approximate fuzzy solution.

The VIM is proposed by He [9, 10] as a modi-
fication of a general Lagrange multiplier method
[11]. To illustrate its basic idea of the technique,
we consider following general nonlinear system

L[u(t)] +N [u(t)] = g(t),
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where L is a linear operator, N is a nonlinear op-
erator, and g(t) is a given construct a correction
functional for the system, which reads

u[k+1](t) =

u[k](t) +

∫ x

a
λ[Lu[k](s) +Nũ[k](s)− g(s)]ds,

where λ is a general Lagrange multiplier which
can be identified optimally via variational theory
[9, 10, 11], the subscript k denotes the nth-order
approximation and ũ[k] denotes a restricted vari-
ation, i.e., δũ[k] = 0.

The structure of this paper is organized as fol-
lows. In Section 2, some basic definitions and
notations which will be used are brought. In Sec-
tion 3, the numerical method to solve nth-FIDE
is proposed. In Section 4, convergency of VIM
for this system is proved. In Section 5, the appli-
cation of mentioned method VIM is brought by
solving some numerical examples and finally the
results are compared with exact solutions. Con-
clusion is drawn in Section 6.
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2 Basic Definitions and Nota-
tions

Definition 2.1 An arbitrary fuzzy number is
represented by an ordered pair of functions
(u(α), u(α)) for all α ∈ [0, 1], which satisfy the
following requirements [5]

• u(α) is a bounded left continuous nondecreas-
ing function over [0, 1];

• u(α) is a bounded left continuous non-
increasing function over [0, 1];

• u(α) ≤ u(α), 0 ≤ α ≤ 1.

Remark 2.1 [1] Let u(α) = (u(α), u(α)), 0 ≤
α ≤ 1 be a fuzzy number, we take

uc(α) =
u(α) + u(α)

2
, ud(α) =

u(α)− u(α)

2
.

It is clear that ud(α) ≥ 0 and u(α) = uc(α) −
ud(α) and u(α) = uc(α) + ud(α) also a fuzzy
number u ∈ E is said symmetric if uc(α) is inde-
pendent of α for all 0 ≤ α ≤ 1.

Remark 2.2 [1] Let u(α) =
(u(α), u(α)), v(α) = (v(α), v(α)) and also k, s
are arbitrary real numbers. If w = ku+ sv then

wc(α) = kuc(α) + svc(α),

wd(α) = |k|ud(α) + |s|vd(α).

Let E be the set of all upper semi-continuous
normal convex fuzzy numbers with bounded α-
level intervals. This means that if ṽ ∈ E then the
α-level set

[v]α = {s|v(s) ≥ α},

is a closed bounded interval which is denoted by
[v]α = [v(α), v(α)] for α ∈ (0, 1], and [v]0 =∪

α∈(0,1][v]α.
Two fuzzy numbers ũ and ṽ are called equal,

ũ = ṽ, if u(s) = v(s) for all s ∈ R or [u]α = [v]α
for all α ∈ [0, 1].

Lemma 2.1 [12] If ũ, ṽ ∈ E, then for α ∈ (0, 1],

[u+ v]α = [u(α) + v(α), u(α) + v(α)],

[u.v]α = [min kα,max kα],

where

kα = {u(α)v(α), u(α)v(α), u(α)v(α), u(α)v(α)}.

Lemma 2.2 [12] Let [v(α), v(α)], α ∈ (0, 1], be
a given family of non-empty intervals. If

(i) [v(α), v(α)] ⊃ [v(β), v(β)] for 0 < α ≤ β,

and

(ii) [ lim
k→∞

v(αk), lim
k→∞

v(αk)] = [v(α), v(α)],

whenever (αk) is a nondecreasing sequence
converging to α ∈ (0, 1], then the family
[v(α), v(α)], 0 < α ≤ 1, represent the α-level
sets of a fuzzy number v in E. Conversely if
[v(α), v(α)], 0 < α ≤ 1, are the α-level sets of
a fuzzy number ṽ ∈ E, then the conditions (i)
and (ii) hold true.

Definition 2.2 [13] Let I be a real interval. A
mapping ṽ : I → E is called a fuzzy pro-
cess and we denote the α-level set by [v(t)]α =
[v(t, α), v(t, α)]. The Seikkala derivative ṽ

′
(t) of

ṽ is defined by

[v
′
(t)]α = [v

′
(t, α), v

′
(t, α)],

provided that is a equation defines a fuzzy number
ṽ
′
(t) ∈ E.

Definition 2.3 [13] The fuzzy integral of fuzzy

process ṽ,
∫ b
a v(t)dt for a, b ∈ I, is defined by

[

∫ b

a
v(t)dt]α = [

∫ b

a
v(t, α)dt,

∫ b

a
v(t, α)dt],

provided that the Lebesgue integrals on the right
exist.

Definition 2.4 Let ũ = (u(α) , u(α)), ṽ =
(v(α) , v(α)) be fuzzy numbers then the Hausdorff
distance between ũ and ṽ is

dH(ũ, ṽ) =

supα∈[0,1]max{|u(α)− v(α)|, |u(α)− v(α)|}.

3 Variational iteration method

In this section, we are going to investigate solu-
tion of nth-FIDE. Let

ỹ(n)(x) = g̃(x) + f(x)ỹ(x)

+
∫ b
a k(x, t)ỹ(m)(t)dt,

ỹ(a) = α̃0,

ỹ
′
(a) = α̃1,

...

ỹ(n−1)(a) = α̃n−1,

a ≤ x ≤ b,

(3.1)
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where α̃i, i = 0, 1, ..., n − 1 are fuzzy constant
numbers, m and n are integers and m < n, also
f(x) ≥ 0, k(x, t) are real known functions, and
g̃(x) is fuzzy known function, too. ỹ(x) is the
solution which to be determined.

Using the following assumptions

ỹ = ỹ1, ỹ
′
= ỹ2, ỹ

′′
= ỹ3, ..., ỹ(n−1) = ỹn,

then equation (3.1) is transformed to the follow-
ing fuzzy integro-differential equations

ỹ
′
1 = ỹ2,

ỹ
′
2 = ỹ3,

ỹ
′
3 = ỹ4,

...

ỹ
′
n = g̃(x) + f(x)ỹ1(x)

+
∫ b
a k(x, t)ỹm+1(t)dt,

a ≤ x ≤ b,

(3.2)
with fuzzy initial conditions

ỹ1(a) = α̃0, ỹ2(a) = α̃1, ..., ỹn(a) = α̃n−1.

Let (g(x; r), g(x; r)) ,(y1(x; r), y1(x; r))
,(y2(x; r), y2(x; r)),...,(yn(x; r), yn(x; r)) for,
0 ≤ r ≤ 1 and a ≤ x ≤ b are parametric form of
g̃(x), ỹ1(x), ỹ2(x), ..., ỹn(x), respectively.

Then, parametric form of (3.2) is

y
′

1
= y

2
,

y
′

2
= y

3
,

y
′

3
= y

4
,

...

y
′

n
= g(x) + f(x)y

1
(x)

+
∫ b
a k(x, t)ym+1(t)dt,

y
′
1 = y2,

y
′
2 = y3,

y
′
3 = y4,

...

y
′
n = g(x) + f(x)y1(x)

+
∫ b
a k(x, t)ym+1(t)dt,

(3.3)

where

k(x, t)ym+1(t)

=

{
k(x, t)y

m+1
(t), k(x, t) ≥ 0,

k(x, t)ym+1(t), k(x, t) ≤ 0,

k(x, t)ym+1(t)

=

{
k(x, t)ym+1(t), k(x, t) ≥ 0,
k(x, t)y

m+1
(t), k(x, t) ≤ 0.

To solve this system by VIM the following formu-
las are obtained:

y[k+1]
j

(x) = y[k]
j
(x) +

∫ x

a
λj(x, t)[y

′

j

[k]
(t)

−ỹ[k]
j+1

(t)]dt, j = 1, 2, ..., n− 1,

y[k+1]
n

(x) = y[k]
n
(x) +

∫ x

a
λn(x, t)[y

′

n

[k]
(t)

−g(t)− f(t)ỹ[k]
1
(t)−

∫ b

a
k(t, s)ỹ[k]

m+1
(s)ds]dt,

y
[k+1]
j (x) = y

[k]
j (x) +

∫ x

a
λj(x, t)[y

′
j

[k]
(t)

−ỹ
[k]
j+1(t)]dt, j = 1, 2, ..., n− 1,

y[k+1]
n (x) = y[k]n (x) +

∫ x

a
λn(x, t)[y

′
n

[k]
(t)

−g(t)− f(t)ỹ
[k]
1 (t)−

∫ b

a
k(t, s)ỹ

[k]
m+1(s)ds]dt,

where λ(x, t) is a general Lagrangian multiplier
which can be identified optimally via variational

theory, ỹ[k], ỹ
[k]
denote a restricted variation, i.e.

δỹ[k] = δỹ
[k]

= 0, and k is iteration step.

The variation is calculated with respect to

y
[k]
j (j = 1, 2, ..., n), respectively, and δỹ[k] = 0,

then we have

δy[k+1]
j

(x) = δy[k]
j
(x) + δ

∫ x

a
λj(x, t)[y

′

j

[k]
(t)

−ỹ[k]
j+1

(t)]dt = δy[k]
j
(x) + λj(x, t)δy

[k]
j
(t)|t=x

−
∫ x

a

∂λj(x, t)

dt
δy[k]

j
(t)dt = (1 + λj(x, x)

δy[k]
j
(x) +

∫ x

a
(−

∂λj(x, t)

dt
) δy[k]

j
(t)dt = 0,

j = 1, 2, ..., n− 1,

δy[k+1]
n

(x) = δy[k]
n
(x) + δ

∫ x

a
λn(x, t)[y

′

n

[k]
(t)
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−g(t)− f(t)ỹ[k]
1
(t)−

∫ b

a
k(t, s)ỹ[k]

m+1
(s)ds]dt

= δy[k]
n
(x) + λn(x, t)δy

[k]
n
(t)|t=x−

∫ x

a

∂λn(x, t)

dt

δy[k]
n
(t)dt = (1 + λn(x, x)δy

[k]
n
(x)

+

∫ x

a
(−∂λn(x, t)

dt
)δy[k]

n
(t)dt = 0.

For j = 1, 2, ..., n

−∂λ1(x, t)

∂t
= −∂λ2(x, t)

∂t
= −∂λn(x, t)

∂t
= 0,

then

1 + λj(x, x) = 0, j = 1, 2, ..., n,

and therefor we have

λj(x, t) = −1, j = 1, 2, ..., n.

Similar to above we have

λj(x, t) = −1, j = 1, 2, ..., n,

and we have following iteration formulas

y
[k+1]
j (x) = y

[k]
j (x)−

∫ x
a [y

′

j

[k]
(t)− ỹ[k]

j+1
(t)]dt,

j = 1, 2, ..., n− 1,

y[k+1]
n

(x) = y[k]
n
(x)−

∫ x
a [y

′

n

[k]
(t)− g(t)− f(t)

ỹ[k]
1
(t)−

∫ b
a k(t, s)ỹ[k]

m+1
(s)ds]dt,

y
[k+1]
j (x) = y

[k]
j (x)−

∫ x
a [y

′
j

[k]
(t)− ỹ

[k]
j+1(t)]dt,

j = 1, 2, ..., n− 1,

y
[k+1]
n (x) = y

[k]
n (x)−

∫ x
a [y

′
n
[k]
(t)− g(t)− f(t)

ỹ
[k]
1 (t)−

∫ b
a k(t, s)ỹ

[k]
m+1(s)ds]dt.

(3.4)

4 Convergence Theorem

In this section we analyze the convergency of VIM
for (3.1). Similar to Remark (2.1), let

yc(r) =
y(r) + y(r)

2
, yd(r) =

y(r)− y(r)

2
,

then the fuzzy version of (3.1) can be written as

y
′c
j (x; r) = ycj+1(x; r), (1 ≤ j ≤ n− 1)

y
′c
n (x; r) = gc(x) + f(x)yc1(x) +

∫ b
a k(x, t)

ycm+1(t)dt,

y
′d
j (x; r) = ydj+1(x; r), (1 ≤ j ≤ n− 1)

y
′d
n (x; r) = gd(x) + f(x)yd1(x) +

∫ b
a k(x, t)

ydm+1(t)dt,
(4.5)

and ycj(a; r) =
y
j
(a;r)+yj(a;r)

2 , (1 ≤ j ≤ n)

ydj (a; r) =
y
j
(a;r)−yj(a;r)

2 .

Similarly from (3.4) we can obtain the following
formula

y
[k+1]c
j (x, r) = y

[k]c
j (x, r)−

∫ x
a [y

′
j

[k]c
(t, r)

− y
[k]c
j+1(t, r)]dt, j = 1, 2, ..., n− 1,

y
[k+1]c
n (x, r) = y

[k]c
n (x)−

∫ x
a [y

′
n
[k]c

(t, r)

− gc(t)− f(t)y
[k]c
1 (t, r)−

∫ b
a k(t, s)

y
[k]c
m+1(s, r)ds]dt,

y
[k+1]d
j (x, r) = y

[k]d
j (x; r)−

∫ x
a [y

′
j

[k]d
(t, r)

− y
[k]d
j+1(t, r)]dt, j = 1, 2, ..., n− 1,

y
[k+1]d
n (x, r) = y

[k]d
n (x)−

∫ x
a [y

′
n
[k]d

(t, r)

− gd(t)− f(t)y
[k]d
1 (t, r)−

∫ b
a k(t, s)

y
[k]d
m+1(s, r)ds]dt.

(4.6)
Let

e
[k]c
j (x, r) = y

[k]c
j (x, r)− ycj(x, r),

obviously

ycj(x, r) = ycj(x, r)−
∫ x
a [y

′
j

c
(t, r)

− ycj+1(t, r)]dt, j = 1, 2, ..., n− 1,

ycn(x, r) = ycn(x, r)−
∫ x
a [y

′
n
c
(t, r)− g(t)

−f(t)yc1(t, r)−
∫ b
a k(t, s)ycm+1(s, r)ds]dt,

then

e
[k+1]c
j (x, r) = e

[k]c
j (x, r)−

∫ x
a [e

′
j

[k]c
(t, r)

− e
[k]c
j+1(t, r)]dt, j = 1, 2, ..., n− 1,

e
[k+1]c
n (x, r) = e

[k]c
n (x)−

∫ x
a [e

′
n
[k]c

(t, r)

−f(t)e
[k]c
1 (t, r)−

∫ b
a k(t, s)e

[k]c
m+1(s, r)ds]dt.

(4.7)
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The Eqs. (4.7) can be written as follow

e
[k+1]c
j (x, r) =

∫ x
a e

[k]c
j+1(t, r)dt,

j = 1, 2, ..., n− 1,

e
[k+1]c
n (x, r) =

∫ x
a [f(t)e

[k]c
1 (t, r)

+
∫ b
a k(t, s)e

[k]c
m+1(s, r)ds]dt.

Suppose

|e[k]cj |= max
a≤t≤b

|e[k]cj (t, r)|,

|e[k]c|= max
j

|e[k]cj |,

j = 1, 2, ..., n, k = 0, 1, ...,

and

K = max
a≤t,s≤b

|k(s, t)|, F = max
a≤t≤x

|F (t)|.

Then

|e[1]cj (x, r)|≤
∫ x
a |e

[0]c
j+1(t, r)|dt ≤ (x− a)|e[0]c|,

j = 1, 2, ..., n− 1,

e
[1]c
n (x, r) ≤

∫ x
a [|f(t)||e

[0]c
1 (t, r)|+

∫ b
a |k(t, s)|

|e[0]cm+1(s, r)|ds]dt ≤ (x− a)|e[0]c|(F +K(b− a)),

also

|e[2]cj (x, r)|≤
∫ x
a |e

[1]c
j+1(t, r)|dt ≤

(x−a)2

2! |e[0]c|,
j = 1, 2, ..., n− 1,

e
[2]c
n (x, r) ≤

∫ x
a [|f(t)||e

[1]c
1 (t, r)|+

∫ b
a |k(t, s)|

|e[1]cm+1(s, r)|ds]dt ≤
(x−a)2

2! |e[0]c|(F +K(b− a))2,

and similarly we can obtain


|e[k]cj (x, r)|≤ (x−a)k

k! |e[0]c|, j = 1, 2, ..., n− 1,

e
[k]c
n (x, r) ≤ (x−a)k

k! |e[0]c|(F +K(b− a))k.

Thus
e
[k]c
j (x, r) → 0 as k → ∞, j = 1, 2, ..., n− 1,

e
[k]c
n (x, r) → 0 as k → ∞.

(4.8)

In similar way, it can be proven that
e
[k]d
j (x, r) → 0 as k → ∞, j = 1, 2, ..., n− 1,

e
[k]d
n (x, r) → 0 as k → ∞,

(4.9)
and (4.8), (4.9) imply the convergency of method.

5 Numerical Examples

In this section, four numerical examples are
solved by MATLAB for illustration and the ob-
tained solutions are compared with the exact so-
lutions.

Example 5.1 Consider the following third-order
Fuzzy integro-differential equation

ỹ
′′′
(x) = g̃(x) +

∫ 1
0 (x+ t)ỹ

′
(t)dt,

g̃ = (60x2(r + 1) + x(1− 3r) + (29/3)r
− 34/3,−1/6(r − 3)(360x2 − 6x− 5)),

ỹ(0) = (0, 0),

ỹ
′
(0) = (0, 0),

ỹ
′′
(0) = (0, 0).

(5.10)

The exact solution for this problem is ỹ(x) =
((r + 1)x5 + (2r − 2)x3 , (3 − r)x5). See Fig.
1 and Table 1 for comparing the exact solution
and obtained solution by the variational iteration
method for different k and x.

Example 5.2 Consider the following second-
order Fuzzy integro-differential equation

ỹ
′′
(x) = g̃(x) +

∫ 1
0 (e

x + et)ỹ(t)dt,

g̃ = (6(r − 1)x+ (1/4− (7/12)r)ex

+ (e− 2)r + 6− 2e, 1/3(r − 2)
(−12 + ex + 3e)),

ỹ(0) = (0, 0),

ỹ
′
(0) = (0, 0).

(5.11)

The exact solution for this problem is ỹ(x) =
((r−1)x3+rx2 , (2−r)x2). See Fig. 2 and Table 2
K for comparing the exact solution and obtained
solution by the variational iteration method for
different k and x.
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Table 1: numerical result for Example 5.1.

dH(ỹ(k), ỹexact)

x k = 5 k = 10 k = 15

0.2 5.8611e-004 1.6689e-005 8.0161e-008
0.4 0.0050 1.4173e-004 6.8076e-007
0.6 0.0178 5.0607e-004 2.4308e-006
0.8 0.0444 0.0013 6.0776e-006
1 0.0913 0.0026 1.2487e-005

Table 2: numerical result for Example 5.2.

dH(ỹ(k), ỹexact)

x k = 10 k = 20 k = 30

0.2 0.0048 3.1510e-004 1.9237e-005
0.4 0.0198 0.0013 8.2562e-005
0.6 0.0457 0.0030 1.8732e-004
0.8 0.0836 0.0054 3.6093e-004
1 0.1346 0.0088 5.6461e-004

Example 5.3 Consider the following third-order
Fuzzy integro-differential equation

ỹ
′′′
(x) = g̃(x) +

∫ 1
0 (x+ t)2ỹ

′
(t)dt,

g̃ = (−1/15(r + 1)(15x2 − 366x+ 10),
1/15(r − 3)(15x2 − 366x+ 10)),

ỹ(0) = (0, 0),

ỹ
′
(0) = (0, 0),

ỹ
′′
(0) = (0, 0).

(5.12)

The exact solution of this problem is ỹ(x) =
((r + 1)x4 , (3 − r)x4). See Fig. 3 and Table
3 for comparing the exact solution and obtained
solution by the variational iteration method for
different k and x.

Example 5.4 Consider the following third-order
Fuzzy integro-differential equation

ỹ
′′′
(x) = g̃(x) +

∫ π/2
0 (x cos(t))ỹ

′
(t)dt

g̃ = (1/2(r − 1)(2 sin(x) + x), 1/2(1− r)
(2 sin(x) + x))

ỹ(0) = (r − 1, 1− r),

ỹ
′
(0) = (0, 0),

ỹ
′′
(0) = (1− r, r − 1).

(5.13)

The exact solution of this problem is ỹ(x) = ((r−
1) cos(x) , (1 − r) cos(x)). See Fig.4 and Table
4 for comparing the exact solution and obtained
solution by the variational iteration method for
different k and x.
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Figure 1: Comparing of exact solution and
obtained solution in Example 5.1.

6 Conclusions

In this paper, we used He’s variational iteration
method to obtain fuzzy solution of the nth-order
fuzzy integro-differential equations. Convergency
of VIM for this system is proved. Since choos-
ing initial approximations are free so without un-
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Table 3: numerical result for Example 5.3.

dH(ỹ(k), ỹexact)

x k = 5 k = 10 k = 15

0.2 5.5540e-004 1.9377e-005 1.2624e-007
0.4 0.0050 1.7442e-004 1.1363e-006
0.6 0.0189 6.6002e-004 4.2999e-006
0.8 0.0501 0.0017 1.1385e-005
1 0.1089 0.0038 2.4741e-005

Table 4: numerical result for Example 5.4.

dH(ỹ(k), ỹexact)

x k = 5 k = 10 k = 15

π/8 3.7242e-005 2.9794e-008 8.9369e-011
π/4 5.9587e-004 4.7671e-007 1.4299e-009
3π/4 0.0483 3.8613e-005 1.1582e-007
π/2 0.0095 7.6274e-006 2.2879e-008
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Figure 2: Comparing of exact solution and
obtained solution in Example 5.2.

known initial values were constructed. Conver-
gency of VIM for this system is proved. The ef-
fectiveness of the method was shown by different
examples with separable and inseparable kernels.
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