
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 7, No. 3, 2015 Article ID IJIM-00592, 6 pages

Research Article

Characterization of L2(p
2) by NSE

H. Parvizi Mosaed ∗†, A. Tehranian ‡

————————————————————————————————–

Abstract

Let G be a group and π(G) be the set of primes p such that G contains an element of order p. Let
nse(G) be the set of the number of elements of the same order in G. In this paper, we prove that the
simple group L2(p

2) is uniquely determined by nse(L2(p
2)), where p ∈ {11, 13}.
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1 Introduction

L
et G be a group and π(G) be the set of primes
p such that G contains an element of order p

and πe(G) be the set of element orders of G. If
k ∈ πe(G), then we denote by mk or mk(G), the
number of elements of order k inG. Let nse(G) =
{mk | k ∈ πe(G)}.

In 1987, Thompson posed a problem related
to algebraic number fields as follows: (Problem
12.37 of [16])
Thompson Problem: Let G and H be two fi-
nite groups with T (G) = T (H), where T (G) =
{(k,mk) | k ∈ πe(G)}. If G is solvable, is it true
that H is also necessarily solvable?
Up to now, no one can solve this problem com-
pletely even give a counterexample. It is easy to
see that if G and H are two finite groups with
T (G) = T (H), then |G|= |H| and nse(G) =
nse(H). Studies on characterizations related to
nse(G) started by Shao et al. In [19], they proved
that if G is a simple K4-group, then G is char-
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acterizable by nse(G) and |G| (The simple group
G is called simple Kn-group if |π(G)|= n). Fol-
lowing this result, in [4, 14], it is proved that the
groups A12 and A13 are characterizable by nse(G)
and |G|. In [10], the authors put forward the fol-
lowing problem:
Problem: Let G be a group such that nse(G) =
nse(L2(q)), where q is a prime power. Is G iso-
morphic to L2(q)?
They proved that the groups L2(q), where q ∈
{7, 8, 11, 13} are characterizable by nse(L2(q)).
Also in [9, 11, 12, 13, 18, 20], it is proved that the
groups L2(q), where q ∈ {2, 3, 4, 9, 16, 25, 49} ∪
{r : r < 100 is a prime} are characterizable by
nse(L2(q)). In this paper, we show that this prob-
lem has an affirmative answer for the case q = p2,
where p ∈ {11, 13}. In fact, we prove the follow-
ing main theorem:
Main Theorem. Let G be a group such that
nse(G) = nse(L2(p

2)), where p ∈ {11, 13}. Then
G ∼= L2(p

2).

2 Preliminaries

For a natural number n, by π(n), we mean the
set of all prime divisors of n, so it is obvious that
if G is a finite group, then π(G) = π(|G|). A
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Sylow p-subgroup of G is denoted by Gp and by
np(G), we mean the number of Sylow p-subgroups
of G. If there is no ambiguity, then we write
np instead of np(G). Also, the largest element
of πe(Gp) is denoted by exp(Gp). Moreover, we
denote by φ the Euler totient function and by
(a, b) the greatest common divisor of integers a
and b.

In the following, we bring some useful lemmas
which will be used in the proof of the main theo-
rem.

Lemma 2.1 [3] Let G be a finite group and m
be a positive integer dividing |G|. If Lm(G) =
{g ∈ G | gm = 1}, then m | |Lm(G)|.

Lemma 2.2 [20] Let G be a group containing
more than two elements. Let k ∈ πe(G) and mk

be the number of elements of order k in G. If
s = sup{mk | k ∈ πe(G)} is finite, then G is
finite and |G|≤ s(s2 − 1).

Lemma 2.3 [15] Let G be a finite group and p ∈
π(G)−{2}. Suppose that P is a Sylow p-subgroup
of G and n = psm, where (p,m) = 1. If P is not
cyclic and s > 1, then the number of elements of
order n is always a multiple of ps.

Lemma 2.4 [5] Let G be a finite solvable group
and |G|= mn, where m = pα1

1 . . . pαr
r , (m,n) =

1. Let π = {p1, . . . , pr} and hm be the num-
ber of Hall π-subgroups of G. Then hm =
qβ1
1 . . . qβs

s , satisfies the following conditions for
all i ∈ {1, . . . , s}:

• qβi
i ≡ 1 (mod pj), for some pj .

• The order of some chief factor of G is divisi-
ble by qβi

i .

Lemma 2.5 [20] Let G be a group containing
more than two elements. Let k ∈ πe(G) and mk

be the number of elements of order k in G. If
s = sup{mk | k ∈ πe(G)} is finite, then G is
finite and |G|≤ s(s2 − 1).

Lemma 2.6 [15] Let G be a finite group and p ∈
π(G)−{2}. Suppose that P is a Sylow p-subgroup
of G and n = psm, where (p,m) = 1. If P is not
cyclic and s > 1, then the number of elements of
order n is always a multiple of ps.

Lemma 2.7 [5] Let G be a finite solvable group
and |G|= mn, where m = pα1

1 . . . pαr
r , (m,n) =

1. Let π = {p1, . . . , pr} and hm be the num-
ber of Hall π-subgroups of G. Then hm =
qβ1
1 . . . qβs

s , satisfies the following conditions for
all i ∈ {1, . . . , s}:

• qβi
i ≡ 1 (mod pj), for some pj.

• The order of some chief factor of G is divis-
ible by qβi

i .

Lemma 2.8 [6] Let G be a solvable group and
π be any set of primes. Then

• G has a Hall π-subgroup.

• If H is a Hall π-subgroup of G and V is any
π-subgroup of G, then V ≤ Hg for some g ∈
G. In particular, the Hall π-subgroups of G
form a single conjugacy class of subgroups of
G.

Lemma 2.9 Let S be a simple Kn-group, where
n ∈ {3, 4, 5, 6}. If |S|| 24.3.5.7.132.17, then S is
isomorphic to one of the following groups: A5,
L2(7), L2(13), L2(16), L2(169).

Proof. • Let S be a simple K3-group. Then by
[7], S is isomorphic to one of the following groups:
A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3), U4(2).
If S ∼= A6, L2(8), L2(17), L3(3), U3(3), U4(2),
then 32 | |S|, which is a contradiction. So S ∼= A5

or L2(7).
• Let S be a simple K4-group. Then by [1, 17],
S is isomorphic to one of the following groups:

• A7, A8, A9, A10, M11, M12, J2, L2(16),
L2(25), L2(49), L2(81), L2(243), L3(4),
L3(5), L3(7), L3(8), L3(17), L4(3), S4(4),
S4(5), S4(7), S4(9), S6(2), O+

8 (2), G2(3),
U3(4), U3(5), U3(7), U3(8), U3(9), U4(3),
U5(2), Sz(8), Sz(32),

3D4(2),
2F4(2)

′;

• L2(r), where r is a prime, r2 − 1 = 2a3bvc,
v > 3 is a prime, a, b, c ∈ N;

• L2(2
m), where m, (2m − 1) and (2m + 1)/3

are primes greater than 3;

• L2(3
m), where m, (3m−1)/2 and (3m+1)/4

are odd primes.

If S is isomorphic to one of the groups of parts
(1),(3),(4) except L2(16), then 25 | |S| or 32 | |S|
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or 52 | |S|, which is a contradiction. If S ∼= L2(r),
where r is a prime, r2 − 1 = 2a3bvc, v > 3 is a
prime, a, b, c ∈ N, then by |S|, r ∈ {5, 7, 13, 17}
and hence r = 13. So we conclude that S ∼=
L2(13) or L2(16).
• Let S be a simple K5-group. Then by [8], S is
isomorphic to one of the following groups:

• L2(q), where q satisfies |π(q2 − 1)|= 4;

• L3(q), where q satisfies |π((q2−1)(q3−1))|=
4;

• U3(q), where q satisfies |π((q2−1)(q3+1))|=
4;

• O5(q), where q satisfies |π(q4 − 1)|= 4;

• Sz(22m+1), where |π((22m+1 − 1)(24m+2 +
1))|= 4;

• One of the 30 other simple groups:
A11, A12, M22, J3, HS, He, M cL, L4(4),
L4(5), L4(7), L5(2), L5(3), L6(2), O7(3),
S6(3), S8(2), U4(4), U4(5), U4(7), U4(9),
U5(3), U6(2), O

+
8 (3), O

−
8 (2),

3D4(3), G2(4),
G2(5), G2(7), G2(8).

If S is isomorphic to one of the groups of
part (6), then 32 | |S|, which is a contra-
diction. If S ∼= L2(q), then by |S|, q ∈
{2, 3, 4, 5, 7, 8, 13, 16, 17, 169} and since |π(q2 −
1)|= 4, we conclude a contradiction. Similarly,
we conclude that S is not isomorphic to one of
the groups of parts (2),(3),(4),(5).
• Let S be a simple K6-group. Then by [8], S is
isomorphic to one of the following groups:

• L2(q), where q satisfies |π(q2 − 1)|= 5;

• L3(q), where q satisfies |π((q2−1)(q3−1))|=
5;

• L4(q), where q satisfies |π((q2−1)(q3−1)(q4−
1))|= 5;

• U3(q), where q satisfies |π((q2−1)(q3+1))|=
5;

• U4(q), where q satisfies |π((q2−1)(q3+1)(q4−
1))|= 5;

• O5(q), where q satisfies |π(q4 − 1)|= 5;

• G2(q), where q satisfies |π(q6 − 1)|= 5;

• Sz(22m+1), where |π((22m+1 − 1)(24m+2 +
1))|= 5;

• R(32m+1), where |π((32m+1 − 1)(36m+3 +
1))|= 5;

• One of the 38 other simple groups:
A13, A14, A15, A16, M23, M24, J1, Suz, Ru,
Co2, Co3, Fi22, HN , L5(7), L6(3), L7(2),
O7(4), O7(5), O7(7), O9(3), S6(4), S6(5),
S6(7), S8(3), U5(4), U5(5), U5(9), U6(3),
U7(2), F4(2), O

+
8 (4), O

+
8 (5), O

+
8 (7), O

+
10(2),

O−
8 (3), O

−
10(2),

3D4(4),
3D4(5).

If S is isomorphic to one of the groups of
part (10), then 32 | |S|, which is a contra-
diction. If S ∼= L2(q), then by |S|, q ∈
{2, 3, 4, 5, 7, 8, 13, 16, 17, 169} and since |π(q2 −
1)|= 5, we conclude S ∼= L2(169). Similarly, we
conclude that S is not isomorphic to one of the
groups of parts (2)-(9).

Lemma 2.10 Let G be a group such that
nse(G) = nse(L2(p

2)), where p ∈ {11, 13}. Then
G is finite and for every i ∈ πe(G),{

φ(i) | mi

i |
∑

d|imd

and if i > 2, then mi is even.

Proof. The proof is straightforward according to
Lemmas 2.1 and 2.5.

3 Proof of the Main Theorem

First, we prove the main theorem for
the case p = 13. If G is a group such
that nse(L2(13

2)) = nse(G), then by
[2], we have nse(L2(13

2)) = nse(G) =
{1, 14365, 28560, 28730, 56784, 57460, 86190,
172380, 227136, 344760, 908544}.
In the following lemma, we prove some basic

properties of group G:

Lemma 3.1 If {2, 3, 5, 7, 13, 17} ⊆ π(G), then

• m2 = 14365, m3 = 28730, m5 ∈
{56784, 908544}, m7 = 86190, m13 = 28560,
m17 = 227136.

•
{
172, 134, 72, 53, 33, 210, 28.13, 3.17, 7.13,
13.17} ∩ πe(G) = ∅.

• |G17|= 17, |G13|| 134, |G7|| 72, |G5|= 5,
|G3|| 32.
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Proof. According to Lemma 2.10 and nse(G),
the proof of parts (1) and (2) is obvious. So it is
enough to prove part (3). Since 172 /∈ πe(G), we
conclude that exp(G17) = 17 and hence, Lemma
2.1 implies that |G17|= 17. Thus G17 is cyclic
and n17 = m17/φ(17) = 14196.

Since 134 /∈ πe(G), we conclude that
exp(G13) ∈ {13, 132, 133}. If exp(G13) = 133,
then Lemma 2.1 implies that |G13|| 133 and
hence, G13 is cyclic and n13 = m133/φ(13

3) =
85 or 448. But since every cyclic group of
order 133 has only one subgroup of order 13,
we conclude that m13 ≤ 12.448, which is
a contradiction. If exp(G13) = 132, then
Lemma 2.1 implies that |G13|| 132 and hence,
G13 is cyclic and n13 = m132/φ(13

2) ∈
{364, 1105, 456, 2210, 5824}, which is a contradic-
tion by Sylow’s theorem. So we conclude that
exp(G13) = 13 and hence, Lemma 2.1 implies
that |G13|| 134.

Since 72 /∈ πe(G), Lemma 2.1 implies that |G7||
72.

Since 53 /∈ πe(G), we conclude that exp(G5) ∈
{5, 52}. If exp(G5) = 52, then Lemma 2.1 im-
plies that |G5|| 52 and hence, G5 is cyclic and
n5 = m52/φ(5

2) = 8619. But since every cyclic
group of order 52 has only one subgroup of order
5, we conclude that m5 ≤ 4.8619, which is a con-
tradiction. So we conclude that exp(G5) = 5 and
hence, Lemma 2.1 implies that |G5|= 5. Thus G5

is cyclic and n5 = m5/φ(5) = 14196 or 227136.

Since 33 /∈ πe(G), we conclude that exp(G3) ∈
{3, 32}. If exp(G3) = 32, then Lemma 2.1 implies
that |G3|| 35. Since 32 ∤ m32 , Lemma 2.6 implies
that G3 is cyclic and hence, n3 = m32/φ(3

2) =
14365 or 57460. If exp(G3) = 3, then Lemma 2.1
implies that |G3|= 3 and hence, G3 is cyclic and
n3 = m3/φ(3) = 14365. So |G3|| 32. Now we
are going to prove that G ∼= L2(13

2). We have
divided the proof into a sequence of lemmas:

Lemma 3.2 π(G) = {2, 3, 5, 7, 13, 17}.

Proof. Since 14365 is the only odd number
nse(G) − {1}, by Lemma 2.10, 2 ∈ π(G). Let
2 ̸= r ∈ π(G). Then by Lemma 2.10, r |
(1 + mr) and φ(r) | mr. Thus we conclude that
r ∈ {3, 5, 7, 11, 13, 17}. If 11 ∈ π(G), then by
Lemma 2.10, m11 = 172380. On the other hand,
22 /∈ πe(G) because otherwise by Lemma 2.10,
φ(22) | m22 and 22 | (1 + m2 + m11 + m22),
which is a contradiction. Thus G11 acts fixed

point freely on the set of elements of order 2 by
conjugation and hence |G11|| m2, which is a con-
tradiction. Therefore 11 /∈ π(G). So we conclude
that {2} ⊆ π(G) ⊆ {2, 3, 5, 7, 13, 17}.
• If π(G) = {2}, then by Lemma 3.1, 210 /∈ πe(G).
Thus πe(G) ⊆ {1, 2, . . . , 29}. Hence |nse(G)|≤
10, which is a contradiction.
• If π(G) = {2, 7}, then by Lemma 3.1,
210, 72 /∈ πe(G). Thus πe(G) ⊆ {1, 2, . . . , 29} ∪
{7, 7.2, . . . , 7.29}, which implies that
|G|= 2k.7l = 1924910 + 28560k1 + 28730k2
+ 56784k3 + 57460k4 + 86190k5 + 172380k6 +
227136k7 + 344760k8 + 908544k9,
where l, k, k1, k2, k3, k4, k5, k6, k7, k8 and k9 are
non-negative integers and l ≤ 2 and 0 ≤ k1 +
. . . + k9 ≤ 9. But it is easy to check that this
equation has no solution.
• If π(G) = {2, 13}, then by Lemma 3.1,
210, 132, 13.28 /∈ πe(G). Thus πe(G) ⊆
{1, 2, . . . , 29}∪{13, 13.2, . . . , 13.27}, which implies
that
|G|= 2k.13l = 1924910 + 28560k1 + 28730k2 +
56784k3 + 57460k4 + 86190k5 + 172380k6 +
227136k7 + 344760k8 + 908544k9,
where l, k, k1, k2, k3, k4, k5, k6, k7, k8 and k9 are
non-negative integers and l ≤ 4 and 0 ≤ k1 +
. . . + k9 ≤ 7. It is easy to check that this equa-
tion has no solution, which is a contradiction.
• If π(G) = {2, 7, 13}, then by Lemma 3.1,
7.13 /∈ πe(G). Thus G7 acts fixed point freely
on the set of elements of order 13 by conjugation
and hence, |G7|| m13. Therefore |G7|= 7 and
n7 = m7/φ(7) = 14365. Since n7 | |G|, we con-
clude that 17 ∈ π(G), which is a contradiction.
• If 3 ∈ π(G), then by Lemma 3.1, n3 ∈
{14365, 57460}. Since n3 | |G|, we conclude that
17 ∈ π(G).
• If 5 ∈ π(G), then by Lemma 3.1, n5 ∈
{14196, 227136}. Since n5 | |G|, we conclude that
3 ∈ π(G). Thus according to the previous case,
we have 17 ∈ π(G).

According to the above statement, in each case,
we have 17 ∈ π(G). By Lemma 3.1, we know that
n17 = 14196 and since n17 | |G|, we conclude that
14196 | |G|. Thus {2, 3, 7, 13, 17} ⊆ π(G). On the
other hand, by Lemma 3.1, n3 ∈ {14365, 57460}.
Since n3 | |G|, we conclude that 5 | |G|. Conse-
quently, π(G) = {2, 3, 5, 7, 13, 17}.

Lemma 3.3 |G|= 2k.3.5.7.132.17, where k ≤ 4.

Proof. By Lemma 3.1, we have |G17|= 17 and
|G5|= 5. Now we prove that |G13|= 132, |G7|= 7,
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|G3|= 3, |G2|| 24.
• By Lemma 3.1, we have 3.17 /∈ πe(G). Thus G3

acts fixed point freely on the set of elements of
order 17 by conjugation and hence, |G3|| m17. So
|G3|= 3 and n3 = 14365. According to Lemma
3.1, {7.13, 13.17} ∩ πe(G) = ∅ and hence, similar
argument implies that |G7|= 7, n7 = 14365 and
|G13|= 132.
• If 5.17 /∈ πe(G), then G5 acts fixed point freely
on the set of elements of order 17 by conjugation
and hence, |G5|| m17, which is a contradiction.
Thus 85 = 5.17 ∈ πe(G) and m85 = 908544. On
the other hand, if P and Q are Sylow 5-subgroups
of G, then it is obvious that CG(P ) and CG(Q)
are conjugate in G. So m85 = φ(85)n5k, where
k is the number of cyclic subgroups of order 17
in CG(P ). Hence 64n5 | m85 and since n5 ∈
{14196, 227136}, we conclude that n5 = 14196
and m5 = 56784. Similarly, we conclude that
10 /∈ πe(G). Thus G2 acts fixed point freely on
the set of elements of order 5 by conjugation and
hence, |G2|| m5. So we conclude that|G2|| 24.

Lemma 3.4 G is unsolvable.

Proof. If G is solvable, then by Lemma
2.8, G has a Hall π-subgroup H, where π =
{3, 5, 7, 13, 17} and all Hall π-subgroups of G are
conjugate and the number of Hall π-subgroups of
G is |G : NG(H)|| 24. Since H is solvable, accord-
ing to Lemma 2.7, there are nonnegative integers
α1, . . ., αr, β1, . . ., βs, γ1, . . ., γt, δ1, . . ., δu such
that

n17(H) = 3
∑r

i=1 αi .5
∑s

j=1 βj .7
∑t

k=1 γk .13
∑u

l=1 δl ,

where

3αi ≡ 1 (mod 17), 5βj ≡ 1 (mod 17)

7γk ≡ 1 (mod 17), 13δl ≡ 1 (mod 17).

Also, by Lemma 3.3, we know that |G|=
2k.3.5.7.132.17, where k ≤ 4. Thus

∑r
i=1 αi ≤

1,
∑s

j=1 βj ≤ 1,
∑t

k=1 γk ≤ 1,
∑u

l=1 δl ≤ 2 which
implies that n17(H) = 1. So 16 ≤ m17(G) ≤
(24.16), but we have m17 = 227136, which is a
contradiction.

Lemma 3.5 G ∼= L2(13
2).

Proof. Since G is a finite unsolvable group, there
is a normal series 1 � N � M � G, such that N
is a maximal solvable normal subgroup of G and

M/N is an unsolvable simple group or the direct
product of isomorphic unsolvable simple groups.
Let M/N ∼= S1 × . . . × Sr, where S1 is an un-
solvable simple group and S1

∼= . . . ∼= Sr. Since
1 �N �M � G and |G|= 2k.3.5.7.132.17, where
k ≤ 4, we conclude that r = 1 and M/N is
a simple Kn-group, where n ∈ {3, 4, 5, 6}. So
by Lemma 2.9, M/N is isomorphic to one of
the following groups: A5, L2(7), L2(13), L2(16),
L2(169).
• If M/N ∼= A5, then (G/N)/(A/N) ∼= G/A ≤
Aut(M/N) ∼= S5, where CG/N (M/N) = A/N .
Since M/N ∼= A5 is an unsolvable simple group,
we conclude that M/N ∩ A/N = 1 and hence,
M/N × A/N � G/N , therefore |M/N || |G/A|.
So we conclude that G/A ∼= A5 or S5. Hence
7.132.17 | |A|| 22.7.132.17. Thus by Sylow’s the-
orem, n17(A) ∈ {1, 52}. Since A � G, we con-
clude that n17(A) = n17(G). Therefore m17(G) ∈
{16, 832}, which is a contradiction. Similarly, we
can prove that G ≇ L2(7), L2(13), L2(16).
• If M/N ∼= L2(169), then (G/N)/(A/N) ∼=
G/A ≤ Aut(M/N), where CG/N (M/N) = A/N .
Since M/N ∼= L2(169) is an unsolvable simple
group, we conclude that M/N ∩A/N = 1, hence
M/N × A/N � G/N , therefore |M/N || |G/A|.
So we conclude that 23.3.5.7.132.17 = |M/N ||
|G/A|| |Aut(M/N)|= 25.3.5.7.132.17. Hence |A||
2. Let A = {1, x} and y is element of G of order 5.
SinceA�G, we conclude that y−1xy = x, henceG
have element of order 10, which is a contradiction.
So A = N = 1 and L2(169) ≤ G ≤ Aut(L2(169)).
Thus |G|= 23.3.5.7.132.17 or 24.3.5.7.132.17. If
|G|= 24.3.5.7.132.17, then we know that
πe(Aut(L2(169))) = {1, 2, 3, 4, 5, 6, 7, 8, 10,
12, 13, 14, 17, 21, 24, 26, 28, 34, 42, 56, 84, 85,
168, 170}.
Now we have 56 /∈ πe(G) because otherwise
m56 ∈ {28560, 56784, 227136, 908544} and sim-
ilar to Lemma 3.3, m56 = φ(56)n7k, thus we
conclude that n7 | m56, which is a contradic-
tion. Hence 56 /∈ πe(G). So 168 /∈ πe(G).
Similarly, 10, 34, 170 /∈ πe(G). So |πe(G)|≤
19. Thus |G|= 24.3.5.7.132.17 = 1924910 +
28560k1+28730k2+56784k3+57460k4+86190k5+
172380k6+227136k7+344760k8+908544k9, where
k1, k2, k3, k4, k5, k6, k7, k8 and k9 are non-negative
integers and 0 ≤ k1+k2+k3+k4+k5+k6+k7+
k8 + k9 ≤ 8. It is easy to check that this equa-
tion has no solution, which is a contradiction. So
we conclude that |G|= 23.3.5.7.132.17 and since
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L2(169) ≤ G ≤ Aut(L2(169)), we conclude that
G ∼= L2(169).

By the same manner, we can prove the main
theorem for p = 11 as well. We omit the details
for the sake of convenience.
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