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Abstract

The hybrid fuzzy differential equations have a wide range of applications in science and engineering.
We consider the problem of finding their numerical solutions by using a novel hybrid method based
on fuzzy neural network. Here neural network is considered as a part of large field called neural
computing or soft computing. The proposed algorithm is illustrated by numerical examples and the
results obtained using the scheme presented here agree well with the analytical solutions.
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1 Introduction

T
he topic of Fuzzy Differential Equations
(FDEs) has been rapidly growing in recent

years. The concept of fuzzy derivative was first
introduced by Chang and Zadeh [11], it was fol-
lowed up by Dubois and Prade [13] who used
the extension principle in their approach. Other
methods have been discussed by Puri and Ralescu
[35] and by Goetschel and Voxman [14]. Fuzzy
differential equations were first formulated by
Kaleva [20] and Seikkala [37] in time depen-
dent form. Kaleva had formulated fuzzy differ-
ential equations, in terms of Hukuhara deriva-
tive [20]. Buckley and Feuring [10] have given
a very general formulation of a fuzzy first-order
initial value problem. They first find the crisp
solution, make it fuzzy and then check if it
satisfies the FDE. Also, the fuzzy initial value
problem have been studied by several authors
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[1, 2, 6, 7, 8, 9, 12, 25, 36].

Hybrid system is a dynamic system that ex-
hibits both continuous and discrete dynamic be-
havior. The hybrid systems are devoted to mod-
eling, design, and validation of interactive sys-
tems of computer programs and continuous sys-
tems. The differential equations containing fuzzy
value functions and interaction with a discrete
time controller are named as hybrid fuzzy differ-
ential equations (HFDEs) [32].

In this work, we propose a new solution for the
approximated solution of HFDEs using innova-
tive mathematical tools and neural-like systems
of computation based on the Hukuhara deriva-
tive. This hybrid method can result in improved
numerical methods for solving HFDEs. In this
proposed method, FNNM is applied as univer-
sal approximator. The main aim of this pa-
per is to illustrate how fuzzy connection weights
are adjusted in the learning of fuzzy neural net-
works by the back-propagation-type learning al-
gorithms [17, 19] for the approximated solution
of HFDEs. In this paper, our fuzzy neural net-
work is a three-layer feedforward neural network
where connection weights and biases are fuzzy
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numbers. Further, we show that the solutions
obtained by fuzzy neural network is more accu-
rate and well agree with the exact solutions. For
many years this technology has been successfully
applied to a wide variety of real-word applica-
tions [34]. Recently, fuzzy neural network model
(FNNM) successfully used for solving fuzzy poly-
nomial equation and systems of fuzzy polynomi-
als [3, 4], approximate fuzzy coefficients of fuzzy
regression models [27, 28, 29], approximate solu-
tion of fuzzy linear systems and fully fuzzy linear
systems [30, 31] and fuzzy differential equations
[26].

2 Preliminaries

Definition 2.1 A fuzzy number u is a fuzzy
subset of the real line with a normal, convex
and upper semicontinuous membership function
of bounded support.

Definition 2.2 [20] A fuzzy number u is a pair
(u, u) of functions u(r), u(r); 0 ≤ r ≤ 1 which
satisfy the following requirements:

i. u(r) is a bounded monotonic increasing left
continuous function on (0, 1] and right continuous
at 0.

ii. u(r) is a bounded monotonic decreasing left
continuous function on (0, 1] and right continuous
at 0.

iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.

The set of all the fuzzy numbers is denoted by E.
This fuzzy number space as shown in [38], can

be embedded into the Banach space B = C[0, 1]×
C[0, 1] where the metric is usually defined as

∥(u, v)∥= max{sup0≤r≤1|u(r)|,

sup0≤r≤1|v(r)|},

for arbitrary (u, v) ∈ C[0, 1]× C[0, 1].
Before describing a fuzzy neural network archi-

tecture, we denote real numbers and fuzzy num-
bers by lowercase letters (e.g., a, b, c, . . .) and up-
percase letters (e.g., A,B,C, . . .), respectively.

2.1 Operations of fuzzy numbers

We briefly mention fuzzy number operations de-
fined by the extension principle [39]. Since input
vector of feedforward neural network is fuzzy in
this paper, the following addition, multiplication

and nonlinear mapping of fuzzy numbers are nec-
essary for defining our fuzzy neural network:

µA+B(z) = max{µA(x)∧µB(y)|z = x+y}, (2.1)

µAB(z) = max{µA(x) ∧ µB(y)|z = xy}, (2.2)

µf(Net)(z) = max{µNet(x)|z = f(x)}, (2.3)

where A, B, Net are fuzzy numbers, µ∗(.) de-
notes the membership function of each fuzzy
number, ∧ is the minimum operator and f(.) is
a continuous activation function (like sigmoidal
activation function) inside hidden neurons.

The above operations of fuzzy numbers are nu-
merically performed on level sets (i.e., α-cuts).
The h-level set of a fuzzy number A is defined as

[A]h = {x ∈ R|µA(x) ≥ h} for 0 < h ≤ 1,
(2.4)

and [A]0 =
∪

h∈(0,1][A]h. Since level sets of fuzzy
numbers become closed intervals, we denote [A]h
as

[A]h = [[A]Lh , [A]
U
h ], (2.5)

where [A]Lh and [A]Uh are the lower limit and the
upper limit of the h-level set [A]h, respectively.
From interval arithmetic [5], the above operations
of fuzzy numbers are written for h-level sets as
follows:

[A]h + [B]h = [[A]Lh + [B]Lh , [A]
U
h + [B]Uh ], (2.6)

[A]h.[B]h = [min{[A]Lh .[B]Lh , [A]
L
h .[B]Uh ,

[A]Uh .[B]Lh , [A]Uh .[B]Uh },

max{[A]Lh .[B]Lh , [A]
L
h .[B]Uh ,

[A]Uh .[B]Lh , [A]
U
h .[B]Uh }], (2.7)

f([Net]h) = f([[Net]Lh , [Net]Uh ]) =

[f([Net]Lh ), f([Net]Uh )], (2.8)

where f is increasing function. In the case of
0 ≤ [B]Lh ≤ [B]Uh , Eq. (2.7) can be simplified as

[A]h.[B]h = [min{[A]Lh .[B]Lh , [A]
L
h .[B]Uh },

max{[A]Uh .[B]Lh , [A]
U
h .[B]Uh }].
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2.2 Input-output relation of each unit

Our fuzzy neural network is a three-layer feedfor-
ward neural network where connection weights,
biases and targets are given as fuzzy numbers
and inputs are given as real numbers. For con-
venience in this discussion, FNNM with an in-
put layer, a single hidden layer, and an output
layer is represented as a basic structural architec-
ture. Here, the dimension of FNNM is denoted
by the number of neurons in each layer, that is
n × m × s, where m,n and s are the number
of neurons in the input layer, the hidden layer
and the output layer, respectively. The architec-
ture of the model shows how FNNM transforms
the n inputs (x1, . . . , xi, . . . , xn) into the s out-
puts (Y1, . . . , Yk, . . . , Ys) throughout the m hid-
den neurons (Z1, . . . , Zj , . . . , Zm), where the cy-
cles represent the neurons in each layer. Let Bj

be the bias for neuron Zj , Ck be the bias for neu-
ron Yk,Wji be the weight connecting neuron xi
to neuron Zj , and Wkj be the weight connecting
neuron Zj to neuron Yk. In order to derive a crisp
learning rule, we restrict connection weights and
biases by four types of (real numbers, symmetric
triangular fuzzy numbers, asymmetric triangular
fuzzy numbers and asymmetric trapezoidal fuzzy
numbers) while we can use any type of fuzzy num-
bers for fuzzy targets. For example, an asymmet-
ric triangular fuzzy connection weight is specified
by its three parameters as Wkj = (wL

kj , w
C
kj , w

U
kj).

When an n-dimensional input vector
(x1, . . . , xi, . . . , xn) is presented to our fuzzy
neural network, its input-output relation can be
written as follows, where f : Rn −→ Es:
Input units:

oi = xi, i = 1, 2, . . . , n. (2.9)

Hidden units:

Zj = f(Netj), j = 1, 2, . . . ,m, (2.10)

Netj =

n∑
i=1

oi.Wji +Bj . (2.11)

Output units:

Yk = f(Netk), k = 1, 2, . . . , s, (2.12)

Netk =

m∑
j=1

Wkj .Zj + Ck, (2.13)

where connection weights, biases, and targets are
fuzzy and inputs are real numbers. The input-
output relation in Eqs.(2.9)-(2.13) is defined by
the extension principle.

2.3 Calculation of fuzzy output

The fuzzy output from each unit in Eqs.(2.9)-
(2.13) is numerically calculated for real inputs
and level sets of fuzzy weights and fuzzy biases.
The input-output relations of our fuzzy neural
network can be written for the h-level sets:
Input units:

oi = xi, i = 1, 2, . . . , n. (2.14)

Hidden units:

[Zj ]h = f([Netj ]h), j = 1, 2, . . . ,m, (2.15)

[Netj ]h =
n∑

i=1

oi.[Wji]h + [Bj ]h. (2.16)

Output unit:

[Yk]h = f([Netk]h), k = 1, 2, . . . , s, (2.17)

[Netk]h =
m∑
j=1

[Wkj ]h.[Zj ]h + [Ck]h. (2.18)

From Eqs.(2.14)-(2.18), we can see that the h-
level sets of the fuzzy outputs Yk’s are calculated
from those of the fuzzy weights, fuzzy biases and
crisp inputs. From Eqs.(2.6)-(2.9), the above re-
lations are rewritten as follows when the inputs
xi’s are nonnegative, i.e., 0 ≤ xi:
Input units:

oi = xi. (2.19)

Hidden units:

[Zj ]h = [[Zj ]
L
h , [Zj ]

U
h ] =

[f([Netj ]
L
h ), f([Netj ]

U
h )],

where f is increasing function.

[Netj ]
L
h =

n∑
i=1

oi.[Wji]
L
h + [Bj ]

L
h , (2.20)

[Netj ]
U
h =

n∑
i=1

oi.[Wji]
U
h + [Bj ]

U
h . (2.21)

Output units:

[Yk]h = [[Yk]
L
h , [Yk]

U
h ] =
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[f([Netk]
L
h ), f([Netk]

U
h )], (2.22)

where f is increasing function.

[Netk]
L
h =

∑
j∈a

[Wkj ]
L
h .[Zj ]

L
h+

∑
j∈b

[Wkj ]
L
h .[Zj ]

U
h + [Ck]

L
h ,

[Netk]
U
h =

∑
j∈c

[Wkj ]
U
h .[Zj ]

U
h+∑

j∈d
[Wkj ]

U
h .[Zj ]

L
h + [Ck]

U
h , (2.23)

for [Zj ]
U
h ≥ [Zj ]

L
h ≥ 0, where a = {j | [Wkj ]

L
h ≥

0}, b = {j | [Wkj ]
L
h < 0}, c = {j | [Wkj ]

U
h ≥

0},d = {j | [Wkj ]
U
h < 0}, a ∪ b = {1, . . . ,m} and

c ∪ d = {1, . . . ,m}.

3 Hybrid fuzzy differential
equations

In this paper, we will study the HFDE

dy(x)
dx = f(x, y(x), λk(yk)),

y(a) = y0, x ∈ [xk, xk+1], k = 0, 1, 2, · · ·
(3.24)

where y is a fuzzy function of x, yk denotes y(xk),
f : [x0,∞)×E ×E → E is continuous, each λk :
E → E is continuous and {tk}∞k=0 is strictly in-
creasing and unbounded. A solution to Eq.(3.24)
will be a fuzzy function y : [x0,∞) → E satisfying
Eq.(3.24). For k = 0, 1, 2, · · · , let fk : [xk, xk+1]×
E → E, where fk(x, yk(x)) = f(x, yk(x), λk(yk)).
The HFDE (3.24) can be written in expanded
form as

dy(x)

dx
=



dy0(x)
dx = f(x, y0(x), λ0(y0)) ≡

f0(x, y0(x)), x0 ≤ x ≤ x1,
dy1(x)
dx = f(x, y1(x), λ1(y1)) ≡

f1(x, y1(x)), x1 ≤ x ≤ x2,
...
dyk(x)
dx = f(x, yk(x), λk(yk)) ≡

fk(x, yk(x)), xk ≤ x ≤ xk+1,
...

(3.25)
and a solution of (3.24) can be expressed as

y(x) =



y0(x), x0 ≤ x ≤ x1,
y1(x), x1 ≤ x ≤ x2,
...
yk(x), xk ≤ x ≤ xk+1,
...

(3.26)

A solution y of (3.24) will be continuous and
piecewise differentiable over [x0,∞) and differ-
entiable in each interval (xk, xk+1) for k =
0, 1, 2, · · · .

Theorem 3.1 [33] Consider the HFDE (3.24)
expanded as (3.25) where for k = 0, 1, 2, · · · , each
fk : [xk, xk+1]× E → E is such that

(i) [fk(x, y)]h =
[[fk(x, [y]

L
h , [y]

U
h )]

L
h , [fk(x, [y]

L
h , [y]

U
h )]

U
h ],

(ii) [fk]
L
h and [fk]

U
h are equicontinuous and

uniformly bounded on any bounded set,
(iii) There exists an Lk > 0 such that

|[fk(x, y1, z1)]L,Uh − [fk(x, y2, z2)]
L,U
h |≤

Lkmax{|y2 − y1|, |z2 − z1|}.

Then (3.24) and the hybrid system of ODEs

[
dyk(x)

dx
]Lh = [fk(x, [yk]

L
h , [yk]

U
h )]

L
h ,

[
dyk(x)

dx
]Uh = [fk(x, [yk]

L
h , [yk]

U
h )]

U
h ,

[yk(xk)]
L
h = [yk−1(xk)]

L
h if k > 0,

[y0(x0)]
L
h = [y0]

L
h ,

[yk(xk)]
U
h = [yk−1(xk)]

U
h if k > 0,

[y0(x0)]
U
h = [y0]

U
h ,

are equivalent.

Let us assume that a general approximation
solution to Eq.(3.24) is in the form yT,k(x, Pk) in
[xk, xk+1], k = 0, 1, 2, · · · where yT,k as a depen-
dent variable to x and Pk, where Pk is an ad-
justable parameter involving weights and biases
in the structure of the three-layered feed forward
fuzzy neural network (see Fig. 1). The fuzzy trial
solution yTk is an approximation solution to yk
for the optimized value of unknown weights and
biases. Thus the problem of finding the approx-
imated fuzzy solutions for Eq.(3.24) over some
collocation points in [xk, xk+1], k = 0, 1, 2, · · · by
a set of Mk + 1 regularly spaced grid points (in-
cluding the endpoints) is equivalent to calculate
the functional yT,k(x, Pk). The grid points on
[xk, xk+1] will be xk,n = xk + nhk where hk =
xk+1−xk

Mk
and 0 ≤ n ≤ Mk. In order to obtain fuzzy

approximate solution yT,k(x, Pk), we solve uncon-
strained optimization problem that is simpler to
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Figure 1: Three layer fuzzy neural network
with one input and one output.

deal with, we define the fuzzy trial function to be
in the following form:

yT,k(x, Pk) = αk(x) + βk[x,Nk(x, Pk)], (3.27)

where the first term in the right hand side does
not involve with adjustable parameters and satis-
fies the fuzzy initial conditions. The second term
in the right hand side is a feed forward three-
layered fuzzy neural network consisting of an in-
put x and the output Nk(x, Pk). In the next sub-
section, this FNNM with some weights and biases
is considered and we train in order to compute the
approximate solutions of problem (3.25).

Let us consider a three-layered FNNM with one
unit entry x, one hidden layer consisting of m ac-
tivation functions and one unit output Nk(x, Pk).
In this paper, we use the sigmoidal activation
function for the hidden units of our fuzzy neu-
ral network.

Here, the dimension of FNNM is 1×m×1. For
every entry x the input neuron makes no changes
in its input, so the input to the hidden neurons is

Netj,k = x.Wj,k +Bj,k,

j = 1, · · · ,m, k = 0, 1, 2, · · · (3.28)

whereWj,k is a weight parameter from input layer
to the jth unit in the hidden layer, Bj,k is an jth
bias for the jth unit in the hidden layer. The
output, in the hidden neurons is

Zj,k = s(Netj,k),

j = 1, · · · ,m, k = 0, 1, 2, · · · (3.29)

where s is the activation function which is nor-
mally nonlinear function, the usual choices of the
activation function [15] are the sigmoid transfer
function, and the output neuron make no change
its input, so the input to the output neuron is
equal to output

Nk = V1,kZ1,k + · · ·+ Vj,kZj,k + · · ·+ Vm,kZm,k,
(3.30)

where Vj,k is a weight parameter from jth unit in
the hidden layer to the output layer.

From Eqs.(2.19)-(2.23), we can see that the h-
level sets of the Eqs.(3.28)-(3.30) are calculated
from those of the fuzzy weights, fuzzy biases and
crisp inputs. For our fuzzy neural network, we
can derive the learning algorithm without assum-
ing that the input x is non-negative. For reducing
the complexity of the learning algorithm, input
x0 usually assumed as non-negative in fully fuzzy
neural networks, i.e., 0 ≤ x0 [17]:
Input unit:

o = x. (3.31)

Hidden units:

[Zj,k]h = [[Zj,k]
L
h , [Zj,k]

U
h ] =

[s([Netj,k]
L
h ), s([Netj,k]

U
h )],

[Netj,k]
L
h = o.[Wj,k]

L
h + [Bj,k]

L
h ,

[Netj,k]
U
h = o.[Wj,k]

U
h + [Bj,k]

U
h .

Output unit:

[Nk]h = [[Nk]
L
h , [Nk]

U
h ], (3.32)

[Nk]
L
h =

∑
j∈a

[Vj,k]
L
h .[Zj,k]

L
h +

∑
j∈b

[Vj,k]
L
h .[Zj,k]

U
h ,

[Nk]
U
h =

∑
j∈c

[Vj,k]
U
h .[Zj,k]

U
h +

∑
j∈d

[Vj,k]
U
h .[Zj,k]

L
h ,

for [Zj,k]
U
h ≥ [Zj,k]

L
h ≥ 0, where a = {j | [Vj,k]

L
h ≥

0}, b = {j | [Vj,k]
L
h < 0}, c = {j | [Vj,k]

U
h ≥

0},d = {j | [Vj,k]
U
h < 0}, a ∪ b = {1, . . . ,m} and

c ∪ d = {1, . . . ,m}.
A FNN4 (fuzzy neural network with crisp set

input signals, fuzzy number weights and fuzzy
number output) [16] solution to Eq.(3.25) is given
in Figure 1. How is the FNN4 going to solve the
fuzzy differential equations? The training data in
[xk, xk+1] are xk < xk + hk < · · · < xk +Mkhk =
xk+1 for input. We propose a learning algorithm
from the cost function for adjusting weights.
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Consider the following fuzzy initial value prob-
lem for a first order differential equation (3.25),
the related trial function will be in the form

yT,0(x, P0) = y0 + (x− x0)N0(x, P0),
x0 ≤ x ≤ x1,
yT,k(x, Pk) = yk−1(xk) + (x− xk)Nk(x, Pk),
xk ≤ x ≤ xk+1, k = 1, 2, · · · .

(3.33)
In [17], the learning of our fuzzy neural network
is to minimize the difference between the fuzzy
target vector B = (B1, . . . , Bs) and the actual
fuzzy output vector O = (O1, . . . , Os). The fol-
lowing cost function was used in [3, 17, 26] for
measuring the difference between B and O:

e =
∑
h

eh =
∑
h

h.{
s∑

k=1

([Bk]
L
h − [Ok]

L
h )

2/2+

s∑
k=1

([Bk]
U
h − [Ok]

U
h )

2/2}, (3.34)

where eh is the cost function for the h-level sets of
B and O. The squared errors between the h-level
sets of B and O are weighted by the value of h in
(3.34).

In [18], it is shown by computer simulations
that their paper, the fitting of fuzzy outputs to
fuzzy targets is not good for the h-level sets with
small values of h when we use the cost function in
(3.34). This is the squared errors for the h-level
sets are weighted by h in (3.34). Krishnamraju
et al. [22] used the cost function without the
weighting scheme:

e =
∑
h

eh =
∑
h

{
s∑

k=1

([Bk]
L
h − [Ok]

L
h )

2/2

+

s∑
k=1

([Bk]
U
h − [Ok]

U
h )

2/2}. (3.35)

In the computer simulations included in this pa-
per, we mainly use the cost function in (3.35)
without the weighting scheme.

The error function that must be minimized for
problem (3.25) is in the form

ek =

Mk∑
n=0

en,k =

Mk∑
n=0

∑
h

en,h,k =

Mk∑
n=0

∑
h

{eLn,h,k + eUn,h,k}, (3.36)

where

eLn,h,k =
([

dyT,k(xk,n,Pk)
dx ]Lh − [fk]

L
h )

2

2
, (3.37)

eUn,h,k =
([

dyT,k(xk,n,Pk)
dx ]Uh − [fk]

U
h )

2

2
, (3.38)

where {xk,n}Mk
n=0 are discrete points belonging to

the interval [xk, xk+1] and in the cost function
(3.36), eLn,h,k and eUn,h,k can be viewed as the
squared errors for the lower limits and the upper
limits of the h-level sets, respectively.

It is easy to express the first derivative of
Nk(x, Pk) in terms of the derivative of the sig-
moid function, i.e.

∂[Nk]
L
h

∂x
=

∑
a

[Vj,k]
L
h .

∂[Zj,k]
L
h

∂[Netj,k]
L
h

.
∂[Netj,k]

L
h

∂x

+
∑
b

[Vj,k]
L
h .

∂[Zj,k]
U
h

∂[Netj,k]
U
h

.
∂[Netj,k]

U
h

∂x
(3.39)

∂[Nk]
U
h

∂x
=

∑
c

[Vj,k]
U
h .

∂[Zj,k]
U
h

∂[Netj,k]
U
h

.
∂[Netj,k]

U
h

∂x

+
∑
d

[Vj,k]
U
h .

∂[Zj,k]
L
h

∂[Netj,k]
L
h

.
∂[Netj,k]

L
h

∂x
(3.40)

where a = {j | [Vj,k]
L
h ≥ 0}, b = {j | [Vj,k]

L
h <

0}, c = {j | [Vj,k]
U
h ≥ 0},d = {j | [Vj,k]

U
h < 0},

a ∪ b = {1, . . . ,m} and c ∪ d = {1, . . . ,m} and

∂[Netj,k]
L
h

∂x
= [Wj,k]

L
h ,

∂[Zj,k]
L
h

∂[Netj,k]
L
h

= [Zj,k]
L
h .(1− [Zj,k]

L
h ),

∂[Netj,k]
U
h

∂x
= [Wj,k]

U
h ,

∂[Zj,k]
U
h

∂[Netj,k]
U
h

= [Zj,k]
U
h .(1− [Zj,k]

U
h ).

Now differentiating from trial function
yT,k(x, Pk) in (3.37) and (3.38), we obtain

∂[yT,k(x, Pk)]
L
h

∂x
=

[Nk(x, Pk)]
L
h + (x− xk).

∂[Nk(x, Pk)]
L
h

∂x
,

∂[yT,k(x, Pk)]
U
h

∂x
=

[Nk(x, Pk)]
U
h + (x− xk).

∂[Nk(x, Pk)]
U
h

∂x
,

thus the expression in (3.39) and (3.40) is appli-
cable here. A learning algorithm is derived in
Appendix A.
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3.1 Partially fuzzy neural networks

One drawback of fully fuzzy neural networks
with fuzzy connection weights is long computa-
tion time. Another drawback is that the learning
algorithm is complicated. For reducing the com-
plexity of the learning algorithm, we propose a
partially fuzzy neural network (PFNN) architec-
ture where connection weights to output unit are
fuzzy numbers while connection weights and bi-
ases to hidden units are real numbers [18, 26].
Since we had good simulation results even from
partially fuzzy three-layer neural networks, we do
not think that the extension of our learning algo-
rithm to neural networks with more than three
layer is an attractive research direction.

The input-output relation of each unit of our
partially fuzzy neural network in (3.31)-(3.32) can
be rewritten for h-level sets as follows:

Input unit: Let x ∈ [xk, xk+1]

o = x.

Hidden units:

zj,k = s(netj,k), j = 1, · · · ,m, k = 0, 1, · · ·

netj,k = o.wj,k + bj,k.

Output unit:

[Nk]h = [[Nk]
L
h , [Nk]

U
h ] =

[

m∑
j=1

[Vj,k]
L
h .zj,k,

m∑
j=1

[Vj,k]
U
h .zj,k].

The error function that must be minimized for
problem (3.25) is in the form

ek =

Mk∑
n=0

en,k =

Mk∑
n=0

∑
h

en,h,k =

Mk∑
n=0

∑
h

{eLn,h,k + eUn,h,k}, (3.41)

where {xk,n}Mk
n=0 are discrete points belonging

to the interval [xk, xk+1] and in the cost func-
tion (3.41), eLn,h,k and eUn,h,k can be viewed as the
squared errors for the lower limits and the upper
limits of the h-level sets, respectively.

It is easy to express the first derivative of
Nk(x, Pk) in terms of the derivative of the sig-
moid function, i.e.

∂[Nk]
L
h

∂x
=

m∑
j=1

[Vj,k]
L
h .

∂zj,k
∂netj,k

.
∂netj,k
∂x

=

m∑
j=1

[Vj,k]
L
h .zj,k.(1− zj,k).wj,k, (3.42)

∂[Nk]
U
h

∂x
=

m∑
j=1

[Vj,k]
U
h .

∂zj,k
∂netj,k

.
∂netj,k
∂x

=

m∑
j=1

[Vj,k]
U
h .zj,k.(1− zj,k).wj,k. (3.43)

Now differentiating from trial function
yT,k(x, Pk), we obtain

∂[yT,k(x, Pk)]
L
h

∂x
=

[Nk(x, Pk)]
L
h + (x− xk).

∂[Nk(x, Pk)]
L
h

∂x
,

∂[yT,k(x, Pk)]
U
h

∂x
=

[Nk(x, Pk)]
U
h + (x− xk).

∂[Nk(x, Pk)]
U
h

∂x
,

thus the expressions in (3.42) and (3.43) are ap-
plicable here. A learning algorithm is derived in
Appendix B.
Pederson and Sambandham [32, 33] numerically
solved the HFDEs by using the Euler, Runge-
Kutta, improved Euler, Adams-Bashforth and
Adams-Moulton method. A similar example was
recently considered in [21] for HFDEs using im-
proved Predictor-corrector method. The FNNM
implemented in this paper gives better approxi-
mation.

Consider the following HFDE [32]
dy(x)
dx = y(x) +m(x)λk(y(xk)),
[y(0)]h = [0.75 + 0.25h, 1.125− 0.125h],
x ∈ [xk, xk+1], xk = k, k = 0, 1, 2, · · ·

(3.44)

where

m(x) =


2(x(mod 1)) if x(mod 1) ≤ 0.5,
2(1− x(mod 1))

if x(mod 1) > 0.5,

λk(µ) =

{
0̂ if k = 0,

µ if k ∈ {1, 2, · · ·},

0̂(x) =

{
1 if x = 0,

0 if x ̸= 0.
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By applying Example 6.1 0f Kaleva [20], (3.44)
has a unique solution. By [23] for x ∈ [0, 1] the
exact solution of (3.44) is given by

[y(x)]h =

[(0.75 + 0.25h)ex, (1.125− 0.125h)ex].

By [32] for x ∈ [1, 2] the exact solution of (3.44)
is given by

[y(x)]h =



[y(1)]h(3e
x−1 − 2x),

x ∈ [1, 1.5],
[y(1)]h(2x− 2+

ex−1.5(3
√
e− 4)), x ∈ [1.5, 2].

Using the FNNM developed in Section 3, we
will solve the HFDE (3.44) to obtain a numerical
solution. Suppose k = 0 and x ∈ [x0, x1]. Then
(3.44) is equivalent to


dy(x)
dx = y(x),

[y(0)]h = [0.75 + 0.25h, 1.125− 0.125h].

(3.45)

The fuzzy trial function for this problem is

yT,0(x, P0) = (0.75, 1, 1.125) + x.N0(x, P0).

Here, the dimension of PFNNM is 1×5×1. In
the computer simulation of this section, we use
the following specifications of the learning algo-
rithm:

(1) M0 = 5.

(2) Number of hidden units: five units.

(3) Stopping condition: 100 iterations of the
learning algorithm.

(4) Learning constant: η0 = 0.3.

(5) Momentum constant: α0 = 0.2.

() h=0,0.2,. . . ,h=1.

(7) Initial value of the weights and biases of
PFNNM are shown in Table 1, that we suppose

Vi,0 = (v
(1)
i,0 , v

(2)
i,0 , v

(3)
i,0 ) for i = 1, . . . , 5.

We apply the proposed method to the approx-
imate realization of solution of problem (3.46).
Analytical solution and fuzzy trial function are
shown in Table 2 and Table 3 for x = 0.1.

Suppose k = 1 and x ∈ [x1, x2]. Then (3.44) is
equivalent to

dy(x)
dx = y(x) +m(x)y(1),

[y(1)]h = [[y(1)]Lh , [y(1)]
U
h ].

(3.46)

The fuzzy trial function for this problem is

[yT,1(x, P1)]h = [y(1)]h + (x− x1).[N1(x, P1)]h.

Here, the dimension of PFNNM is 1×5×1. In
the computer simulation of this section, we use
the above conditions for the learning algorithm.
Analytical solution and fuzzy trial function are
shown in Table 4 and Table 5 for x = 1.1.

4 Conclusion

Solving HFDEs by using FNNM is presented in
this paper. To obtain the ”Best-approximated”
solution of HFDEs, the adjustable parameters of
FNNM are systematically adjusted by using the
learning algorithm of fuzzy weights whose input-
output relations were defined by extension prin-
ciple. The effectiveness of the derived learning
algorithm was demonstrated by computer sim-
ulation on numerical examples. Our computer
simulation in this paper were performed for three-
layer feedforward neural networks using the back-
propagation-type learning algorithm. Since we
had good simulation result even from partially
fuzzy three-layer neural networks, we do not
think that the extension of our learning algorithm
to neural networks with more than three layers
is an attractive research direction. Good simula-
tion result was obtained by this neural network in
shorter computation times than fully fuzzy neural
networks in our computer simulations.

Appendix A. Derivation of a
learning algorithm in fuzzy neu-
ral networks

Let us denote the fuzzy connection weight
Vj,k by its parameter values as Vj,k =

(v
(1)
j,k , . . . , v

(q)
j,k , . . . , v

(r)
j,k ) where Vj,k is a weight pa-

rameter from jth unit in the hidden layer to the
output layer. The amount of modification of each
parameter value is written as [16, 26]

v
(q)
j,k (t+ 1) = v

(q)
j,k (t) +△v

(q)
j,k (t),
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Table 1: The initial values of weights.

i 1 2 3 4 5

v
(1)
i,0 -0.5 -0.5 -0.5 -0.5 -0.5

v
(2)
i,0 0 0 0 0 0

v
(3)
i,0 0.5 0.5 0.5 0.5 0.5

wi,0 0 0 0 0 0
bi,0 0 0 0 0 0

Table 2: Comparision of exact and approximate solution in x = 0.1.

Exact PFNNM Error

0.82887818 0.82885512 0.2306e−4

0.88413673 0.88411123 0.2550e−4

0.93939528 0.93932341 0.7187e−4

0.99465382 0.99467892 0.2510e−4

1.04991237 1.04991021 0.2160e−5

1.10517091 1.10517223 0.1320e−5

Table 3: Comparision of exact and approximate solution in x = 0.1.

Exact PFNNM Error

1.24331728 1.24333321 0.1593e−4

1.21568801 1.21562378 0.6423e−4

1.18805873 1.18802134 0.3739e−4

1.16042946 1.16046721 0.3775e−4

1.13280019 1.13282155 0.2136e−4

1.10517091 1.10517335 0.2440e−5

Table 4: Comparision of exact and approximate solution in x = 1.1.

Exact PFNNM Error

2.51338913 2.51301225 0.37688e−3

2.68094841 2.68022015 0.72826e−3

2.84850768 2.84843865 0.69030e−3

3.01606696 3.01623415 0.16719e−3

3.18362624 3.18311259 0.51365e−3

3.35118551 3.35116745 0.18060e−4

Table 5: Comparision of exact and approximate solution in x = 1.1.

Exact PFNNM Error

3.77008370 3.77045218 0.36848e−3

3.68630406 3.68698257 0.67851e−3

3.60252442 3.60298781 0.46339e−3

3.51874479 3.51801258 0.73221e−3

3.43496515 3.43428894 0.67621e−3

3.35118551 3.35110245 0.83060e−4

△vqj,k(t) = −ηk

Mk∑
n=0

∂en,h,k

∂v
(q)
j,k

+ αk.△ v
(q)
j,k (t− 1),

where t indexes the number of adjustments, η is
a learning rate and α is a momentum term con-
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stant.
Thus our problem is to calculate the derivatives

∂en,h,k

∂v
(q)
j,k

. Let us rewrite
∂en,h,k

∂v
(q)
j,k

as follows:

∂en,h,k

∂v
(q)
j,k

=
∂en,h,k

∂[Vj,k]
L
h

.
∂[Vj,k]

L
h

∂v
(q)
j,k

+

∂en,h,k

∂[Vj,k]
U
h

.
∂[Vj,k]

U
h

∂v
(q)
j,k

.

In this formulation,
∂[Vj,k]

L
h

∂v
(q)
j,k

and
∂[Vj,k]

U
h

∂v
(q)
j,k

are eas-

ily calculated from the membership function of
the fuzzy connection weight Vj,k. For example,
when the fuzzy connection weight Vj,k is trape-

zoidal (i.e., Vj,k = (v
(1)
j,k , v

(2)
j,k , v

(3)
j,k , v

(4)
j,k ),,

∂[Vj,k]
L
h

∂v
(q)
j,k

and
∂[Vj,k]

U
h

∂v
(q)
j,k

are calculated as follows:

∂[Vj ]
L
h

∂v
(1)
j,k

= 1− h,
∂[Vj,k]

U
h

∂v
(1)
j,k

= 0,

∂[Vj,k]
L
h

∂v
(2)
j,k

= h,
∂[Vj,k]

U
h

∂v
(2)
j,k

= 0,

∂[Vj,k]
L
h

∂v
(3)
j,k

= 0,
∂[Vj,k]

U
h

∂v
(3)
j,k

= h,

∂[Vj,k]
L
h

∂v
(4)
j,k

= 0,
∂[Vj,k]

U
h

∂v
(4)
j,k

= 1− h.

These derivatives are calculated from the follow-
ing relation between the h-level set of the fuzzy
connection weight Vj,k and its parameter values
(see Fig. 3):

[Vj,k]
L
h = (1− h).v

(1)
j,k + h.v

(2)
j,k ,

[Vj,k]
U
h = h.v

(3)
j,k + (1− h).v

(4)
j,k .

When the fuzzy connection weight Vj,k is a
symmetric triangular fuzzy number, the follow-
ing relations hold for its h-level set [Vj,k]h =
[[Vj,k]

L
h , [Vj,k]

U
h ] :

[Vj,k]
L
h = (1− h

2
).v

(1)
j,k +

h

2
.v

(3)
j,k ,

[Vj,k]
U
h =

h

2
.v

(1)
j,k + (1− h

2
).v

(3)
j,k .

Therefore,

∂[Vj,k]
L
h

∂v
(1)
j,k

= 1− h

2
,

∂[Vj,k]
U
h

∂v
(1)
j,k

=
h

2
,

∂[Vj,k]
L
h

∂v
(3)
j,k

=
h

2
,

∂[Vj,k]
U
h

∂v
(3)
j,k

= 1− h

2
,

and v
(2)
j,k (t+ 1) is updated by the following rule:

v
(2)
j,k (t+ 1) =

v
(1)
j,k (t+ 1) + v

(3)
j,k (t+ 1)

2
.

On the other hand, the derivatives
∂en,h,k

∂[Vj,k]
L
h

and

∂en,h,k

∂[Vj,k]
U
h

are independent of the shape of the fuzzy

connection weight. They can be calculated from
the cost function en,h,k using the input-output re-
lation of our fuzzy neural network for the h-level
sets. When we use the cost function with the
weighting scheme in (3.36),

∂ei,h,k
∂[Vj,k]

L
h

and
∂en,h,k

∂[Vj,k]
U
h

are calculated as follows:
[Calculation of

∂en,h,k

∂[Vj,k]
L
h

]

(i) If [Vj,k]
L
h ≥ 0 then

∂en,h,k

∂[Vj,k]
L
h

= δLk .([Zj,k]
L
h + (xk,n − xk)

∂[Zj,k]
L
h

∂x
−

∂[fk(x, yT,k(xi, Pk))]
L
h

∂[yT,k(xk,n, Pk)]
L
h

(xk,n − xk).[Zj,k]
L
h ),

where

δLk = ([
dyT,k(xk,n, Pk)

dx
]Lh − [fk]

L
h ).

(ii) If [Vj,k]
L
h < 0 then

∂en,h,k

∂[Vj,k]
L
h

= δLk .([Zj,k]
U
h + (xk,n − xk).

∂[Zj,k]
U
h

∂x
−

∂[fk]
L
h

∂[yT,k(xk,n, Pk)]
L
h

.

(xk,n − xk).[Zj,k]
U
h ).

[Calculation of
∂en,h,k

∂[Vj,k]
U
h

]

(i) If [Vj,k]
U
h ≥ 0 then

∂en,h,k

∂[Vj,k]
U
h

= δUk .([Zj,k]
U
h + (xk,n − xk).

∂[Zj,k]
U
h

∂x
−

∂[fk(x, yT,k(xk,n, Pk))]
U
h

∂[yT,k(xk,n, Pk)]
U
h

.

(xk,n − xk).[Zj,k]
U
h ),
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where

δUk = ([
dyT,k(xk,n, Pk)

dx
]Uh − [fk]

U
h ).

(ii) If [Vj,k]
U
h < 0 then

∂en,h,k

∂[Vj,k]
U
h

= δUk .([Zj,k]
L
h + (xk,n − xk).

∂[Zj,k]
L
h

∂x
−

∂[fk]
U
h

∂[yT,k(xk,n, Pk)]
U
h

.

(xk,n − xk).[Zj,k]
L
h ).

In our fuzzy neural network, the connection
weights and biases to the hidden units are up-
dated in the same manner as the parameter values
of the fuzzy connection weights Vj,k as follows:

w
(q)
j,k(t+ 1) = w

(q)
j,k(t) +△w

(q)
j,k(t),

△wq
j,k(t) = −η

Mk∑
n=0

∂ei,h,k

∂w
(q)
j,k

+ α.△ w
(q)
j,k(t− 1).

Thus our problem is to calculate the derivatives
∂ei,h,k

∂w
(q)
j,k

. Let us rewrite
∂ei,h,k

∂w
(q)
j,k

as follows:

∂ei,h,k

∂w
(q)
j,k

=
∂ei,h,k

∂[Wj,k]
L
h

.
∂[Wj,k]

L
h

∂w
(q)
j,k

+

∂ei,h,k

∂[Wj,k]
U
h

.
∂[Wj,k]

U
h

∂w
(q)
j,k

.

In this formulation,
∂[Wj,k]

L
h

∂w
(q)
j,k

and
∂[Wj,k]

U
h

∂w
(q)
j,k

are eas-

ily calculated from the membership function of
the fuzzy connection weight Wj,k. Derivatives
∂en,h,k

∂[Wj,k]
L
h

and
∂en,h,k

∂[Wj,k]
U
h

can be calculated from the

cost function ei,h,k using the input-output rela-
tion of our fuzzy neural network for the h-level
sets. When we use the cost function with the
weighting scheme in (3.36),

∂en,h,k

∂[Wj,k]
L
h

is calculated

as follows:
[Calculation of

∂en,h,k

∂[Wj,k]
L
h

]

(i) If [Vj,k]
L
h ≥ 0 then

∂en,h,k

∂[Wj,k]
L
h

= δLk .[[Vj,k]
L
h .[Zj,k]

L
h .(1− [Zj,k]

L
h ).

xn,k + (xk,n − xk).[Vj,k]
L
h .[Zj,k]

L
h

+(xk,n − xk).xk,n.[Vj,k]
L
h .[Zj,k]

L
h .

(1− [Zj,k]
L
h )wj,k − (xk,n − xk).[Vj,k]

L
h .([Zj,k]

L
h )

2

−2(xk,n − xk).xk,n.[Vj,k]
L
h .([Zj,k]

L
h )

2

(1− [Zj,k]
L
h )wj,k − (

∂[fk(x, yT,k(xk,n, Pk))]
L
h

∂[yT,k(xk,n, Pk)]
L
h

.

(xk,n − xk).[Vj,k]
L
h .[Zj,k]

L
h .(1− [Zj,k]

L
h ).xk,n)].

(ii) If [Vj,k]
U
h < 0 then

∂en,h,k

∂[Wj,k]
L
h

= δUk .[[Vj,k]
U
h .[Zj,k]

L
h .

(1− [Zj,k]
L
h ).xk,n + (xk,n − xk).[Vj,k]

U
h .

[Zj,k]
L
h + (xk,n − xk).xk,n.[Vj,k]

U
h .[Zj,k]

L
h .

(1− [Zj,k]
L
h )wj,k − (xk,n − xk).[Vj,k]

U
h .

([Zj,k]
L
h )

2 − 2(xk,n − xk).xk,n.[Vj,k]
U
h .([Zj,k]

L
h )

2

(1− [Zj,k]
L
h )wj,k − (

∂[fk(x, yT,k(xk,n, Pk))]
U
h

∂[yT,k(xk,n, Pk)]
U
h

(xk,n − xk).[Vj,k]
U
h .[Zj,k]

L
h .(1− [Zj,k]

L
h ).xk,n)].

In the other cases,
∂en,h,k

∂[Wj,k]
U
h

and the fuzzy biases

to the hidden units are updated in the same man-
ner as the fuzzy connection weights to the hidden
units and fuzzy connection to the output unit.

Appendix B. Derivation of a
learning algorithm in partially
fuzzy neural networks

Let us denote the fuzzy connection weight Vj,k

to the output unit by its parameter values as

Vj,k = (v
(1)
j,k , . . . , v

(q)
j,k , . . . , v

(r)
j,k ). The amount of

modification of each parameter value is written
as [16, 26]

v
(q)
j,k (t+ 1) = v

(q)
j,k (t) +△v

(q)
j,k (t),

△vqj,k(t) = −ηk

Mk∑
n=0

∂en,h,k

∂v
(q)
j,k

+ αk.△ v
(q)
j,k (t− 1)
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where t indexes the number of adjustments, η is
a learning rate (positive real number) and α is a
momentum term constant (positive real number).

Thus our problem is to calculate the derivatives
∂en,h,k

∂v
(q)
j,k

. Let us rewrite
∂en,h,k

∂v
(q)
j,k

as follows:

∂en,h,k

∂v
(q)
j,k

=
∂en,h,k

∂[Vj,k]
L
h

.
∂[Vj,k]

L
h

∂v
(q)
j,k

+
∂en,h,k

∂[Vj,k]
U
h

.
∂[Vj,k]

U
h

∂v
(q)
j,k

.

In this formulation,
∂[Vj,k]

L
h

∂v
(q)
j,k

and
∂[Vj,k]

U
h

∂v
(q)
j,k

are easily

calculated from the membership function of the
fuzzy connection weight Vj,k.

On the other hand, the derivatives
∂en,h,k

∂[Vj,k]
L
h

and

∂en,h,k

∂[Vj,k]
U
h

are independent of the shape of the fuzzy

connection weight. They can be calculated from
the cost function en,h,k using the input-output re-
lation of our fuzzy neural network for the h-level
sets. When we use the cost function with the
weighting scheme in (3.41),

∂en,h,k

∂[Vj,k]
L
h

and
∂en,h,k

∂[Vj,k]
U
h

are calculated as follows:
[Calculation of

∂en,h,k

∂[Vj,k]
L
h

]

∂en,h,k

∂[Vj,k]
L
h

= δLk .[
∂[Nk(xk,n, Pk)]

L
h

∂[Vj,k]
L
h

+(xk,n − xk).
∂zj,k
∂x

−
∂[fk]

L
h

∂[yT,k(xk,n, Pk)]
L
h

∂[yT,k(xk,n, Pk))]
L
h

∂[Vj,k]
L
h

],

where

δLk = ([
dyT,k(xk,n, Pk)

dx
]Lh−

[fk(xk,n, yT,k(xk,n, Pk))]
L
h ),

∂[yT,k(xk,n, Pk))]
L
h

∂[Vj,k]
L
h

] = (xk,n − xk).zj,k,

∂Nk(xk,n, Pk)]
L
h

∂[Vj,k]
L
h

= zj,k.

[Calculation of
∂en,h,k

∂[Vj,k]
U
h

]

∂en,h,k

∂[Vj,k]
U
h

= δU .[
∂Nk(xk,n, Pk)]

U
h

∂[Vj,k]
U
h

+(xk,n − xk).
∂zj,k
∂x

−
∂[fk]

U
h

∂[yT,k(xk,n, Pk)]
U
h

.
∂[yT,k(xk,n, Pk))]

U
h

∂[Vj,k]
U
h

],

where

δUk = ([
dyT,k(xk,n, Pk)

dx
]Uh − [fk]

U
h ),

∂[yT,k(xk,n, Pk))]
U
h

∂[Vj,k]
U
h

] = (xk,n − xk).zj,k,

∂Nk(xk,n, Pk)]
U
h

∂[Vj,k]
U
h

= zj,k.

In our partially fuzzy neural network, the con-
nection weights and biases to the hidden units are
real numbers. The non-fuzzy connection weight
wj,k to the jth hidden unit is updated in the same
manner as the parameter values of the fuzzy con-
nection weight Vj,k as follows:

wj,k(t+ 1) = wj,k(t) +△wj,k(t),

△wj,k(t) = −η

Mk∑
n=0

∂en,h,k
∂wj,k

+ α△ wj,k(t− 1).

The derivative
∂en,h,k

∂wj,k
can be calculated from

the cost function en,h,k using the input-output re-
lation of our partially fuzzy neural network for the
h-level sets. When we use the cost function with
the weighting scheme in (3.36),

∂en,h,k

∂wj,k
is calcu-

lated as follows:

∂en,h,k
∂wj,k

= δLk .[
∂[Nk(xk,n, Pk)]

L
h

∂wj,k
+ (xk,n − xk)

.[Vj,k]
L
h .zj,k + (xk,n − xk).xk,n.[Vj,k]

L
h .

zj,k(1− zj,k)wj,k

−(xk,n − xk).[Vj,k]
L
h .z

2
j,k − 2(xk,n − xk).xk,n

[Vj,k]
L
h .z

2
j,k(1− zj,k)wj,k−

(
∂[fk]

L
h

∂[yT,k(xk,n, P))]
L
h

∂[yT,k(xk,n, Pk)]
L
h

∂wj,k
+

∂[fk]
L
h

∂[yT,k(x, Pk))]
U
h

∂[yT,k(xk,n, Pk)]
U
h

∂wj,k
)]+

δUk .[
∂Nk(xk,n, Pk)]

U
h

∂wj,k
+ (xk,n − xk).[Vj,k]

U
h

zj,k + (xk,n − xk)xk,n[Vj,k]
U
h .zj,k

(1− zj,k)wj,k − (xk,n − xk).[Vj,k]
U
h .
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z2j,k − 2(xk,n − xk)

xk,n.[Vj,k]
U
h .z

2
j,k(1− zj,k)wj,k−

(
∂[fk]

U
h

∂[yT,k(x,k,nPk))]
L
h

.
∂[yT,k(xk,n, Pk)]

L
h

∂wj,k

+
∂[fk(xk,n, yT,k(xk,n, Pk))]

U
h

∂[yT,k(xk,n, Pk))]
U
h

.
∂[yT,k(xk,n, Pk)]

U
h

∂wjk,
)],

where

∂[Nk(xk,n, Pk)]
L
h

∂wj,k
=

∂[Nk(xk,n, Pk)]
L
h

∂zj,k

∂zj,k
∂netj,k

∂netj,k
∂wj,k

= [Vj,k]
L
h

zj,k(1− zj,k)xk,n,

∂[Nk(xk,n, Pk)]
U
h

∂wj,k
=

∂[Nk(xk,n, Pk)]
U
h

∂zj,k

∂zj,k
∂netj,k

∂netj,k
∂wj,k

= [Vj,k]
U
h zj,k(1− zj,k)xk,n,

∂[yT,k(xk,n, Pk))]
L
h

∂wj,k
= (xk,n − xk)

∂[Nk(xk,n, Pk)]
L
h

∂wj,k
,

∂[yT,k(xk,n, Pk))]
U
h

∂wj,k
= (xk,n − xk)

∂[Nk(xk,n, Pk)]
U
h

∂wj,k
.

The non-fuzzy biases to the hidden units are up-
dated in the same manner as the non-fuzzy con-
nection weights to the hidden units.
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