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Abstract

One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration,
and to use a proper termination criterion which is able to obtain a high accuracy for the numerical
solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a
new scheme based on the stochastic arithmetic to find the optimal number of iterations in the given
iterative solution and obtain the optimal solution with its accuracy. For this purpose, a theorem is
proved to illustrate the accuracy of the iterative method and the CESTAC1§method and CADNA2¶

library are applied which allows us to estimate the round-off error effect on any computed result.
The classical criterion to terminate the iterative procedure is replaced by a criterion independent of
the given accuracy (ϵ) such that the best solution is evaluated numerically, which is able to stop the
process as soon as a satisfactory informatical solution is obtained. Some numerical examples are given
to validate the results and show the efficiency and importance of using the stochastic arithmetic in
place of the floating-point arithmetic.

Keywords : Stochastic arithmetic; CESTAC method; CADNA library; Two-point methods; Nonlinear
equations.

—————————————————————————————————–

1 Introduction

A
ny iterative root-finding method, based on the
evaluation of a function and its derivatives,

makes sense only while absolute values of func-
tions do not exceed the precision limit ϵ of the
employed computer arithmetic. The second im-
portant limitation concerns the number of itera-
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tions, which must be finite. For this reason, be-
fore starting any iterative process, it is necessary
to define in advance a stopping criterion. Suppose
the nonlinear equation

f(x) = 0, (1.1)

In order to solve Eq. (1.1) by an iterative method,
one can use the common strategy to stop the it-
erations. For a given tolerance ϵ > 0,

1. |xn − xn−1|< ϵ,
2. |f(xn)|< ϵ,

(1.2)

where {xn} is a sequence such that

lim
n→∞

xn = x.

In some situations serious problems in connec-
tion to these criteria can appear. First, if ϵ is
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very small, the inequalities (1.2) will never be sat-
isfied since the rounding error will produce the
increase or oscillation of the value on the left-
hand side of the inequalities (1.2) before they are
fulfilled. Second, we usually do not possess in-
formation about the behavior of the sequence of
approximations xn near the root. For this rea-
son, the criteria (1.2) are not always reliable.
If the stopping criteria (1.2) are used, then the
number of significants digits that are common
to corresponding entries of xn and x cannot be
specified. Another problem is to choose the value
ϵ. When ϵ is chosen too large, then the iterative
process is stopped too soon, and consequently the
approximate solution has a poor accuracy. On
the contrary, when ϵ is chosen too small, it is
possible, due to the numerical instabilities, that
many useless iterations are performed without
improving the accuracy of the solution [24]. The
aim of this paper is to obtain the optimal itera-
tion and optimal solution. Furthermore, the use-
less iterations are eliminated.
The basic idea of the CESTAC method is to re-
place the usual floating-point arithmetic with a
random arithmetic. Consequently, each result ap-
pears as a random variable. This approach leads
toward two concepts: stochastic numbers and
stochastic arithmetic.
In recent years, CESTACmethod used to validate
many problems in mathematics and physic such
as interpolation polynomials [2], ill-condition
functions [3], numerical integration [1, 4], linear
algebra [23, 24] and others [5, 6, 7, 8, 9, 10, 25, 26].
In this work, we implement the algorithm of find-
ing the root of Eq. (1.1) based on the CES-
TAC method by applying the iterative process
presented by Petkovic’ as a family of two-point
methods [22].

This paper is organized as follows. In section
2, a brief description of stochastic round-off anal-
ysis, the CESTAC method and the CADNA li-
brary are described . In section 3, a theorem is
proved in order to show that the significant digits
common between xn+1 and xn are almost equal
to the significant digits common between xn and
the exact solution x. In section 4, some numer-
ical examples are given which are computed by
using the stochastic arithmetic and the CESTAC
method.

2 Preliminaries

When the floating-point arithmetic is replaced
by the stochastic arithmetic, one can therefore
define a new number, called stochastic number.
In this section, we present the main definitions
and properties of this arithmetic. For more de-
tails see[10, 14, 15, 16, 17].

Definition 2.1 We define the set S of stochastic
numbers as the set of Gaussian random variables.
We denote an element X ∈ S by X = (µ, σ2),
where µ is the mean value of X and σ its stan-
dard deviation. If X ∈ S and X = (µ, σ2), there
exists λβ, depending only on β, such that

P (X ∈ [µ− λβσ, µ+ λβσ]) = 1− β
Iβ,x = [µ− λβσ, µ+ λβσ] is a confidence interval
of µ at (1−β). An upper bound to the number of
significant digits common to µ and each element
of Iβ,x is

Cβ,x = log10(
|µ|
λβ,σ

).

The following definition is the modelling of the
concept of informatical zero proposed in [25]:

Definition 2.2 X ∈ S is a stochastic zero if
and only if

Cβ,X ≤ 0 or X = (0, 0).

The stochastic arithmetic can be used in scientific
codes to serve

(i) during the run of a scientific code, to estimate
the accuracy of an numerical result, to detect
the numerical instabilities, and to check the
branching.

(ii) to eliminate the programming expedients
that are absolutely unfounded, such as those
used, for example, in the termination crite-
ria of iterative methods, and replace them by
criteria that directly reflect the mathemati-
cal condition that must be satisfied at the
solution.

The aim of the CESTAC method [25, 27, 28,
29, 30], based on this probabilistic approach, is to
estimate the effect of propagation of the round-off
errors on every computed result obtained with the
floating point arithmetic. It consists in making
the round-off errors propagate in different ways
in order to distinguish between a stable part of
mantissa (considered as the significant one) and
an unstable part (nonsignificant). The different
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propagations are obtained by changing randomly
the last bit of the mantisa of each intermediate
computed result. In this way, a random arith-
metic is generated. Then, by running the program
several times in parallel, a sample of the different
values for each intermediate result is obtained.
The mean value defines the computed value and
Student’s test estimates its accuracy [7]. It has
been proved [8, 9] that, under certain regular-
ity conditions, every computed result R obtained
with the CESTAC method can be modelled by

R = r +
∑n

i=1 ui(d).2
−p.zi,

where ui(d) are constants depending only on the
data d, p is the number of bits of the mantissa and
the z,is are independent identically distributed
and centered random variables.The number of
arithmetical operations is n and r is the exact
mathematical result.
Consequently, each computed result can be mod-
elled by a Gaussian random variable centered on
the exact mathematical result. Its mean value is
estimated from a sample using Student’s test. So,
in practice, the use of the CESTAC method con-
sists in

(i) Running in parallel N times (N = 2 or 3)
the program with this new arithmetic. Con-
sequently, for each result R of any floating-
point arithmetic operation, a set of N com-
puted results Ri, i = 1, 2, . . . , N, is obtained.

(ii) Taking the mean value R̄ = 1
N

∑N
i=1Ri of

the Ri as the computed result.

(iii) Using the Student distribution to estimate
a confidence interval for R, and then com-
pute the number CR̄,r of significant digits of

R, defined by

CR,r = log10(

√
N |R̄|
s.τβ

) with s2 =

1

N − 1

∑N
i=1(Ri − R̄)2,

where τβ is the value of Student distribution for
N − 1 degrees of freedom and a probability level
1− β.
A computed result R using the CESTAC method
is an informatical zero, denoted by @.0, if and
only if R̄ = 0 or CR̄,r ≤ 0.[26].

2.1 The CADNA library

CADNA is a library for programs written in
FORTRAN77, FORTRAN90, or in C++ which

allows the computation using stochastic arith-
metic by automatically implementing the CES-
TAC method. CADNA is able to estimate the ac-
curacy of the computed results, and to detect nu-
merical instabilities occurring during the run. To
use the CADNA library, it suffices to place the
instruction USE CADNA at the top of the initial
FORTRAN or C++ source code and to replace
the declarations of the real type by the stochas-
tic type and to change some statements such as
printing statements. During the run, as soon as
a numerical anomaly (for example, appearance of
the informatical zero in a computation or a cri-
terion) occurs, a message is written in a special
file called Cadna-stability-f90.lst. The user must
consult this file after the program has run. If
it is empty, this means the program has been
run without any problem, that it has accordingly
been validated, and that the results have been
given with their associated accuracy. If it con-
tains messages, the user, using the debugger asso-
ciated with the compiler, will find the instructions
that are the cause of these numerical anomalies,
and must reflect in order to correct them if nec-
essary. The program execution time using the
CADNA library is only multiplied by a factor
3, which is perfectly acceptable in view of the
major advantage offered, i.e., the validation of
programs. CADNA is also able to estimate the
influence of data errors on the result provided by
the computer [6].

3 Main idea

In this section, a family of two-point methods,
proposed in [22] is considered. Petkovic’ assumed
that a real-weight function g and its derivatives
g′ and g′′are continuous in the neighborhood of 0,
and suggested the following two-step iterative
method for solving Eq. (1.1).

3.1 Algorithm

For a given x0, compute the approximate solution
xn+1 by the iterative scheme.

yn = xn − f(xn)

f ′(xn)
, f

′
(xn) ̸= 0,
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xn+1 = yn − g(tn)
f(yn)

f ′ (xn)
, tn = f(yn)

f(xn)
,

n = 1, 2, 3, . . .
(3.3)

The weight function g in (3.3) has to be deter-
mined so that the two-point method (3.3) attains
the optimal order four using only three function
evaluations:
f(xn), f

′
(xn), and f(xn − f(xn)

f
′
(xn)

).

We now study the convergence analysis of Algo-
rithm 3.1.

Lemma 3.1 [22] Let α ∈ If ⊂ D be a simple
zero of a real single-valued function f : D ⊂
R → R possessing a certain number of contin-
uous derivatives in the neighborhood of α ∈ If ,
where If is an open interval. Let g be a function
satisfying g(0) = 1, g

′
(0) = 2 and |g′′

(0)|< ∞. If
x0 is sufficiently close to α, then the order of con-
vergence of the family of two-step methods (3.3)
is four and the error relation

en+1 = [c32(5−g
′′
(0)/2)−c2c3]e

4
n+O(e5n),

(3.4)
holds, where

ck = 1
k!

f (k)(α)

f ′ (α)
, k = 1, 2, 3, . . . and en = xn − α.

We give some special cases of the two-point
family (3.3) of methods. This family produces a
variety of new methods as well as some existing
optimal two-point methods which appear as
special cases. The chosen function g in the
subsequent examples satisfies the conditions
g(0) = 1, g

′
(0) = 2 and |g′′

(0)|< ∞, given in
Lemma (3.1).
For g given by

g(t) =
1 + βt

1 + (β − 2)t
, β ∈ R

(3.5)
we obtain Kings fourth-order family of two-point
methods. Recall that Kings family produces as
special cases Ostrowskis method (β = 0), Kou-
Li-Wangs method (β = 1) and Chuns method
(β = 2).
As mentioned in [1, 2, 11], to correctly quantify
the accuracy of a computed result, one must es-
timate the number of its exact significant digits,
The number of significant digits that are com-
mon to the computed result and the exact result.
Therefore, we need the following definition:

Definition 3.1 Let a and b be two real numbers,
the number of significant digits that are common
to a and b, denoted by Ca,b can be defined by

fora ̸= b, Ca,b = log10|
a+ b

2(a− b)
|, (3.6)

for all real number a, Ca,a = +∞.

Theorem 3.1 Let α ∈ If ⊂ D be a simple
zero of a real single-valued function f : D ⊂
R → R possessing a certain number of contin-
uous derivatives in the neighborhood of α ∈ If ,
where If is an open interval. Let g be a function
satisfying g(0) = 1, g

′
(0) = 2 and |g′′

(0)|< ∞,
and so suppose that algorithm 3.1 is a conver-
gent iterative method to the exact solution α of
the nonlinear equation (1.1). If x0 is sufficiently
close to α then

Cxn+1,xn+2 − Cxn+1,α =

−log10|1− [c32(5− g
′′
(0)/2)− c2c3]

4e12n |+

O(e4n).
(3.7)

Proof. Let en = xn − α. According to (3.4), we
get

xn+1 − xn+2 = (xn+1)− α− (xn+2 − α)

= [c32(5− g
′′
(0)/2)− c2c3]e

4
n +O(e5n)

−[c32(5− g
′′
(0)/2)− c2c3]e

4
n+1 +O(e5n+1)

= [c32(5− g
′′
(0)/2)− c2c3](e

4
n − e4n+1)+

O(e5n) = [c32(5− g
′′
(0)/2)− c2c3]

(e4n − ([c32(5− g
′′
(0)/2)− c2c3]e

4
n+

O(e5n))
4) +O(e5n)

= [c32(5− g
′′
(0)/2)− c2c3]

(e4n − [c32(5− g
′′
(0)/2)− c2c3]

4e16n ) +O(e5n)

= [c32(5− g
′′
(0)/2)− c2c3]e

4
n

(1− [c32(5− g
′′
(0)/2)− c2c3]

4e12n ) +O(e5n).
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hence,

xn+1 − xn+2 = [c32(5− g
′′
(0)/2)− c2c3]e

4
n

(1− [c32(5− g
′′
(0)/2)− c2c3]

4e12n ) +O(e5n).
(3.8)

Furthermore, from(3.8)

xn+1+xn+2

2(xn+1−xn+2)
= xn+1

xn+1−xn+2
− 1

2 =

xn+1

[c32(5−g
′′
(0)/2)−c2c3]

×

1
e4n(1−[c32(5−g

′′
(0)/2)−c2c3]4e12n )+O(e5n)

+O(1)

= xn+1

[c32(5−g
′′
(0)/2)−c2c3]e4n

×

1
(1−[c32(5−g′′ (0)/2)−c2c3]4e12n )(1+O(en))

+O(1)

= xn+1

[c32(5−g′′ (0)/2)−c2c3]e4n
×

1
(1−[c32(5−g′′ (0)/2)−c2c3]4e12n )

+O(1).

Also,
xn+1+α

2(xn+1−α) =
xn+1

xn+1−α − 1
2 =

xn+1

[c32(5−g′′ (0)/2)−c2c3]e4n+O(e5n)
+O(1)

= xn+1

[c32(5−g′′ (0)/2)−c2c3]e4n(1+O(en))
+O(1)

= xn+1

[c32(5−g
′′
(0)/2)−c2c3]e4n

+O(1).

Example 3.1 In this example, the solution of
the equation f3(x) = x2ex

2−sin2x+3cosx+5 = 0
is considered. The results are obtained by us-
ing Algorithm 4.1 and x0 = −2. The opti-
mal value of the root in the optimal iteration
with different β based on the tables 7-9, is x =
−0.120764782713091E + 001.

Therefore, according to definition (2),

Cxn+1,xn+2 = log10| xn+1−xn+2

2(xn+1−xn+2)
|

= log10(| xn+1

[c32(5−g
′′
(0)/2)−c2c3]e4n

×

1
(1−[c32(5−g

′′
(0)/2)−c2c3]4e12n )

(1 +O(e4n))|)

= log10| xn+1

[c32(5−g
′′
(0)/2)−c2c3]e4n

|−

log10|1− [c32(5− g
′′
(0)/2)− c2c3]

4e12n |

+O(e4n).

(3.9)

and

Cxn+1,α = log10| xn+1−r
2(xn+1−α) |=

log10| xn+1

[c32(5−g′′ (0)/2)−c2c3]e4n
+O(1)|

= log10| xn+1

[c32(5−g
′′
(0)/2)−c2c3]e4n

(1 +O(e4n))|

= log10| xn+1

[c32(5−g
′′
(0)/2)−c2c3]e4n

|+O(e4n).

(3.10)
Finally, from Eqs. (3.9) and (3.10) the desired
relation is obtained.

Cxn+1,xn+2 − Cxn+1,α =

−log10|1− [c32(5− g
′′
(0)/2)− c2c3]

4e12n |

+O(e4n). □

According to (3.7), the iterative method
based on the algorithm (3.1) is convergent
to the exact solution α of Eq.(1.1), when n
increases, then en tends to zero, and the term
log10|1− [c32(5−g

′′
(0)/2)− c2c3]

4e12n | is neglected.
In this case, the significant digits common
between xn+2 and xn+1 are almost equal to the
significant digits common between xn+1 and the
exact value α. We increase n until xn+2 − xn+1

has not any significant digit.

4 Numerical Examples

In this section, the implementation of the
CESTAC method is tested via CADNA library
and C++ code on Linux operating system based
on the following algorithm by solving some
nonlinear equations mentioned in [20, 21, 22].

4.1 Algorithm

1. type (double st) The list of the real variables.

2. call cadna-init(-1)

3. n = 1

3. cin >> x0

5. do

6. {
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Table 1: Numerical solution of f1(x) = 0, with β = 0.

n xn |xn+1 − xn| |xn − α|

1 0.528846724699768E+001 0.71153275300231E+000 0.87971367157795E-001
2 0.537654469146678E+001 0.8807744446910E-001 0.10607731130E-003
3 0.537643861387768E+001 0.10607758909E-003 0.27779E-009
4 0.537643861415547E+001 0.27779E-009 @.0
5 0.537643861415547E+001 @.0 @.0

Table 2: Numerical solution of f1(x) = 0, with β = 1.

n xn |xn+1 − xn| |xn − α|

1 0.527099763131590E+001 0.72900236868409E+000 0.10544098283957E+000
2 0.537701709743707E+001 0.1060194661211E+000 0.5784832281597E-003
3 0.537643861298361E+001 0.57848445346E-003 0.117186E-008
4 0.537643861415548E+001 0.11718E-008 0.4E-014
5 0.537643861415547E+001 0.3552713678800E-014 @.0
6 0.537643861415547E+001 @.0 @.0

Table 3: Numerical solution of f1(x) = 0, with β = 2.

n xn |xn+1 − xn| |xn − α|

1 0.524407267487363E+001 0.755927325126364E+000 0.13236593928184E+000
2 0.537979058607988E+001 0.13571791120624E+000 0.335197192439995E-002
3 0.537643861897791E+001 0.335196710196594E-002 0.4822434E-008
4 0.537643861415546E+001 0.482244E-008 0.1E-013
5 0.537643861415547E+001 0.1E-013 @.0
6 0.537643861415547E+001 @.0 @.0

Table 4: Numerical solution of f2(x) = 0, with β = 0.

n xn |xn+1 − xn| |xn − α|

1 0.310649704076435E+001 0.606497040764350E+000 0.1013310835370E-001
2 0.309636393249552E+001 0.101331082688211E-001 0.84883E-010
3 0.309636393241064E+001 0.84883E-010 @.0
4 0.309636393241064E+001 @.0 @.0

Table 5: Numerical solution of f2(x) = 0, with β = 1.

n xn |xn+1 − xn| |xn − α|

1 0.321814332423935E+001 0.718143324239350E+000 0.12177939182870E+000
2 0.309640862033848E+001 0.12173470390086E+000 0.44687927840E-004
3 0.309636393250528E+001 0.44687833204E-004 0.94635E-010
4 0.309636393241064E+001 0.946358547082581E-010 @.0
5 0.309636393241064E+001 @.0 @.0

7. yn = xn − f(xn)

f ′ (xn)
, f

′
(xn) ̸= 0

8. xn+1 = yn − g(tn)
f(yn)

f
′
(xn)

,

tn = f(yn)
f(xn)

, n = 1, 2, 3, . . .

9. cout << ”Root =′′, strp(xn+1)

10. n = n+ 1

11. }

12. while ((xn+1 − xn)!= 0 )
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Table 6: Numerical solution of f2(x) = 0, with β = 2.

n xn |xn+1 − xn| |xn − α|

1 0.312922939028678E+001 0.629229390286787E+000 0.32865457876141E-001
2 0.309636394018446E+001 0.328654501023182E-001 0.7773823E-008
3 0.309636393241064E+001 0.7773823E-008 @.0
4 0.309636393241064E+001 @.0 @.0

Table 7: Numerical solution of f3(x) = 0, with β = 0.

n xn |xn+1 − xn| |xn − α|

1 -0.146601672470482E+001 0.53398327529517E+000 0.25836889757390E+000
2 -0.121065373036711E+001 0.25536299433771E+000 0.3005903236197E-002
3 -0.120764782716232E+001 0.300590320478E-002 0.31407E-010
4 -0.120764782713091E+001 0.31408E-010 @.0
5 -0.120764782713091E+001 @.0 @.0

Table 8: Numerical solution of f3(x) = 0, with β = 1.

n xn |xn+1 − xn| |xn − α|

1 -0.160806013242408E+001 0.391939867575914E+000 0.400412305293166E+000
2 -0.127827653059560E+001 0.329783601828476E+000 0.70628703464690E-001
3 -0.120779975346507E+001 0.70476777130532E-001 0.151926334157E-003
4 -0.120764782713092E+001 0.15192633415E-003 0.377475828372553E-014
5 -0.120764782713091E+001 0.377475828372553E-014 @.0
6 -0.120764782713091E+001 @.0 @.0

Table 9: Numerical solution of f3(x) = 0, with β = 2.

n xn |xn+1 − xn| |xn − α|

1 -0.164394851878018E+001 0.356051481219817E+000 0.436300691649263E+000
2 -0.131999253140248E+001 0.323955987377698E+000 0.112344704271564E+000
3 -0.120911270975562E+001 0.110879821646854E+000 0.1464882624710E-002
4 -0.120764782719474E+001 0.1464882560882E-002 0.63828E-010
5 -0.120764782713091E+001 0.63828E-010 @.0
6 -0.120764782713091E+001 @.0 @.0

13. cadna-end().

The function ”Strp” in the output instruction
shows only the significant digits of the value. The
successive values xn are computed and at each
iteration. When xn+1 − xn = @.0, then xn+1 and
xn are equal stochastically. The computations of
the sequence xn are stopped when for an index
like nopt, the number of common significant digits
in the difference between xnopt and xn+1 become
zero. In this case, one can say, before noptth iter-
ation, xn+1−xn has exact significant digits. But,
the computations after nopt iteration are useless.
In other words, the number of iteration in nopt has
been optimized. Also, according to theorem (3.1),

the significant digits of the last approximation xn
are in common with the value of the exact solu-
tion α. Therefore, xn is an approximation of α.
Let us now present the examples and the results
which obtained from the CADNA library. The
computations have been performed on a personal
computer in double precision.

Example 4.1 In this example, the solution of
the equation f1(x) = x2sin2x+excosxsinx−18 = 0
is considered. The results are obtained by us-
ing Algorithm 4.1 and x0 = 6, in the stochastic
arithmetic. The optimal number of iterations are
shown in the Tables 1, 2 and 3 which are 5 for
β=0 and 6 for β=1,2 and the optimal computed
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value at optimal iteration with different β based
on the tables, is x = 0.537643861415547E + 001.

Example 4.2 In this example, the solution of
the equation f2(x) = sinx − e−x = 0 is consid-
ered. The results are obtained by using Algorithm
4.1 and x0 = 2.5. The optimal value of the
root in the optimal iteration with β = 0, 1, 2
at the optimal number of iteration n = 4, 5, 4
respectively based on the tables 4,5 and 6, is
x = 0.309636393241064E + 001.

5 Conclusion

In this work, by using the CESTAC method
based on the stochastic arithmetic, the family of
optimal two-point methods to approximate the
root of Eq. (1.1) was applied and the results
of the proposed algoeithm was validated step by
step. We obtained the optimal number of itera-
tions (nopt) of the two-point methods such that
xn is the best approximation of the exact root.
Also, a theorem was proved to show the accu-
racy of the method and an algorithm based on the
CADNA library was persented to determine the
implemention of the CESTAC method to solve
the given nonlinear equation. This approach can
be done on any other iterative scheme to provide
a relible way in order to find the optimal solution.
Consequently, by using the optimal termination
criterion which uses the computational zero, the
iterative process is stopped correctly and com-
putaion time is saved, because many useless op-
erations and iterations are not performed.
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