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Abstract

This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous
systems. In this regard, a single input active control approach is proposed for control and stabilization
of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis
of fractional Lyapunov stability theory. Furthermore, the effects of model uncertainties are fully taken
into account. Also, the robust stability and access to the equilibrium point of the control scheme are
analytically proved. Moreover, fast response and easy realization in real world applications are some
special features of the suggested method. Finally, as a numerical simulation, control and stabilization
of three-dimensional uncertain fractional-order Chen system is provided to illustrate the usefulness
and applicability of the proposed approach in practice. It is worth to notice that the proposed
active control approach can be employed for robust stabilization of a large class of three-dimensional
uncertain nonlinear fractional-order non autonomous dynamical systems.
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1 Introduction

F
ractional calculus, which was introduced in
the early 17th century, deals with integration

and derivatives of arbitrary noninteger orders. In
recent years, it has been reported in many areas
such as electrical circuit, population models, epi-
demiology models, etc [2]. Due to the existence of
chaos in real fractional-order systems, control and
stabilization of fractional-order systems have at-
tracted the attention of many scholars in the past
decade [3]. Therefore, studying the fractional-
order chaotic systems has become an active re-
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search field. Up to now, some methods have been
suggested to achieve chaos control in fractional-
order chaotic systems, such as optimal control
[17], active control [9], feedback control [18], PC
control [12], adaptive control [19, 28], non-fragile
nonlinear observer method [10], sliding mode con-
trol [4, 5, 6, 7, 8, 11], fuzzy logic control [21],
etc. However, in most of the above mentioned
approaches, the ideal conditions for the systems
have been considered without paying attention to
the unknown uncertainties which exist in reality.
Moreover, in previous works the formulation of
the chaos stabilization problem and the proposed
controllers are complex both in design and appli-
cation.

In this paper, we design a single input ac-
tive controller with one driving variable to con-
trol a class of three-dimensional fractional-order
systems. The effects of model uncertainties are
fully taken into account. The proposed scheme is
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based on the fractional version of Lyapunov sta-
bility theory. The robust stability property and
simplicity of the design are interesting capabilities
of the designed method. A numerical example
demonstrates the applicability and efficiency of
the proposed control technique in practice. The
rest of this paper is arranged as follows. Some
preliminaries of fractional calculus and a lemma
are given in Section 2. In Section 3, system de-
scription and problem formulation are presented.
Also, the proposed control scheme is introduced
in Section 3. Section 4 presents an illustrative
example. Finally, in Section 5, some conclusions
are included.

2 Definitions and Preliminaries

Here, some definitions about the fractional differ-
ential equations (FDEs) and an essential lemma
are expressed.

Definition 2.1 The Riemann-Liouville frac-
tional integration of order α is presented by
[25]:

t0It = t0D
−α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)1−α
dτ.

(2.1)

where t0 is the initial time. Also Γ(.) is the
Gamma function.

Definition 2.2 The αth order Caputo fractional
derivative of a function f(t) is defined as [25]:

t0D
α
t f(t) = t0D

−(m−α)
t

dm

dtm
f(t)

=
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)α−m+1
dτ.

(2.2)

where where m is the smallest integer number,
larger than α.

It is noted that in this paper the Caputo defini-
tion is adopted.

Definition 2.3 Suppose that h(t) is the impulse
response of a linear system. The diffusive
representation of h(t) is called µ(ω) with relation
as follows [27]:

h(t) =

∫ ∞

0
µ(ω) e−ωt dω (2.3)

Remark 2.1 The fractional order integral (2.1)
can rewrite as [27]:

t0I
α
t f(t) = h(t) ∗ f(t) (2.4)

where ∗ is the convolution operator and h(t) is
defined as

h(t) =
tα−1

Γ(α)
.

Also, the diffusive representation of h(t) is
defined as:

µ(ω) =
sin(απ)

π
ω−α (2.5)

Definition 2.4 Let have the nonlinear FDE
[27]:

t0D
α
t X = f(X) (2.6)

According to the continuous frequency distributed
model of the fractional integrator, the nonlinear
system (2.6) can be rewritten as:{

∂z(ω,t)
∂t = −ωz(ω, t) + f(x(t))
x(t) =

∫∞
0 µ(ω) z(ω, t) dω

(2.7)

while µ(ω) is the same as (2.5).

Lemma 2.1 Consider w1 = ax2 and w2 =∫∞
0 µ(ω) z(ω, t) dω. The quadratic form w =
w1 + w2 is positive definite if and only if a > 0
[27].

3 Main results

Consider the following class of uncertain three-
dimensional non-autonomous fractional0order
systems with a single control input.{

DαX = f1(X, y, t)
Dαy = f2(X, y, t) + ∆f(X, y, t)− u(t)

(3.8)
where α ∈ (0, 1) is the order of the system and
X(t) = [x1, x2]

T ∈ R2 and y(t) ∈ R are the
states of the system, f1(X, y, t) and f2(X, y, t)
are the bounded nonlinear functions of X, y and
t ,∆f(X, y, t) is the system uncertainty term and
u(t) ∈ R is the single control input.

Assumption 3.1. The uncertainty terms
∆f(X, y, t) is bounded by

|∆f(X, t)|< ρ (3.9)
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where ρ is a known positive constant.

Assumption 3.2. The function f1(X, y, t)
is smooth in a neighborhood of the point y = 0
and the subsystem DαX = f1(X, y, t) will be
asymptotically stable about the origin X = 0 for
all X.

Remark 3.1 The system (3.8) is very general,
where it includes most of the canonical fractional-
order systems, such as fractional-order Genesio-
Tesi system and fractional-order Arneodo sys-
tem, fractional-order unified system, fractional-
order Lu system, fractional-order Lorenz system,
fractional-order Chen system and fractional-order
Tigan system.

The control goal of this paper is to design a suit-
able robust controller for stabilization of system
(3.8) around zero.

Theorem 3.1 Consider the fractional-order sys-
tem (3.8). If this system is controlled by the single
active controller (3.10), then the system trajecto-
ries will converge to zero.

u(t) = λζsign(y) + ρ+ f2(X, y, t) (3.10)

where ζ = q|y| and λ, q are positive constants.

Proof by using Definition 2.4, Dαy in (3.8), can
be rewritten as


∂z(ω,t)

∂t = −ωz(ω, t) + f2(X, y, t)
+∆f(X, y, t)− u(t)

y(t) =
∫∞
0 µ(ω) z(ω, t) dω

(3.11)

We define two Lyapunov function where the first
is

v(ω, t) =
z2(ω, t)

2
.

For v(ω, t) one can has ∂v(ω,t)
∂z(ω,t) = z(ω, t) and by

using (3.11) we can obtain

∂v(ω, t)

∂t
=

∂v(ω, t)

∂z(ω, t)
· ∂z(ω, t)

∂t

= z(ω, t)[−ωz(ω, t) + f2(X, y, t)

+ ∆f(X, y, t)− u(t)]

≤ z(ω, t)[−ωz(ω, t) + f2(X, y, t)

+ |∆f(X, y, t)|︸ ︷︷ ︸
<ρ

−u(t)]

< z(ω, t)[−ωz(ω, t) + f2(X, y, t)

+ ρ− (λξsign(y) + ρ+ f2(X, y, t))︸ ︷︷ ︸
u(t)

]

< −ωz2(ω, t)− λζsign(y)z(ω, t)

Therefore,

∂v(ω, t)

∂t
< −ωz2(ω, t)− λζsign(y)z(ω, t).

(3.12)

Now we introduce the main Lyapunov function
as

V (t) =

∫ ∞

0
µ(ω) v(ω, t) dω

=
1

2

∫ ∞

0
µ(ω) z2(ω, t) dω (3.13)

Obviously V (t) > 0 and based on Lyapunove sta-
bility theorem, we must demonstrate that dV

dt < 0
is holden. Therefor, by attention to (3.12), one
obtains

dV

dt
=

∫ ∞

0
µ(ω)

∂v(ω, t)

∂t
dω

<

∫ ∞

0
µ(ω) [−ωz2(ω, t)

− λζsign(y)z(ω, t)] dω

< −
∫ ∞

0
µ(ω)ωz2(ω, t) dω

− λζsign(y)

∫ ∞

0
µ(ω)z(ω, t) dω︸ ︷︷ ︸

y

< −
∫ ∞

0
µ(ω)ωz2(ω, t) dω

− λ q|y|︸︷︷︸
ζ

sign(y)y

< −(

∫ ∞

0
µ(ω)ωz2(ω, t) dω + λq|y|2 )

According to Lemma 2.1, dV
dt < 0. Thus the proof

is achieved completely.
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4 Numerical example

Here, the robust stabilization problem of the
fractional-order Chen system is splved numeri-
cally. Numerical simulation is performed using
MATLAB software. The numerical approach de-
scribed in [13, 14, 15, 16] with a step time of 0.001
is applied to solve the fractional-order equations.
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Figure 1: State trajectories of chaotic Chen
system controlled with (3.10)
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Figure 2: Time history of the single control
input (3.10) applied to the Chen system.

4.1 Numerical method for solving
fractional differential equations

There are several analytical and numerical
methods such as the fractional difference method
[25, 26], the Adomian decomposition method
[22], the homotopy perturbation method [1], the
variational iteration method [23, 24], the Adams-
BashforthMoulton method [13, 14, 15, 16] to

solve the fractional-order differential equations.
In this paper, a modification of AdamsBash-
forthMoulton algorithm which is proposed by
Diethelm et al. in [13, 14, 15, 16] is used to
solve FDEs. Consider the following initial value
problem (IVP) of FDEs{

Dαy(t) = f(y, t), 0 ≤ t ≤ T

y(k)(0) = y
(k)
0 , k = 0, 1, ... ,m− 1 (m = ⌈α⌉)

(4.14)

which is equivalent to the following Volterra in-
tegral equation

y(k) =

m−1∑
k=0

y
(k)
0

tk

k!

+
1

Γ(α)

∫ t

t0

f(y(s), s)

(t− s)1−α
ds (4.15)

Setting h = T
N , tn = nh , n = 0, 1, ..., N the

above equation becomes

yh(tn+1) =

m−1∑
k=0

ck
tkn+1

k!

+
hα

Γ(α+ 2)
f(y

(p)
h (t(n+1)), t(n+1))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(yh(tj), tj)

(4.16)

subject to

aj,n+1 =


nα+1 − (n− α)(n+ 1)α, if j = 0
(n− j + 2)α+1 + (n− j)α+1

−2(n− j − 1)α+1, if 1 ≤ j ≤ n
1, if j = n+ 1

y
(p)
h (t(n+1) =

m−1∑
k=0

ck
tkn+1

k!

+
1

Γ(α)

n∑
j=0

bj,n+1f(yh(tj), tj)

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α). (4.17)
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The error in this method is

e = max
j=0,1,...,n

|y(tj)− yh(tj)|= O(hp) (4.18)

where p = min(2, 1 + α)

4.2 Robust stabilization of the
fractional-order Chen system

Consider the following fractional-order Chen sys-
tem [20]

Chen :


Dαx1 = 35(x2 − x1),
Dαx2 = 28x2 − 7x1 − x1x3,
Dαx3 = x1x2 − 3x3.

(4.19)

It is easy to see that if x2(t) = 0, the two-
dimensional subsystem{

Dαx1 = −35x1,
Dαx3 = −3x3

of system (4.20) will be asymptotically stable
about the origin x1(t) = 0 and x3(t) = 0 for all
x1 and x3. Now, let X = [x1, x3] and y = x2,
then the controlled uncertain system (4.19)
becomes


Dαx1 = 35(y − x1),
Dαy = −7x1 + 28y − x1x2

+∆f(X, y, t)− u(t),
Dαx2 = x1y − 3x2

(4.20)

where ∆f(X, y, t) = 0.56 cos(3t)y and α = 0.98.
The initial values of the Chen system are
x1(0) = 7, x2(0) = 10 and y(0) = 7. Besides,
control parameters are selected as λ = 3 and
q = 3. The state trajectories of the controlled
fractional-order chaotic Lorenz system are
displayed in Figure 1, where the controller is
switched at t =5. It can be seen that the state
trajectories converge to zero, which indicates
that the fractional-order Chen system is indeed
controlled. The time history of the control input
is depicted in Figure 2. It is obvious that the
control signal tends to zerobimplying that the
proposed mode controller is feasible in real world
applications.

5 Conclusion

This paper investigates control of three-
dimensional non-autonomous fractional-order
uncertain systems via a single input control
technique. The analytical results of the method
are proved on the basis of fractional Lyapunov
stability theory. The designed active controller
has several useful features such as fast response,
low sensitivity to the system uncertainties and
easy realization in practice. Finally, a numerical
example confirm that the proposed approach
can effectively stabilize the fractional-order
non-autonomous systems in practice. It is worth
noticing that the proposed control method can
be applied to control a broad range of three-
dimensional non-autonomous fractional-order
dynamical systems.
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