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Abstract

This article investigates the nonlinear, steady boundary layer flow and heat transfer of an incom-
pressible Eyring-Powell non-Newtonian fluid from an isothermal sphere with Biot number effects. The
transformed conservation equations are solved numerically subject to physically appropriate boundary
conditions using a second-order accurate implicit finite-difference Keller Box technique. The influence
of a number of emerging dimensionless parameters, namely the Eyring-Powell rheological fluid pa-
rameter (ε), the local non-Newtonian parameter based on length scale (δ), Prandtl number (Pr), Biot
number (γ) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the
boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface
heat transfer rate and local skin friction are also investigated. It is found that the velocity and heat
transfer rate (Nusselt number) decrease with increasing (ε), whereas temperature and skin friction
increase. An increasing (δ) is observed to enhance velocity, local skin friction and heat transfer rate
but reduces the temperature. An increase (γ) is seen to increase velocity, temperature, local skin
friction and Nusselt number. The study is relevant to chemical materials processing applications.

Keywords : Non-Newtonian Eyring-Powell fluid model; Isothermal sphere; Finite difference numerical
method; Boundary layers; Biot number.
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Nomenclature
a radius of the sphere
Cf skin friction coefficient
C fluid parameter
f non-dimensional steam function
Gr Grashof number
g acceleration due to gravity
Nu heat transfer rate
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Pr Prandtl number
r(x) radial distance from symmetrical axis to
surface of the sphere
T temperature of the fluid
u, v non-dimensional velocity components
along the x- and y - directions, respectively
V velocity vector
x stream wise coordinate
y transverse coordinate

Greek
α Thermal diffusivity
β Fluid parameter
η The dimensionless radial coordinate
µ Dynamic viscosity
ν Kinematic viscosity
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θ The dimensionless temperature
ρ Density of non-Newtonian fluid
ξ The dimensionless tangential coordinate
Ψ Dimensionless stream function
ε Fluid parameter
γ Biot number

Subscripts
w conditions on the wall (sphere surface)
∞ Free stream conditions

1 Introduction

N
on-Newtonian transport phenomena arise in
many branches of chemical and materials

processing engineering. Examples of such flu-
ids include coal-oil slurries, shampoo, paints,
clay coating and suspensions, grease, cosmetic
products, custard, physiological liquids (blood,
bile, synovial fluid) etc. Non-Newtonian fluids
are handled extensively by chemical industries
namely plastics and polymer. The classical equa-
tions employed in simulating Newtonian viscous
flows i.e. the Navier Stokes equations fail to
simulate a number of critical characteristics of
non-Newtonian fluids. The relationship between
the shear stress and rate of strain in such flu-
ids are very complicated in comparison to vis-
cous fluids. The viscoelastic features in non-
Newtonian fluids add more complexities in the
resulting equations when compared with Navier
Stokes equations. Significant attention has been
directed at mathematical and numerical simula-
tion of non-Newtonian fluids. Recent investiga-
tions have implemented, respectively the Casson
model[38], Second-order Reiner-Rivlin differen-
tial fluid models [32], Power-law nanoscale mod-
els [44], Tangent Hyperbolic fluid models [4], Jef-
frey’s viscoelastic model [5] and Third grade fluid
model [24, 39].
Convective heat transfer has also mobilized sub-
stantial interest owing to its importance in in-
dustrial and environmental technologies includ-
ing energy storage, gas turbines, nuclear plants,
rocket propulsion, geothermal reservoirs, photo-
voltaic panels etc. The convective boundary con-
dition has also attracted some interest and this
usually is simulated via a Biot number in the wall
thermal boundary condition. Ishak [22]discussed

the similarity solutions for flow and heat transfer
over a permeable surface with convective bound-
ary condition. Aziz [13] provided a similarity so-
lution for laminar thermal boundary layer over
a flat surface with a convective surface bound-
ary condition. Aziz [14] further studied hydro-
dynamic and thermal slip flow boundary lay-
ers with an iso-flux thermal boundary condition.
The buoyancy effects on thermal boundary layer
over a vertical plate subject a convective sur-
face boundary condition was studied by Makinde
and Olanrewaju [26]. Further recent analyses
include Makinde and Aziz [27]. Gupta et al.
[19] used a variational finite element to simulate
mixed convective-radiative micropolar shrinking
sheet flow with a convective boundary condition.
Swapna et al. [43] studied convective wall heat-
ing effects on hydromagnetic flow of a microp-
olar fluid. Makinde et al. [28] studied cross
diffusion effects and Biot number influence on
hydromagnetic Newtonian boundary layer flow
with homogenous chemical reactions and MAPLE
quadrature routines. Bg et al. [11] analyzed Biot
number and buoyancy effects on magnetohydro-
dynamic thermal slip flows. Subhashini et al. [41]
studied wall transpiration and cross diffusion ef-
fects on free convection boundary layers with a
convective boundary condition.
An interesting non-Newtonian model developed
for chemical engineering systems is the Eyring-
Powell fluid model. This rheological fluid
model has certain advantages over the other
non-Newtonian formulations, including simplic-
ity, ease of computation and physical robustness.
Firstly it is deduced from kinetic theory of liquids
rather than the empirical relation. Additionally,
it correctly reduces to Newtonian behavior for low
and high shear rates. Eyring-Powell fluid model
[33], a complete mathematical model proposed by
Powell and Eyring in 1944. Several communica-
tions utilizing the Eyring Powell fluid model have
been presented in the scientific literature. Ma-
lik et al. [29] presented boundary layer flow of
an Eyring Powell model fluid due to a stretch-
ing cylinder with variable viscosity. Eldabe et
al. [18] studied numerical study of viscous dis-
sipation effect on free convection heat and mass
transfer of MHD Eyring Powell fluid flow through
a porous medium. Javed et al. [23] investigated
flow of an Eyring Powell non-Newtonian fluid
over a stretching sheet. Characteristics of heat-
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ing scheme and mass transfer on the peristaltic
flow an Eyring Powell fluid in an endoscope was
discussed by Nadeem et al. [6]. Akbar et al. [7]
implemented the Eyring-Powell model for peri-
staltic thermal convection flows of reactive bioflu-
ids; Hayat et al. [20] studied the steady flow of
an Eying-Powell fluid over a moving surface with
convective boundary conditions. Asmat Ara et
al. [12] implemented the Eyring-Powell fluid to
study the radiation effects over an exponentially
shrinking sheet. K.V. Prasad et al. [34] exam-
ined the boundary layer flow of a non-Newtonian
Eyring-Powell fluid over a non-isothermal stretch-
ing sheet. A.M. Siddiqui [40] examined the thin
film flow of an Eyring-Powell fluid on a vertically
moving belt.
In many chemical engineering and nuclear pro-
cess systems, curvature of the vessels employed
is a critical aspect of optimizing thermal per-
formance. Examples of curved bodies featur-
ing in process systems include torus geometries,
wavy surfaces, cylinders, cones, ellipses, oblate
spheroids and in particular, spherical geome-
tries, the latter being very popular for storage
of chemicals and also batch reactor processing.
Heat transfer from spheres has therefore mobi-
lized much attention among chemical engineer-
ing researchers who have conducted both experi-
mental and computational investigations for both
Newtonian and non-Newtonian fluids. Bg et al.
[10] examined the free convection magnetohy-
drodynamic flow from a sphere in porous me-
dia using network simulation, showing that tem-
peratures are boosted with magnetic field and
heat transfer is enhanced from the lower stagna-
tion point towards the upper stagnation point.
Prhashanna and Chhabra [37] obtained numeri-
cal solutions for streamline and temperature con-
tours in heat transfer from a heated sphere im-
mersed in quiescent power-law fluids, showing
that shear-thinning behaviour may elevate heat
transfer rates by three hundred percent, whereas
shear-thickening depletes heat transfer rates by
30 to 40% compared with Newtonian fluids. Fur-
ther interesting investigations of heat transfer
from spheres have been presented by Dhole et
al. [17] for forced convection in power-law flu-
ids using the finite volume method and by Bg
et al. [9] for combined heat and species diffu-
sion in micropolar fluids with cross-diffusion ef-
fects. Prasad et al. [35] have also studied ra-

diative heat flux effects on magneto-convective
heat and species diffusion from a sphere in an
isotropic permeable medium. Molla et al. [31]
studied the effect of temperature dependent vis-
cosity on MHD natural convection flow from an
isothermal sphere using implicit finite difference
method. M. Miraj et al. [30] examined the effects
of viscous dissipation and radiation on magneto-
hydrodynamic free convection flow along a sphere
with joule heating and heat generation. Recent
study on sphere includes [4, 5]. V.R. Prasad et
al. [2] studied the free convection flow and heat
transfer on non-Newtonian Tangent Hyperbolic
fluid from an isothermal sphere with partial slip.
Ramachandra Prasad et al. [3] examined the non-
similar computational solutions for free convec-
tion boundary layer flow of a Nanofluid from an
isothermal sphere in a non-Darcy porous medium
using Keller-Box method.
The objective of the present study is to investi-
gate the laminar boundary layer flow and heat
transfer of an Eyring-Powell non-Newtonian fluid
from an isothermal sphere. The non-dimensional
equations with associated dimensionless bound-
ary conditions constitute a highly nonlinear, cou-
pled two-point boundary value problem. Keller’s
implicit finite difference scheme is implemented to
solve the problem [3]. The effects of the emerging
thermophysical parameters, namely the rheologi-
cal parameters (ε), Biot number (γ) and Prandtl
number (Pr), on the velocity, temperature, local
skin friction, and heat transfer rate (local Nusselt
number) characteristics are studied. The present
problem has to the authors knowledge not ap-
peared thus far in the scientific literature and is
relevant to polymeric manufacturing processes in
chemical engineering.

2 Non-Newtonian Constitutive
Eyring-Powell Fluid Model

In the present study a subclass of non-Newtonian
fluids known as the Eyring-Powell fluid is em-
ployed owing to its simplicity. The Cauchy stress
tensor, in an Eyring-Powell non-Newtonian fluid
[33] takes the form:

τij = µ
∂ui
∂xj

+
1

β
sinh−1

(
1

C

∂ui
∂xj

)
(2.1)

where µ is dynamic viscosity, β and C are the
rheological fluid parameters of the Eyring-Powell
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fluid model. Consider the second-order approxi-
mation of the sinh−1 function as:

sinh−1

(
1

C

∂ui
∂xj

)
∼=

1

C

∂ui
∂xj

− 1

6

(
1

C

∂ui
∂xj

)3

, | 1
C

∂ui
∂xj

|≪ 1 (2.2)

The introduction of the appropriate terms into
the flow model is considered next. The resulting
boundary value problem is found to be well-posed
and permits an excellent mechanism for the as-
sessment of rheological characteristics on the flow
behaviour.

3 Mathematical Flow Model

Steady, double-diffusive, laminar flow of an
Eyring-Powell fluid from an isothermal sphere,
is considered, as illustrated in Fig. 1. The x-
coordinate is measured along the surface of an
isothermal sphere from the lowest point and the
y-coordinate is measured normal to the surface,
with a denoting the radius of the sphere. r (x) =
asin

(
x
a

)
is the radial distance from the symmet-

rical axis to the surface of the sphere. The gravi-
tational acceleration g, acts downwards. We also
assume that the Boussineq approximation holds
i.e. that density variation is only experienced in
the buoyancy term in the momentum equation.
Both isothermal sphere and the Eyring-Powell
fluid are maintained initially at the same tem-
perature. Instantaneously they are raised to a
temperature Tw > T∞, the ambient temperature
of the fluid which remains unchanged. Introduc-
ing the boundary layer approximations and in line
with approaches of [41, 33, 29], the equations for
mass, momentum, and energy, can be written as
follows:

∂ (ru)

∂x
+

∂ (rv)

∂y
= 0 (3.3)

u
∂u

∂x
+ v

∂u

∂y
=

(
ν +

1

ρβC

)
∂2u

∂y2

− 1

2ρβC3

(
∂u

∂y

)2 ∂2u

∂y2

+gβ1sin
(x
a

)
(T − T∞) (3.4)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.5)

where u and v are the velocity components in
the x - and y - directions respectively and all
the other terms are defined in the nomenclature.
The Eyring-Powell fluid model therefore intro-
duces a mixed derivative (second order, second
degree) into the momentum boundary layer equa-
tion (3.4). The non-Newtonian effects feature in
the shear terms only of eqn. (3.4) and not the
convective (acceleration) terms. The third term
on the right hand side of eqn. (3.4) represents the
thermal buoyancy force and couples the velocity
field with the temperature field eqn. (3.5).

At y = 0, u = 0, v = 0,

−k
∂T

∂y
= hw (Tw − T )

As y → ∞, u → 0, T → T∞ (3.6)

Here T∞ is the free stream temperture, k is the
thermal conductivity, hw is the convective heat
transfer coefficient, Tw is the convective fluid tem-
perature. The stream function Ψ is defined by

ru =
∂ (rΨ)

∂y
and rv = −∂ (rΨ)

∂x

and therefore, the continuity equation is auto-
matically satisfied. In order to render the govern-
ing equations and the boundary conditions in di-
mensionless form, the following non-dimensional
quantities are introduced.

ξ =
x

a
, η =

y

a
Gr

1
4 , f =

Ψ

νξ
Gr−

1
4 ,

θ (ξ, η) =
T − T∞
Tw − T∞

, P r =
ν

α
, ε =

1

µβC
,

Gr =
gβa3 (tw − T∞)

ν2
, δ =

ν2

2C2a4
Gr3/2

(3.7)

In view of the transformation defined in eqn.
(3.7), the boundary layer eqns. (3.4) - (3.6)
reduce to the following fifth order system of
coupled, nonlinear, dimensionless partial differ-
ential equations for momentum and energy for
the regime:

(1 + ε) f
′′′
+ (1 + ξcotξ) ff

′′ −
(
f

′
)2

+ θ
sinξ

ξ

−ε∂ξ2
(
f

′′
)2

f
′′′
= ξ

(
f

′ ∂f
′

∂ξ
− f

′′ ∂f

∂ξ

)
(3.8)



S. Abdul Gaffar et al, /IJIM Vol. 8, No. 2 (2016) 131-146 135

θ
′′

Pr
+ (1 + ξcotξ) fθ

′
= ξ

(
f

′ ∂θ

∂ξ
− θ

′ ∂f

∂ξ

)
(3.9)

The transformed dimensionless boundary condi-
tions are:

At η = 0, f = 0, f
′
= 0, θ = 1 +

θ
′

γ

As η → 0, f
′ → 0, θ → 0 (3.10)

Here primes denote the differentiation with re-

spect to η and γ = ahw
k Gr

−1
4 is the Biot number.

The wall thermal boundary condition in (3.10)
corresponds to convective cooling. The skin-
friction coefficient (shear stress at the sphere sur-
face) and Nusselt number (heat transfer rate) can
be defined using the transformations described
above with the following expressions.

Gr
−3
4 Cf =

(1 + ε) ξf
′′
(ξ, 0)− δ

3
εξ3
(
f

′′
(ξ, 0)

)3
(3.11)

Gr
−1
4 Nu = −θ

′
(ξ, 0) (3.12)

The location, ξ ∼ 0, corresponds to the vicin-
ity of the lower stagnation point on the sphere.
Since sin ξ

ξ → 0
0 i.e. 1. For this scenerio, the

model defined by eqns. (3.8) - (3.9) contracts to
an ordinary differential boundary value problem:

(1.0 + ε) f
′′′
+ ff

′′ −
(
f

′
)2

+ θ = 0 (3.13)

1

Pr
θ
′′
+ fθ

′
= 0 (3.14)

The general model is solved using a powerful and
unconditionally stable finite difference technique
introduced by Keller [21]. The Keller-box method
has a second order accuracy with arbitrary spac-
ing and attractive extrapolation features.

4 Numerical Solution with
Keller Box Implict Method

The Keller-Box implicit difference method is im-
plemented to solve the nonlinear boundary value

problem defined by eqns. (3.8)-(3.9) with bound-
ary conditions (3.10). This technique, despite re-
cent developments in other numerical methods,
remains a powerful and very accurate approach
for parabolic boundary layer flows. It is uncondi-
tionally stable and achieves exceptional accuracy
[21]. Recently, this method has been deployed in
resolving many challenging, multi-physical fluid
dynamics problems. These include hydromag-
netic Sakiadis flow of non-Newtonian fluids [42],
nanofluid transport from a horizontal cylinder
[1], radiative rheological magnetic heat transfer
[15], waterhammer modelling [45], tangent hyper-
bolic fluid [2], Jeffrey’s fluid [5] and magnetized
viscoelastic stagnation flows [25]. The Keller-
Box discretization is fully coupled at each step
which reflects the physics of parabolic systems -
which are also fully coupled. Discrete calculus
associated with the Keller-Box scheme has also
been shown to be fundamentally different from
all other mimetic (physics capturing) numerical
methods, as elaborated by Keller [21]. The Keller
Box Scheme comprises four stages:

(1) Decomposition of the Nth order partial dif-
ferential equation sywtem to N first order
equations.

(2) Finite Difference Discretization.

(3) Quasilinearization of Non-Linear Keller Al-
gebraic Equations and finally.

(4) Block-tridiagonal Elimination solution of the
Linearized Keller Algebraic Equations.

Stage 1: Decomposition of Nth order par-
tial differential equation system to N first
order equations
Eqns.(3.8)-(3.9) subject to the boundary condi-
tions (3.10) are first cast as a multiple system of
first order differential equations. New dependent
variables are introduced:

u (x, y) = f
′
, v (x, y) = f

′′
, t (x, y) = θ

′

(4.15)

These denote the variables for velocity, tem-
perature and concentration respectively. Now
Eqns.(3.8)-(3.9) are solved as a set of fifth order
simultaneous differential equations:

f
′
= u (4.16)
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u
′
= v (4.17)

θ
′
= t (4.18)

(1 + ε) v
′
+ (1 + ξcotξ) fv − u2 − ε∂ξ2v2v

′

+s
sinξ

ξ
= ξ

(
u
∂u

∂ξ
− u

∂f

∂ξ

)
(4.19)

t
′

Pr
+ (1 + ξcotξ) ft = ξ

(
u
∂s

∂ξ
− t

∂f

∂ξ

)
(4.20)

where primes denote differentiation with respect
to the variable, η. In terms of the dependent vari-
ables, the boundary conditions assume the form:

At η = 0, f = 0, u = 0, s = 1 +
t

γ

As η → 0, u → 0, s → 0 (4.21)

Stage 2: Finite Difference Discretization
A two dimensional computational grid is imposed
on the ξ-η plane as depicted in Fig. 2. The step-
ping process is defined by:

η0 = 0, ηj = ηj−1 + hj , j = 1, 2, ..., J,

ηJ ≡ η∞ (4.22)

ξ0 = 0, ξn = ξn−1 + kn, n = 1, 2, ..., N (4.23)

wherekn is the ∆ξ − spacing and hj is the ∆η −
spacing.
If gnj denotes the value of any variable at (ηj , ξ

n),
then the variables and derivatives of eqns. (4.16)-
(4.20) at

(
ηj−1/2, ξ

n−1/2
)
are replaced by:

g
n−1/2
j−1/2

=
1

4

(
gnj + gnj−1 + gn−1

j + gn−1
j−1

)
(4.24)

(
∂g

∂η

)n−1/2

j−1/2

=
1

2hj

(
gnj − gnj−1 + gn−1

j − gn−1
j−1

)
(4.25)

(
∂g

∂ξ

)n−1/2

j−1/2

=
1

2kn

(
gnj − gnj−1 + gn−1

j − gn−1
j−1

)
(4.26)

The finite-difference approximation of eqns.
(4.16)-(4.20) for the mid-point

(
ηj−1/2, ξ

n
)
are:

h−1
j

(
fn
j , f

n
j−1

)
= unj−1.2 (4.27)

h−1
j

(
unj , u

n
j−1

)
= vnj−1/2 (4.28)

h−1
j

(
snj , s

n
j−1

)
= tnj−1/2 (4.29)

(1 + ε) (vj − vj−1)− (1 + α)
hj
4

(uj + uj−1)
2

+(1 + α+ ξcotξ)
hj
4

(fj + fj−1) (vj + vj−1)

−ξ2
εδ

4
(vj + vj−1)

2 (vj − vj−1)

+
Bhj
2

(sj + sj−1) +
αhj
2

vn−1
j−1 (fj + fj−1)

−αhj
2

fn−1
j−1 (vj + vj−1) = [R1]

n−1
j−1/2 (4.30)

1

Pr
(tj − tj−1)−

αhj
4

(uj + uj−1) (sj + sj−1)

+ (1 + α+ ξcotξ)
hj
4

(fj + fj−1) (tj + tj−1)

+
αhj
2

sn−1
i−1/2 (uj + uj−1)− (4.31)

αhj
2

un−1
i−1/2 (sj + sj−1)

−αhj
2

fn−1
i−1/2 (tj + tj−1)

+
αhj
2

tn−1
i−1/2 (fj + fj−1) = [Rr]

n−1
j−1/2 (4.32)

where we have used the abbreviations

α =
ξn−1/2

kn
, B =

sin ξn−1/2

ξn−1/2
(4.33)

−hj [(1 + ε)
(
v
′
)n−1

j−1/2
− (1− α)

(
u2
)n−1

j−1/2

+(1− α+ ξcotξ) (fv)n−1
j−1/2 +Bsn−1

j−1/2

−εδξ2
(
v2
)n−1

j−1/2

(
v
′
)n−1

j−1/2
] (4.34)

[R2]
n−1
j−1/2 = −hj [

1

Pr

(
t
′
)n−1

j−1/2
+ α (us)n−1

j−1/2

+(1− α+ ξ cot ξ) (ft)n−1
j−1/2] (4.35)

The boundary conditions are:

fn
0 = un0 = 0, sn0 = 1, unJ = 0, vnJ = 0, snJ = 0

(4.36)
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Table 1: Values of Cf and Nu for different ε and Pr (δ = 0.1, γ = 0.3, ξ = 1.0).

Pr ε = 0.0 ε = 0.3 ε = 0.5 ε = 0.7

0 Cf Nu Cf Nu Cf Nu Cf Nu

7 0.3573 0.5975 0.3859 0.5654 0.4024 0.5484 0.4172 0.5337
10 0.3319 0.6623 0.3581 0.6258 0.3730 0.6064 0.3865 0.5898
15 0.3046 0.7426 0.3281 0.7006 0.3416 0.6784 0.3537 0.6595
25 0.2725 0.8552 0.2930 0.8055 0.3048 0.7794 0.3154 0.7572
50 0.2331 1.0311 0.2503 0.9697 0.2601 0.9375 0.2689 0.9101
75 0.2124 1.1482 0.2278 1.0790 0.2366 1.0428 0.2446 1.0120
100 0.1986 1.2384 0.2129 1.1632 0.2211 1.1240 0.2285 1.0906

Table 2: Values of Cf and Nu for different ε and Pr (δ = 0.1, γ = 0.3, ξ = 1.0).

Pr ε = 1.0 ε = 2.0 ε = 3.0

0 Cf Nu Cf Nu Cf Nu

7 0.4371 0.5151 0.4904 0.4707 0.5314 0.4410
10 0.4047 0.5688 0.4532 0.5189 0.4905 0.4856
15 0.3700 0.6355 0.4136 0.5787 0.4471 0.5411
25 0.3297 0.7291 0.3678 0.6628 0.3971 0.6190
50 0.2808 0.8756 0.3126 0.7946 0.3370 0.7413
75 0.2553 0.9733 0.2838 0.8825 0.3058 0.8229
100 0.2384 1.0487 0.2649 0.9504 0.2853 0.8859

Table 3: Values of Cf and Nu for different δ and Pr (δ = 0.1, γ = 0.3, ξ = 1.0).

Pr δ = 0.0 δ = 5 δ = 10 δ = 15

0 Cf Nu Cf Nu Cf Nu Cf Nu

7 0.3675 0.5857 0.3669 0.5873 0.3663 0.5891 0.3657 0.5910
10 0.3412 0.6488 0.3408 0.6504 0.3403 0.6521 0.3399 0.6539
15 0.3130 0.7271 0.3126 0.7287 0.3123 0.7303 0.3120 0.7320
25 0.2798 0.8369 0.2796 0.8383 0.2794 0.8398 0.2791 0.8414
50 0.2393 1.0084 0.2391 1.0097 0.2390 1.0111 0.2389 1.0125
75 0.2179 1.1226 0.2178 1.1238 0.2177 1.1251 0.2176 1.1264
100 0.2037 1.2106 0.2036 1.2118 0.2035 1.2130 0.2034 1.2142

Table 4: Values of Cf and Nu for different δ and Pr (δ = 0.1, γ = 0.3, ξ = 1.0).

Pr δ = 20 δ = 25 δ = 30

0 Cf Nu Cf Nu Cf Nu

7 0.3651 0.5930 0.3646 0.5954 0.3633 0.5977
10 0.3394 0.6559 0.3390 0.6580 0.3386 0.6604
15 0.3116 0.7338 0.3113 0.7358 0.3110 0.7379
25 0.2789 0.8431 0.2787 0.8448 0.2785 0.8466
50 0.2387 1.0139 0.2386 1.0154 0.2385 1.0169
75 0.2175 1.1277 0.2174 1.1291 0.2173 1.1305
100 0.2034 1.2154 0.2033 1.2167 0.2032 1.2180

Stage 3: Quasilinearization of Non-Linear
Keller Algebraic Equations
Assuming fn−1

j , un−1
j , vn−1

j , sn−1
j , tn−1

j to be

known for 0 ≤ j ≤ J , then eqns.(4.27)-(4.31) con-
stitute a system of 5J + 5 equations for the solu-
tion of 5J + 5 unknowns fn

j , unj , vnj , snj , tnj , j =
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Table 5: Numerical Values of f
′′
(ξ, 0) (in brackets) and Skin Friction Coefficient Cf for different δ and ε.

δ

ε
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.4406 0.4687 0.4936 0.5159 0.5363 0.5551
(0.3906) (0.3525) (0.3225) (0.2980) (0.2776)

0.1 0.4406 0.4687 0.4935 0.5158 0.5362 0.5550
(0.3909) (0.3529) (0.3225) (0.2983) (0.2779)

0.2 0.4406 0.4686 0.4934 0.5158 0.5362 0.5549
(0.3912) (0.3533) (0.3232) (0.2987) (0.2782)

0.3 0.4406 0.4686 0.4934 0.5157 0.5361 0.5549
(0.3915) (0.3537) (0.3236) (0.2990) (0.2785)

0.4 0.4406 0.4685 0.4933 0.5156 0.5360 0.5548
(0.3918) (0.3540) (0.3240) (0.2994) (0.2788)

0.5 0.4406 0.4685 0.4932 0.5155 0.5359 0.5547
(0.3921) (0.3544) (0.3243) (0.2997) (0.2792)

0.6 0.4406 0.4684 0.4931 0.5155 0.5358 0.546
(0.3924) (0.3548) (0.3247) (0.3001) (0.2795)

0.7 0.4406 0.4684 0.4931 0.5154 0.5358 0.5545
(0.3927) (0.3552) (0.3251) (0.3005) (0.2798)

0.8 0.4406 0.4683 0.4930 0.5153 0.5357 0.5545
(0.3930) (0.3556) (0.3255) (0.3008) (0.2802)

0.9 0.4406 0.4683 0.4929 0.5152 0.5356 0.5544
(0.3933) (0.3560) (0.3259) (0.3012) (0.2805)

10 0.4406 0.4682 0.4929 0.5151 0.5355 0.5543
(0.3936) (0.3564) (0.3263) (0.3016) (0.2808)

0, 1, 2, ..., J. This non-linear system of algebraic
equations is linearized by means of Newtons
method as explained in [2, 3].
Stage 4: Block-tridiagonal Elimination So-
lution of Linear Keller Algebraic Equations
The linearized system is solved by the block −
elimination method, since it possesses a block-
tridiagonal structure. The bock-tridiagonal
structure generated consists of block matrices.
The complete linearized system is formulated as
a block matrix
system, where each element in the coefficient ma-
trix is a matrix itself, and this system is solved us-
ing the efficient Keller-box method. The numeri-
cal results are strongly influenced by the number
of mesh points in both directions. After some
trials in the η -direction (radial coordinate) a
larger number of mesh points are selected whereas
in the ξ direction (tangential coordinate) signif-
icantly less mesh points are utilized. ηmax has
been set at 15 and this defines an adequately large
value at which the prescribed boundary condi-
tions are satisfied. ξmax is set at 3.0 for this flow
domain. Mesh independence is achieved in the
present computations. The numerical algorithm
is executed in MATLAB on PC. The method

demonstrates excellent stability, convergence and
consistency, as elaborated by Keller [21].

5 Numerical results and Inter-
pretation

Comprehensive solutions have been obtained and
are presented in Tables 1-5 and Figs. 3-9.
The numerical problem comprises two indepen-
dent variables (ξ, η), two dependent fluid dynamic
variables (f, θ) and five thermo-physical and body
force control parameters, namely, γ, δ, ε, Pr, ξ.
The following default parameter values i.e. γ =
0.3, δ = 0.1, ε = 0.1, P r = 0.71, ξ = 1.0 are pre-
scribed (unless otherwise stated). Furthermore,
the influence of stream-wise (transverse) coordi-
nate on heat transfer characteristics is also inves-
tigated.
In Table 1 and 2 we present the influence of the
Eyring-Powell fluid parameter, ε, on the skin fric-
tion and heat transfer rate, along with a varia-
tion in Prandtl number (Pr). With increasing ε,
the skin friction is enhanced. The parameter ε
is inversely proportional to the dynamic viscos-
ity of the non-Newtonian fluid. There as ε is
elevated, viscosity will be reduced and this will
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induce lower resistance to the flow at the surface
of the sphere i.e. accelerate the flow leading to
an escalation of shear stress. Furthermore, this
trend is sustained at any Pr. However, an in-
crease in Pr markedly reduces the shear stress
magnitudes. Similarly increasing ε is observed to
reduce heat transfer rates, again at all Pr val-
ues, whereas it strongly accentuates heat transfer
rates. Magnitudes of shear stress are always posi-
tive indicating that flow reversal (backflow) never
arises.
Tables 3 and 4 document results for the influence
of the local non-Newtonian parameter (based on
length scale x) i.e. δ and also the Pr on skin
friction and heat transfer rate. Skin friction is
generally decreased with increasing δ. However
heat transfer rate (i.e. local Nusselt number func-
tion) is found to be enhanced with increasing δ.

δ = ν2

2C2a4
Gr3/2 and inspection of this definition

shows that the direct proportionality of δ to kine-
matic viscosity ν (with all other parameters be-
ing maintained constant) will generate a strong
resistance to the flow leading to a deceleration
i.e. drop in shear stresses. Conversely, the di-
rect proportionality of δ to Grashofnumber(Gr)
will imply that thermal buoyancy forces are en-
hanced as δ increases and this will cause a boost
in heat transfer by convection from the sphere
surface manifesting with the greater heat trans-
fer rates observed in Tables 3 and 4. These tables
also show that with an increase in the Pr, the skin
friction is also depressed whereas the heat trans-
fer rate is elevated.
Table 5 presents the Keller box numerical values
of the missing condition f ′′ (ξ, 0) (in brackets) and
skin friction Cf for various values of δ and ε. It is
found that skin friction is reduced with increasing
values of δ.

Furthermore, the skin friction Cf is observed
to be increased with a rise in the Eyring-Powell
fluid parameter ε for all values of the local
non-Newtonian parameter δ.
Fig. 3 - 4 illustrates the effect of Eyring-Powell

fluid parameter ε, on the velocity
(
f

′
)
and tem-

perature (θ) distributions through the boundary
layer regime. Velocity is significantly decreased
with increasing ε at larger distance from the
sphere surface owing to the simultaneous drop
in dynamic viscosity. Conversely, temperature
is consistently enhanced with increasing values
of ε The mathematical model reduces to the

Newtonian viscous flowmodel as ε → 0 and δ →
0. The momentum boundary layer equation in
this case contracts to the familiar equation for
Newtonian mixed convection from a sphere, viz

f
′′′
+ (1 + ξcotξ) ff

′′ −
(
f

′
)2

+ θ
sinξ

ξ

= ξ

(
f

′ ∂f
′

∂ξ
− f

′′ ∂f

∂ξ

)
(5.37)

The thermal boundary layer equation (9) remains
unchanged. In fig. 4 temperatures are clearly
minimized for the Newtonian case (ε = 0) and
maximized for the strongest non-Newtonian case
(ε = 3.0)

Fig. 5 - 6 depict the velocity
(
f

′
)
and temper-

ature (θ) distributions with increasing local non-
Newtonian parameter δ. Very little tangible ef-
fect is observed in fig. 5, although there is a very
slight increase in velocity with increase in δ. Sim-
ilarly there is only a very slight depression in tem-
perature magnitudes in Fig. 6 with a rise in δ.

Fig. 7 - 8 depict the evolution velocity
(
f

′
)

and temperature (θ) functions with a variation
in Biot number, γ. Dimensionless velocity com-
ponent (Fig. 7) is considerably enhanced with
increasing γ. In fig. 8, an increase in γ is seen
to considerably enhance temperatures through-
out the boundary layer regime. For γ < 1 i.e.
small Biot numbers, the regime is frequently des-
ignated as being ”thermally simple” and there is
a presence of more uniform temperature fields in-
side the boundary layer and the sphere solid sur-
face. For γ > 1 thermal fields are anticipated
to be non-uniform within the solid body. The
Biot number effectively furnishes a mechanism
for comparing the conduction resistance within
a solid body to the convection resistance external
to that body (offered by the surrounding fluid) for
heat transfer. We also note that a Biot number
in excess of 0.1, as studied in Figs. 7, 8 corre-
sponds to a ”thermally thick” substance whereas
Biot number less than 0.1 implies a ”thermally
thin” material. Since γ is inversely proportional
to thermal conductivity (k), as γ increases, ther-
mal conductivity will be reduced at the sphere
surface and this will lead to a decrease in the rate
of heat transfer from the boundary layer to within
the solid sphere, manifesting in a rise in tempera-
ture at the sphere surface and in the body of the
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fluid - the maximum effect will be sustained at the
surface, as witnessed in fig. 8. However for a fixed
wall convection coefficient and thermal conduc-

tivity, Biot number as defined in γ =
xhw
k

Gr−1/4

is also directly inversely proportional to the lo-
cal Grashof (free convection) number. As local
Grashof number increases generally the enhance-
ment in buoyancy causes a deceleration in bound-
ary layer flows [37, 36, 16]; however as Biot num-
ber increases, the local Grashof number must de-
creases and this will induce the opposite effect i.e.
accelerate the boundary layer flow, as shown in
Fig. 7.

Fig. 9 - 10 depict the evolution velocity
(
f

′
)

and temperature (θ) distributions with dimen-
sionless radial coordinate, for various transverse
(stream wise) coordinate values, ξ. Generally ve-
locity is noticeably lowered with increasing mi-
gration from the leading edge i.e. larger ξ values
(Fig. 9). The maximum velocity is computed at
the lower stagnation point (ξ ∼ 0) for low values
of radial coordinate (η). The transverse coordi-
nate clearly exerts a significant influence on mo-
mentum development. A very strong increase in
temperature as observed in Fig. 10, is generated
throughout the boundary layer with increasing ξ
values. The temperature field decays monotoni-
cally. Temperature is maximized at the surface
of the spherical body (η = 0, for all ξ) and mini-
mized in the free stream (η = 15). Although the
behaviour at the upper stagnation point (ξ ∼ π)
is not computed, the pattern in fig. 6b suggests
that temperature will continue to progressively
grow here compared with previous locations on
the sphere surface (lower values of ξ).
Fig. 11 - 12 show the influence of Eyring-Powell
fluid parameter,ε on dimensionless skin friction

coefficient (1 + ε) ξf
′′
(ξ, 0) − δε

3
ξ3
(
f

′′′
(ξ, 0)

)3
and heat transfer rate −θ

′
(ξ, 0) at the sphere

surface. It is observed that the dimensionless
skin friction is increased with the increase in ε
i.e. the boundary layer flow is accelerated with
decreasing viscosity effects in the non-Newtonian
regime. Conversely, the surface heat transfer rate
is substantially decreased with increasing ε val-
ues. Decreasing viscosity of the fluid (induced by
increasing the ε value) reduces thermal diffusion
as compared with momentum diffusion. A de-
crease in heat transfer rate at the wall will imply
less heat is convected from the fluid regime to the

sphere, thereby heating the boundary layer and
enhancing temperatures.
Fig. 13 - 14 illustrates the influence of the lo-
cal non-Newtonian parameter, δ , on the dimen-
sionless skin friction coefficient and heat transfer
rate. The skin friction (Fig. 13) at the sphere
surface is accentuated with increasing , however
only for very large values of the transverse coordi-
nate, ξ. The flow is therefore strongly accelerated
along the curved sphere surface far from the lower
stagnation point. Heat transfer rate (local Nus-
selt number) is enhanced with increasing δ again
at large values of ξ, as computed in Fig. 14.
Fig. 15 - 16 presents the influence of the Biot
number, γ on the dimensionless skin friction co-
efficient and heat transfer rate at the sphere sur-
face. The skin friction at the sphere surface is
found to be greatly increased with rising γ values.
This is principally attributable to the decrease in
Grashof (free convection) number which results
in an acceleration in the boundary layer flow, as
elaborated by Chen and Chen [16]. Heat transfer
rate (local Nusselt number) is enhanced with in-
creasing γ , at large values of ξ, as computed in
Fig. 16.

Figure 1: ˙

Fig. 2 Keller Box Computational domain

Figure 2: ˙
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Figure 3: ˙

Figure 4: ˙

6 Conclusion

Numerical solutions have been presented for
the buoyancy-driven flow and heat transfer of
Eyring-Powell flow external to an isothermal
sphere. The Keller-box implicit second order
accurate finite difference numerical scheme has
been utilized to efficiently solve the transformed,
dimensionless velocity and thermal boundary
layer equations, subject to realistic boundary
conditions. Excellent correlation with previous
studies has been demonstrated testifying to the
validity of the present code. The computations
have shown that:

(I) Increasing Eyring-Powell fluid parameter, ε,
reduces the velocity and skin friction (surface
shear stress) and heat transfer rate, whereas
it elevates temperatures in the boundary
layer.

(II) Increasing local non-Newtonian parameter,
δ , increases the velocity, skin friction and
Nusselt number for all values of radial co-
ordinate i.e., throughout the boundary layer
regime whereas it depresses temperature.

(III) Increasing Biot number, γ , increases ve-
locity, temperature and skin friction (surface
shear stress).

Figure 5: ˙

Figure 6: ˙

(IV) Increasing transverse coordinate, ξ gener-
ally decelerates the flow near the sphere
surface and reduces momentum boundary
layer thickness whereas it enhances tempera-
ture and therefore increases thermal bound-
ary layer thickness in Eyring-Powell non-
Newtonian fluids.

Generally very stable and accurate solutions are
obtained with the present finite difference code.
The numerical code is able to solve nonlinear
boundary layer equations very efficiently and
therefore shows excellent promise in simulating
transport phenomena in other non-Newtonian
fluids. It is therefore presently being employed
to study micropolar fluids [19, 43] and viscoplas-
tic fluids [8] which also simulate accurately many
chemical engineering working fluids in curved ge-
ometrical systems.
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