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Abstract

In this paper, we introduce a new concept in set-valued mappings which we have called condition
(UHS). Then, adding this condition to a new type of contractive set-valued mappings, recently
has been introduced by Amini-Harandi [Fixed and coupled fixed points of a new type contractive
set-valued mapping in complete metric spaces, Fixed point theory and applications, 215 (2012)], we
prove that this mapping have a unique end point. Then, we state and prove a result about existence
of coupled fixed point of this type of contractive set-valued mappings defined onM×M , whereM is a
complete metric space (Recently, Amini-Harandi proved existence of coupled fixed point only for self
mappings). Finally, we introduce one another new concept, which we have called condition (UHS)∗.
Then, adding this condition we state and prove existence of coupled endpoint for such contractive
set-valued mappings. Some examples are given to illustrate the results.
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1 Introduction

T
here are many extentions of the Banach
contraction principle in literature. Let

(X, d) be a metric space and let CB(X) de-
note the set of all nonempty closed bounded
subsets of X. Let H be the Hausdorff met-
ric on CB(X) with respect to metric d, that is,
H(A,B) = max{supx∈A d(x,B), supy∈B d(y,A)}
for all A,B ∈ CB(X), where d(y,A) =
infx∈Ad(y, x). Let T : X → 2X is a set-valued
mapping. It is called that x is a fixed point of T
if x ∈ Tx. In 1969, Nadler extended the Banach
contraction principle to set-valued mappings as
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follows: (Nadler [10]) Let (X, d) be a complete
metric space and let T : X → CB(X) be a set-
valued mapping such that

H(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X.Then T has a fixed point. In
1989, Mizoguchi and takahashi extended Nadler’s
result as follows: (Mizoguchi and takahashi [8])
Let (X, d) be a complete metric space and let
T : X → CB(X) be a set-valued mapping such
that

H(Tx, Ty) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X, where α : [0,+∞) → [0, 1) sat-
isfies lim supt→r+ α(t) < 1, for all r ∈ [0,+∞).
Then T has a fixed point.

Let F : (0,+∞) → R and θ : (0,+∞) →
(0,+∞) be two maps. Througout this paper let
∆ be the set of all pairs of (F, θ) satisfying the
following conditions:
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(δ1) For each strictly decreasing sequence {tn} in
(0,+∞), θ(tn) ̸→ 0.

(δ2) F is strictly increasing.

(δ3) For each sequence {αn} in (0,+∞),
limn→∞ αn = 0 if and only if
limn→∞ F (αn) = −∞.

(δ4) If tn ↓ 0 and θ(tn) ≤ F (tn)− F (tn+1) for all
n ∈ N, then Σ∞

n=1tn <∞.

For example , let θ(t) = τ , for some τ > 0
and F (t) = ln(t) + t. It is easy to see that
(F, θ) ∈ ∆ (for details see [4]). Another exam-
ple is θ(t) = −ln(α(t)), where α : [0,∞) → [0, 1)
and lim supt→r+ α(t) < 1, for all r ∈ (0,∞) and
F (t) = ln(t) ( see [4]). Recently, Amini-Harandi
introduced the following generalization of Theo-
rem 1 and the theorem of Wardowski (see War-
dowski’s [14]). (Amini Harandi [4]) Let (X, d)
be a metric space and let T : X → CB(X) be a

set-valued mapping and (F,
θ

2
) ∈ ∆ such that

θ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y)),
(1.1)

for all x, y ∈ X with Tx ̸= Ty. If T be compact
valued or F be continuous from the right, Then
T has a fixed point.

2 Main Results

Let (X, d) be a complete metric space and let
T : X → CB(X) be a set-valued mapping. It is
called that T has the approximate endpoint prop-
erty if infx∈X supy∈Tx d(x, y) = 0. In 2010, Amini
Harandi proved that if H(Tx, Ty ≤ ψ(d(x, y)),
for all x, y ∈ X, where ψ : [0,+∞) → [0,+∞)
is a mapping with some properties, then T has a
unique endpoint x ∈ X, that is, Tx = {x} if and
only if T has the approximate endpoint property
([2]). We say that T satisfies condition (UHS)
if for any x ∈ X there exists y ∈ Tx such that
H(Tx, Ty) ≥ supb∈Ty d(y, b). Also, we say that
T is θ-F -contractive if (1.1) holds for all x, y ∈ X
with Tx ̸= Ty.

Now, we state and prove the main result of
this paper. Let (X, d) be a complete metric

space and (F,
θ

2
) ∈ ∆. Let T : X → CB(X)

be a θ-F -contractive set-valued mapping satisfy-
ing condition (UHS). Then T has a unique end-
point. Let x0 ∈ X. Since T satisfies condition
(UHS), hence there exists x1 ∈ Tx0 such that
H(Tx0, Tx1) ≥ supb∈Tx1

d(x1, b). If Tx0 = Tx1,
then x1 ∈ Tx0 = Tx1 and so H({x1}, Tx1) =
supb∈Tx1

d(x1, b) ≤ H(Tx0, Tx1) = 0. Hence
Tx1 = {x1} and so x1 is an endpoint of T .
So, we may assume that Tx0 ̸= Tx1. Now
since T is θ-F -contractive, hence θ(d(x0, x1)) +
F (H(Tx0, Tx1)) ≤ F (d(x0, x1)). By contin-
uing this process, we obtain a sequence {xn}
such that xn+1 ∈ Txn, H(Txn, Txn+1) ≥
supb∈Txn+1

d(xn+1, b), Txn ̸= Txn+1 and

θ(d(xn, xn+1)) + F (H(Txn, Txn+1))
≤ F (d(xn, xn+1)),

(2.2)

for all n ∈ N. Now we have

d(xn+1, xn+2) ≤ supb∈Txn+1
d(xn+1, b)

≤ H(Txn, Txn+1),
(2.3)

for all n ∈ N. Since F is increasing and xn ̸= xn+1

(since Txn ̸= Txn+1), so

F (d(xn+1, xn+2)) < F (H(Txn, Txn+1))

+
θ(d(xn, xn+1))

2
.

(2.4)
Now,

θ(d(xn, xn+1))

2
+ F (d(xn+1, xn+2))

< F (H(Txn, Txn+1)) + θ(d(xn, xn+1))
≤ F (d(xn, xn+1)).

(2.5)
Put tn = d(xn, xn+1). Then, from (2.4) we have
θ(tn)

2
+ F (tn+1) ≤ F (tn) and so

θ(tn)

2
≤ F (tn)− F (tn+1) for all n ∈ N. (2.6)

Since θ(tn) > 0, then we have F (tn+1) < F (tn).
Since F is strictly increasing, hence tn+1 < tn and
so {tn} is a strictly decreasing sequence of posi-
tive real numbers and so converges to some r ≥ 0.
Now we show that r = 0. By (δ1) we have θ(tn) ̸→
0 and hence Σ∞

n=1θ(tn) = ∞. Now, from (2.5),

we have
1

2
Σn
i=1θ(ti) ≤ F (t1) − F (tn+1). There-

fore ∞ =
1

2
Σ∞
i=1θ(ti) ≤ F (t1)− limn→∞ F (tn+1).

Hence limn→∞ F (tn) = −∞ and so limn→∞ tn =
0. From (δ4), we have Σ∞

n=1tn < ∞. Hence
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Σ∞
n=1d(xn, xn+1) < ∞. Therefore, from the tri-

angle inequality {xn} is a Cauchy sequence in X.
Since (X, d) is complete, there exists x ∈ X such
that xn → x. Now we show that x is an endpoint
of T . To show this, we get two cases:

(i) There exists N ∈ N such that Txn ̸= Tx for
all n ≥ N .

(ii) There exists a subsequence {xni} of {xn}
such that Txni = Tx for all i ∈ N.

In the case (i), we have

θ(d(xn, x)) + F (H(Txn, Tx)) ≤ F (d(xn, x)),
(2.7)

for all n ∈ N. Now since
limn→∞ d(xn, x) = 0, hence from (δ3), we
get limn→∞ F (d(xn, x)) = −∞. From (2.6) we
result limn→∞ F (H(Txn, Tx)) = −∞ and so
limn→∞H(Txn, Tx) = 0. On the other hand,

H({xn}, Txn)

= max{d(xn, Txn), supb∈Txn
d(xn, b)}

≤ H(Txn−1, Txn).
(2.8)

Now since F is increasing, from (2.7) we obtain

θ(d(xn−1, xn)) + F (H({xn}, Txn))

≤ θ(d(xn−1, xn)) + F (H(Txn−1, Txn))
≤ F (d(xn−1, xn)).

(2.9)
Since d(xn−1, xn)) → 0, hence F (d(xn−1, xn))) →
−∞. Hence, from (2.8), F (H({xn}, Txn)) →
−∞ and so H({xn}, Txn) → 0. Now

H({x}, Tx) ≤ d(x, xn) +H({xn}, Txn)

+H(Txn, Tx) → 0.

Hence, H({x}, Tx) = 0 and so {x} = Tx. There-
fore, x is an endpoint of T .
In the case (ii),

H({x}, Tx) ≤ d(x, xni) +H({xni}, Txni)
≤ d(x, xni) +H(Txni−1, Txni).

(2.10)
But since d(xn, xn+1) → 0, from (2.2) we can
conclude that H(Txn, Txn+1) → 0. Hence
H(Txni−1, Txni) → 0. Now the right side
of inequality (2.10) tends to zero and hence

H({x},Tx)=0. So, we have shown that x is an
endpoint of T .

For the uniquness of endpoint let x, y are two
endpoints of T such that x ̸= y. Then Tx =
{x} ̸= {y} = Ty. Now we have θ(d(x, y)) +
F (H(Tx, Ty)) ≤ F (d(x, y)) and H(Tx, Ty) =
d(x, y). Hence θ(d(x, y)) ≤ 0. Which is a con-
tradiction.

Example 2.1 Let X = {0, 1, 2, ...} and define
the metric d on X by

d(x, y) =

{
0 x = y
x+ y x ̸= y.

Let T : X → CB(X) is defined by

Tx =

{
{0} x = 0
{0, 1, 2, ..., x− 1} x ̸= 0.

If Tx ̸= Ty, then x ̸= y. In the case where x, y ∈
{1, 2, ...}, then H(Tx, Ty) = x + y − 2. If x = 0
and y ∈ {1, 2, ...}, then H(Tx, Ty) = y − 1. In
any case H(Tx, Ty)− d(x, y) ≤ −1. Hence

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤ e−1.

Therefore

1 + ln(H(Tx, Ty)) +H(Tx, Ty)

≤ ln(d(x, y)) + d(x, y)).

Now put θ(t) = 1 and F (t) = ln t + t. Then

(F,
θ

2
) ∈ ∆ and F is θ-F -contractive set-valued

mapping. Now we show that T satisfies condition
(UHS). For this let x ∈ X. If x = 0 or x = 1,
then Tx = {0}. Now put y = 0. Then y ∈ Tx
and H(Tx, Ty) = 0 = supb∈Ty d(y, b). In the case
where x ∈ {2, ...}, we have Tx = {0, 1, 2, ..., x−1}
and since x ≥ 2, hence x−1 ≥ 1. Now put y = 1.
Then y ∈ Tx and Ty = {0}. Hence H(Tx, Ty) =
x− 1 ≥ 1 = supb∈Ty d(y, b). Therefore T satisfies
condition (UHS). Then by Theorem 2, T has a
unique endpoint. Here 0 is the only endpoint of
T .

In 2012, Amini-Harandi proved the following re-
sult about coupled fixed point of θ-F -contractive
mappings.

Theorem 2.1 (Amini Harandi [4]) Let (M,ρ)

be a complete metric space and let (F,
θ

2
) ∈ ∆.

let f :M ×M →M be a mapping such that

θ(ρ(x, u) + ρ(y, v)) + F (ρ(f(x, y), f(u, v))
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+ρ(f(y, x), f(v, u))) ≤ F (ρ(x, u) + ρ(y, v)),

for all x, y, u, v ∈ M , with f(x, y) ̸= f(u, v) or
f(y, x) ̸= f(v, u). Then f has a coupled fixed
point (x, y) ∈ M ×M . That is f(x, y) = x and
f(y, x) = y. In the following theorem we extend
Theorem 2.1 to set-valued mappings. Let (M,ρ)

be a complete metric space and let (F,
θ

2
) ∈ ∆.

Let h̄ : M ×M → CB(M) be a set-valued map-
ping such that

θ(ρ(x, u) + ρ(y, v)) + F (H(h̄(x, y), h̄(u, v))

+H(h̄(y, x), h̄(v, u)) ≤ F (ρ(x, u) + ρ(y, v))),
(2.11)

for all x, y, u, v ∈ M , with h̄(x, y) ̸= h̄(u, v) or
h̄(y, x) ̸= h̄(v, u). If h̄ be compact valued or F be
continuous from the right, then h̄ has a coupled
fixed point (x, y) in M ×M . That is x ∈ h̄(x, y)
and y ∈ h̄(y, x).
Let X = M × M and define the metric d on
X by d((x, y), (u, v)) = ρ(x, u) + ρ(y, v), for all
(x, y), (u, v) ∈ X. It is easy to show that (X, d)
is a complete metric space. Define T : X → X
by T (x, y) = h̄(x, y) × h̄(y, x). Using (2.11), we
shall show that

θ(d((x, y), (u, v))) + F (Hd(T (x, y), T (u, v)))

≤ F (d((x, y), (u, v)))
(2.12)

for all (x, y), (u, v) ∈ X with T (x, y) ̸= T (u, v),
where Hd is the Hausdorff metric on CB(X) with
respect to the metric d on X. At first, note that

Hd(T (x, y), T (u, v))

= Hd(h̄(x, y)× h̄(y, x), h̄(u, v)× h̄(v, u))

= max{sup(ξ1,ξ2)∈h̄(x,y)×h̄(y,x)

d((ξ1, ξ2), h̄(u, v)× h̄(v, u))

, sup(η1,η2)∈h̄(u,v)×h̄(v,u)

d((η1, η2), h̄(x, y)× h̄(y, x))}
= max{supξ1∈h̄(x,y) ρ(ξ1, h̄(u, v))
+ supξ2∈h̄(y,x) ρ(ξ2, h̄(u, v)),

supη1∈h̄(u,v) ρ(η1, h̄(x, y))

+ supη2∈h̄(v,u) ρ(η2, h̄(y, x))}
≤ H(h̄(x, y), h̄(u, v)) +H(h̄(y, x), h̄(v, u)).

(2.13)
Now since F is strictly increasing, from (2.11) and
(2.13) we have (2.12) holds. Now if h̄ be compact

valued then T is compact valued. Now all of the
conditions of Theorem 1 holds. Hence by the the-
orem T has a fixed point (x, y) in X = M ×M ,
that is, (x, y) ∈ T (x, y) = h̄(x, y)×h̄(y, x). Hence
x ∈ h̄(x, y) and y ∈ h̄(y, x). So (x, y) is a coupled
fixed point of h̄.

Definition 2.1 Let (M,ρ) be a metric space and
let h̄ :M×M → CB(M) be a set-valued mapping.
We say that h̄ satisfies condition (UHS)∗, if for
any x, y ∈ M , there exist u ∈ h̄(x, y) and v ∈
h̄(y, x) such that

max{ sup
ξ1∈h̄(x,y)

ρ(ξ1, h̄(u, v))+ sup
ξ2∈h̄(y,x)

ρ(ξ2, h̄(u, v)),

sup
η1∈h̄(u,v)

ρ(η1, h̄(x, y)) + sup
η2∈h̄(v,u)

ρ(η2, h̄(y, x))}

≥ sup
a∈h̄(u,v)

ρ(u, a) + sup
b∈h̄(v,u)

ρ(v, b). (2.14)

In following theorem we introduce and prove a re-
sult about coupled endpoints of set-valued map-
pings that satisfies condition (UHS)∗. Let
(M,ρ) be a complete metric space and let

(F,
θ

2
) ∈ ∆. Let h̄ : M × M → CB(M) be a

set-valued mapping satisfying condition (UHS)∗

such that

θ(ρ(x, u) + ρ(y, v))

+ F (H(h̄(x, y), h̄(u, v)) +H(h̄(y, x), h̄(v, u)))

≤ F (ρ(x, u) + ρ(y, v)),
(2.15)

for all x, y, u, v ∈ M with h̄(x, y) ̸= h̄(u, v) or
h̄(y, x) ̸= h̄(v, u). Then h̄ has a unique coupled
endpoint (x, y) in M ×M , that is, {x} = h̄(x, y)
and {y} = h̄(y, x). Let (X, d) and T : X →
X be as in the proof of Theorem 2. We want
to show that T has the condition (UHS). Let
(x, y) ∈ X. Then, x, y ∈ M . Since h̄ has the
condition (UHS)∗, then there exist u ∈ h̄(x, y)
and v ∈ h̄(y, x) such that (2.13) holds. From
(2.13) and (2.14), we have

Hd(T (x, y), T (u, v))
≥ supa∈h̄(u,v) ρ(u, a) + supb∈h̄(v,u) ρ(v, b)

= sup(a,b)∈h̄(u,v)×h̄(v,u) d((u, v), (a, b))

= sup(a,b)∈T (u,v) d((u, v), (a, b)).

(2.16)
Now since (u, v) ∈ T (x, y) and (2.16) holds,
hence T has condition (UHS). From (2.15)
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and as in the proof of Theorem (2), we have
θ(d((x, y), (u, v))) + F (Hd(T (x, y), T (u, v)))

≤ F (d((x, y), (u, v))),
for all (x, y), (u, v) ∈ X with T (x, y) ̸= T (u, v).
Hence by Theorem 2, we can say that T
has a unique end point (x,y) in X. That is
{(x, y)} = T (x, y). Hence {x} = h̄(x, y) and
{y} = h̄(y, x).

Example 2.2 Let M = [0,∞) and define the
metric ρ on X by ρ(x, y) = |x− y|. Let h̄ : M ×

M → CB(M) is defined by h̄(x, y) = [0,
|x− y|

4
].

Then we have
H(h̄(x, y), h̄(u, v)) +H(h̄(y, x), h̄(v, u))

= 2(
|x− y|

4
− |u− v|

4
)

≤ 1

2
(|x− u|+|y − v|) = 1

2
(ρ(x, u) + ρ(y, v)),

for all x, y, u, v ∈M . Then we will have

ln 2 + ln(H(h̄(x, y), h̄(u, v)) +H(h̄(y, x), h̄(v, u)))

≤ ln(ρ(x, u) + ρ(y, v)),

for all x, y, u, v ∈ M with h̄(x, y) ̸= h̄(u, v) or
h̄(y, x) ̸= h̄(v, u). If we put θ(t) = ln 2 and
F (t) = ln t, then (2.15) holds. Also we show
that h̄ satisfies condition (UHS)∗. To see this,
let x, y ∈ M . Put u = v = 0, then obviously u ∈
h̄(x, y), v ∈ h̄(y, x) and h̄(u, v) = h̄(v, u) = {0}.
Hence supa∈h̄(u,v) ρ(u, a) + supb∈h̄(v,u) ρ(v, b) = 0.
So the inequality (2.14) holds. Now we have
shown that h̄ has the condition (UHS)∗. Now by
Theorem 2 we can say that h̄ has a unique cou-
pled endpoint (x, y) in M ×M . Here (0, 0) is the
only endpoint of h̄.

Example 2.3 Let M = [0,∞) and define the
metric ρ on X by ρ(x, y) = |x − y|. Define

h̄ :M ×M → CB(M) by h̄(x, y) = [0,
r

2
(x+ y)],

where r < 1. Then we have
H(h̄(x, y), h̄(u, v)) +H(h̄(y, x), h̄(v, u))

= 2|r
2
(x+ y)− r

2
(u+ v)|

≤ r(|x− u|+|y − v|) = r(ρ(x, u) + ρ(y, v)),

for all x, y, u, v ∈M . Then we will have

− ln r+ln(H(h̄(x, y), h̄(u, v))+H(h̄(y, x), h̄(v, u)))

≤ ln(ρ(x, u) + ρ(y, v)),

for all x, y, u, v ∈ M with h̄(x, y) ̸= h̄(u, v) or
h̄(y, x) ̸= h̄(v, u). If we put θ(t) = − ln r and
F (t) = ln t, then (2.15) holds. It is easy to show
that h̄ satisfies condition (UHS)∗. Now by The-
orem 2 we can say that h̄ has a unique coupled
endpoint (x, y) in M ×M . Here (0, 0) is the only
endpoint of h̄.

3 Conclusion

In this research, existence of endpoint, coupled
fixed point and coupled endpoint are proved for
θ-F -contractive set-valued mappings. For fur-
ther research, existence of endpoint, coupled fixed
point and coupled endpoint are recommended for
θ-F -quasicontractive set-valued mappings.

Acknowledgement

This study was supported by Marand Branch, Is-
lamic Azad University, Marand, Iran.

4 Conclusion

In this paper, we have presented a new approach
for ranking of fuzzy numbers. First, we present a
new method for ranking fuzzy numbers based on
the γ-cuts, the belief features and the signal/noise
ratios of fuzzy numbers. The proposed method
calculates the signal/noise ratio of each γ-cut of
a fuzzy number to evaluate the quantity and the
quality of a fuzzy number, where the signal and
the noise are defined as the middle-point and the
spread of each γ-cut of a fuzzy number, respec-
tively. We use the value of a as the weight of the
signal/noise ratio of each γ-cut of a fuzzy num-
ber to calculate the ranking index of each fuzzy
number. The proposed fuzzy ranking method can
rank any kinds of fuzzy numbers with different
kinds of membership functions.
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