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Abstract

In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic
artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully
developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important
factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a appropriate
coordinate transformation and closed form solutions are discovered. The Sisko non-Newtonian fluid
model is used for discribing blood rheology. The Navier-stokes equations of momentom containing
pulastic pressure gradient. The resulting explicit of the governing nonlinear equations have been
obtained numerically with the help of the finite differece scheme and Matlab program. The key
dynamic parametrs similar resistance impedance, velocity profiles and the volumetric flow rate are
studied. The influence of non-Newtonian rheological properties of unsteady blood flow and stenosis
severity are found and computer modeling and simulation shown graphically.

Keywords : Navier-Stokes equation; Finite difference method; Time-dependent Stenosis; Sisko fluid.

—————————————————————————————————–

1 Introduction

R
ecently, since development of many cardio-
vascular diseases in the world, the study of

blood flow is important. one of this diseases is
Atherosclereis that is the problem artery in car-
diovascular. Atherosclerois occur when choles-
terols and fats growth in the artery and the
artery becomes stenotic [1, 2, 3]. A number
of authors have been studied the blood flow
in vessel. Blood flow in the stenotic vessel is
assumed to be newtonian in most articles [4]-
[7]. Most experimental and numerical simulation
have been done by them [8]-[12]. They agreed
that blood have non-Newtonian property for ex-
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ample at high shear rate exhibits of blood is
shear-thinning and at low shear rate is viscoelas-
ticity. Singh and Shah [13] discussed the effect
of the shape of stenosis on non-Newtonian fluid.
They used Power-low fluid model and realized
the wall shear strees change with change steno-
sis size, shape and length. Mandel [14] stud-
ied the non-newtonian and axisymmetric blood
flow in stenotic vessel. He used the generalised
Power-law model for discribe the rheology behav-
ior of blood and solved them with finite difference
scheame. Mandel et al [15] developed a mathe-
matical model for this study [14] and re-examined
the study for the shear-thickening and shear-
thining property of the two-dimensional blood
flow and pointed out the effect of body accel-
eration on non-newtonian blood flow. Haghighi
and shahbaziasl [16] studied on the problem of
a unsteady and two-dimintional flow of blood
in the stenotic vessel. They numerically solved
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the nonlinear equations by using the explicit fi-
nite difference. The geometry of the flexible ves-
sel considered to be non-symmetric. Haghighi
et al [17] also observed a two-dimintional, ax-
isymmetric and fully developed blood flow in the
stenotic vessel. The explicit momentom contin-
uty equation for the unsteady flow solved by ap-
pling numerically method. The geometry of the
deformable wall vessel considered to be tapered
with overlapping stenosis. Branes et al [18] dis-
cussed that in the medium shear rate Power-low
model fluid is a appropriate but it is not appro-
priate for high and low shear rate. In this papear,
we have encompassed the Sisko model that is a
generalized Power-low model [19] and pointed out
non-linear flow of blood in a elastic vessel con-
sidering the time-dependent stenotic. Sisko fluid
model appropriate for medium and high shear
rate and it can discribe many property Newto-
nian and non-Newtonian fluid flow by considered
material parametrs[19, 20]. Also, we have encom-
passed pressure gradient in the partial differential
equation. By appling finite difference manner,
this nonlinear equations have been solved numer-
ically. In the last section, result have been shown
by graphical representations.

2 Mathematical formulation
and analysis

2.1 geometry of the stenosis

Bood flow encompassed to be non-Newtonian
that characterised by Sisko fluid. Blood flow
have been analysied by appling cylindrical
polar coordinate system (r, θ, z). The schematic
diagram of this research is given in Fig. 1. The
geometry elastic arterial for the stenosis under
assumeation is written mathematically [21]:

R(z, t) =


[r0 − (

τm
2
){1 + cos(

2π

L1
(z − d

−L1

2
))}]a1(t) d ≤ z ≤ d+ L1

r0a1(t) otherwise

(2.1)

Where R(z, t) shows the radius of the elastic ar-
terial in the stenosed region. L the length of
the elastic arterial assumed. τm the maximum
height of the stenosis, d the location of the steno-
sis. a1(t) = 1+bcos(ωt−ϕ) [17, 20] is time-variant

formula where ω = 2πfp is angular frequency, b
being the amplitude parameter and ϕ is phase
angle.

2.2 Governing equations

The laminar and fully development blood flow is
considered in a stenotic elastic arterial assumed.
Let us pointed out coordinate system (r, θ, z) in
the governing equations. Give velocity field for
this study is

u = [u(r, z, t), 0, w(r, z, t)]

Equation of continiuity [20]

∂u

∂r
+

u

r
+

∂w

∂z
= 0 (2.2)

Nonlinear equation of axial and radial momentum
[20]

ρ(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
) =

−∂p

∂r
− (

1

r

∂

∂r
(rTrr) +

∂

∂z
(Trz)) (2.3)

ρ(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
) =

− ∂p

∂z
− (

1

r

∂

∂r
(rTrz) +

∂

∂z
(Tzz)) (2.4)

We can writte the relationship between the shear
stress and the shear rate as follows:

Trr = −2[ā+ b̄{|[(∂u
∂r

)2 + (
u

r
)2

+ (
∂w

∂z
)2 + (

∂u

∂z
+

∂w

∂r
)2]

1
2 |n−1}](∂u

∂r
) (2.5)

Tzz = −2[ā+ b̄{|[(∂u
∂r

)2 + (
u

r
)2 + (

∂w

∂z
)2

+ (
∂u

∂z
+

∂w

∂r
)2]

1
2 |n−1}](∂w

∂z
) (2.6)

Trz = −[ā+ b̄{|[(∂u
∂r

)2 + (
u

r
)2 + (

∂w

∂z
)2

+ (
∂u

∂z
+

∂w

∂r
)2]

1
2 |n−1}](∂w

∂r
+

∂u

∂z
) (2.7)

Here T = −pI+S is cauchy stress tensor in Sisko
model, where p is the pressure, I is the identity
tensor and S = [ā + b̄(|

√
π|)n−1]A1 is the extra

stress tensor [19, 20, 22]. In which ā and b̄ are the
asymptotic value of viscosity at very high shear
rates and the consistency the constant parametr
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respectively. It shoud be noted that in this study
the Sisko fluid is the generalized Power low by
considered ā = 0. w(r, z, t) and u(r, z, t) are the
axial and the radial velocity respectively, ρ is the
density .

The pressure gradient
∂p

∂z
had appearid in Eq 2.4,

is written this forme:

−∂p

∂z
= A0 +A1cosωt

[17, 20, 22]-[25].
Where A0 is the constant amplitude of the pres-
sure gradient, A1 is the amplitude of the pulsatile
component giving rise to systolic and diastolic
pressure and ωb = 2πfp, where fp is being the
pulse frequency.

The boundary conditions, the shear stres and
initial conditions can be written in mathematical
form [20, 25]:

on r = 0 : u(r, z, t) = 0,
∂w(r, z, t)

∂r
= 0

and Trz = 0, (2.8)

on r = R(z, t) : u(r, z, t) =
∂R

∂t

w(r, z, t) = 0, (2.9)

u(r, z, 0) = 0, w(r, z, 0) = 0, (2.10)

Figure 1: Schematic diagram of a stenosed elastic
artery

3 Radial coordinate transfor-
mation

We appliyed a radial coordinate transformation

ξ =
r

R(z, t)
[16, 17, 26]-[28]. The radial coordi-

nate transformatione immobilized the elastic ves-
sel wall, so equation 2.3 and 2.4 the boundary

Figure 2: The axial velocity profiles at (z =
28, t = 0.45, tm = 0.4a, d = 20mm, l0 = 16mm)

Figure 3: The radial velocity profiles at different
time (z = 28, tm = 0.4a, d = 20mm, l0 = 16mm)

and initial conditions become:

∂w

∂t
= { ξ

R

∂R

∂t
− u

R
+

ξ

R

∂R

∂z
w}∂w

∂ξ

−1

ρ

∂p

∂z
− w

∂w

∂z
− 1

ρ
{ 1

ξR
Tξz +

1

R

∂Tξz

∂ξ

− ∂Tzz

∂z
+

ξ

R

∂R

∂z

∂Tzz

∂ξ
} (3.11)

1

R

∂u

∂ξ
+

u

ξR
+

∂w

∂z
− ξ

R

∂R

∂z

∂w

∂ξ
= 0 (3.12)

Tξz = −[ā+ b̄{|[( 1
R

∂u

∂ξ
)2 + (

u

ξR
)2 + (

∂w

∂z

− ξ

R

∂R

∂z

∂w

∂ξ
)2 +(

∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
+

1

R

∂w

∂ξ
)]

1

2 |n−1}]

× (
∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
+

1

R

∂w

∂ξ
) (3.13)

Tzz = −2[ā+ b̄{|[( 1
R

∂u

∂ξ
)2 + (

u

ξR
)2 + (

∂w

∂z

− ξ

R

∂R

∂z

∂w

∂ξ
)2 +(

∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
+

1

R

∂w

∂ξ
)]

1

2 |n−1}]

× (
∂w

∂z
− ξ

R

∂R

∂z

∂w

∂ξ
) (3.14)

Tξξ = −2[ā+ b̄{|[( 1
R

∂u

∂ξ
)2 + (

u

ξR
)2 + (

∂w

∂z
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Figure 4: The radial velocity profiles for different
locations through artery (t = 0.45, tm = 0.4a, d =
20mm, l0 = 16mm)

Figure 5: 3-dimentian the volumetric flow rate in
the stenosed artery(z = 28, t = 1, tm = 0.4a, d =
20mm, l0 = 16mm)

− ξ

R

∂R

∂z

∂w

∂ξ
)2 +(

∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
+

1

R

∂w

∂ξ
)]

1

2 |n−1}]

× (
1

R

∂u

∂ξ
) (3.15)

on ξ = 0 : u(ξ, z, t) = 0,
∂w(ξ, z, t)

∂ξ
= 0

and Tξz = 0, (3.16)

on ξ = R(z) : u(ξ, z, t) =
∂R

∂t

w(ξ, z, t) = 0, (3.17)

u(ξ, z, 0) = 0, w(ξ, z, 0) = 0, (3.18)

4 The velocity profile

4.1 The radial velocity component

Multiplying Eq 2.2 by ξR and integrating with
respect to ξ from 0 to ξ. we can obtained the
explicit expression for u(ξ, z, t) .

u(ξ, z, t) = ξ
∂R

∂z
w − R

ξ

∫ ξ

0
ξ
∂w

∂z
dξ

Figure 6: The volumetric flow rateat different
time (z = 28, tm = 0.4a, d = 20mm, l0 = 16mm)

Figure 7: The volumetric flow rate at different
stenosis size (z = 28, t = 0.45, d = 20mm, l0 =
16mm)

− 2

ξ

∂R

∂z

∫ ξ

0
ξwdξ. (4.19)

by using the boundary cinditions for ξ = 1 Eq
4.19 becomes as follow:

−
∫ 1

0
ξ
∂w

∂z
dξ =

∫ 1

0
ξ[

2

R

∂R

∂z
w

+
1

R

∂R

∂t
f(ξ)]dξ (4.20)

We can considered f(ξ) of the form
f(ξ) = −4(ξ2 − 1) satisfying

∫ 1
0 ξf(ξ)dξ = 1 By

integration of both sides of 4.20 we arrive :

∂w

∂z
− 2

R

∂R

∂z
w +

4

R
(ξ2 − 1)

∂R

∂t
(4.21)

Introducing 4.21 in 4.19 we find:

u(ξ, z, t) = ξ[
∂R

∂z
w +

∂R

∂t
(2− ξ2)] (4.22)

4.2 The axial velocity component

We have pointed out the finite difference method
for discretization of governing nonlinear equation
by making use central difference approximations
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Figure 8: 3-dimentian the resistance impedance
along the stenosed artery (z = 28, t = 1, tm =
0.4a, d = 20mm, l0 = 16mm)

Figure 9: The resistance impedance at different
time (z = 28, tm = 0.4a, d = 20mm, l0 = 16mm)

for all the spatial derivatives and forward differ-
ence approximations for all the time derivatives
in the following form:

∂w

∂ξ
=

wk
i,j+1 − wk

i,j−1

2∆ξ
+ o(h2) (4.23)

∂w

∂z
=

wk
i+1,j − wk

i−1,j

2∆z
+ o(h2) (4.24)

∂w

∂t
=

wk+1
i,j − wk

i,j

∆t
+ o(h) (4.25)

we found discretized expression for the Tzz and
Txz .

∂Tzz

∂ξ
=

T k
i,j+1 − T k

i,j−1

2∆ξ
,

∂Tzz

∂z
=

T k
i+1,j − T k

i−1,j

2∆z
,

∂Txz

∂ξ
=

T k
i,j+1 − T k

i,j−1

2∆ξ
(4.26)

Here,we define

ξj = (j−1)∆ξ; j = 1, 2, ..., N+1 where ξN+1 = 1

zj = (i− 1)∆z; i = 1, 2, ..., N + 1

tk = (k − 1)∆t; k = 1, 2, ..., N + 1

Figure 10: The resistance impedance at different
stenosis size (z = 28, t = 0.45, d = 20mm, l0 =
16mm)

By appling above discritization method Eqs
(3.11-3.15) have been transformed to the follow-
ing:

wk+1
i,j = wk

i,j +∆t[−1

ρ
(
∂p

∂z
)k+1 + { ξj

Rk
i

(
∂R

∂t
)ki

−
uki,j

Rk
i

+
ξj

Rk
i

(
∂R

∂z
)kiw

k
i,j} × (

∂w

∂ξ
)ki,j − wk

i,j(
∂w

∂z
)ki,j

−1

ρ
{ 1

ξjRk
i

(Tξz)
k
i,j +

1

Rk
i

[(Tξz)fξ]
k
i,j − [(Tzz)fz]

k
i,j

+
ξj

Rk
i

[(Tzz)fξ]
k
i,j}] (4.27)

(Tξz)
k
i,j = −[ā+b̄{|[( 1

Rk
i

(
∂u

∂ξ
)ki,j)

2+(
uki,j

ξjRk
i

)2+((
∂w

∂z
)ki,j

− ξj

Rk
i

(
∂R

∂z
)ki,j(

∂w

∂ξ
)ki,j)

2 + ((
∂u

∂z
)ki,j −

ξj

Rk
i

(
∂R

∂z
)ki,j

(
∂u

∂ξ
)ki,j +

1

Rk
i

(
∂w

∂ξ
)ki,j)]

1

2 |n−1}]× [((
∂u

∂z
)ki,j

− ξj

Rk
i

(
∂R

∂z
)ki,j(

∂u

∂ξ
)ki,j +

1

Rk
i

(
∂w

∂ξ
)ki,j)] (4.28)

(Tzz)
k
i,j = −2[ā+ b̄{|[( 1

Rk
i

(
∂u

∂ξ
)ki,j)

2 + (
uki,j

ξjRk
i

)2

+((
∂w

∂z
)ki,j −

ξj

Rk
i

(
∂R

∂z
)ki,j(

∂w

∂ξ
)ki,j)

2 + ((
∂u

∂z
)ki,j

(− ξj

Rk
i

(
∂R

∂z
)ki,j

∂u

∂ξ
)ki,j +

1

Rk
i

(
∂w

∂ξ
)ki,j)]

1

2 |n−1}]

× ((
∂w

∂z
)ki,j −

ξj

Rk
i

(
∂R

∂z
)ki,j(

∂w

∂ξ
)ki,j) (4.29)

(Tξξ)
k
i,j = −2[ā+ b̄{|[( 1

Rk
i

(
∂u

∂ξ
)ki,j)

2 + (
uki,j

ξjRk
i

)2
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+((
∂w

∂z
)ki,j −

ξj

Rk
i

(
∂R

∂z
)ki,j(

∂w

∂ξ
)ki,j)

2 + ((
∂u

∂z
)ki,j

− ξj

Rk
i

(
∂R

∂z
)ki,j(

∂u

∂ξ
)ki,j +

1

Rk
i

(
∂w

∂ξ
)ki,j)]

1

2 |n−1}]

× (
1

Rk
i

(
∂u

∂ξ
)ki,j) (4.30)

The discretized boundary condition are given
as:

on ξ = 0, uki,j = 0, wk
i,1 = wk

i,2,

(Tξz)
k
i,1 = 0 (4.31)

on ξ = 1, wk
i,N+1 = 0, uki,1 = (

∂R

∂t
)ki (4.32)

u1i,j = 0, wk
i,j = 0 (4.33)

The volumetric flow rate Q and the resistiv
impedance Λ can be obtained by:

Qk
i = 2π(Rk

i )
2

∫ 1

0
ξj(w)

k
i,jdξj (4.34)

Λk
i =

|L(∂p
∂z

)k|

Qk
i

(4.35)

5 Numerical results and discus-
sion

For the get of numerical simulation of this
study the following parametr values are used:
[20, 25, 28]
a = 0.1cm, n = 0639, ρ = 1.06gcm3, b = 0.1, l =
45, A0 = 10gcm−2s−2

A1 = 0.2A0, fb = 1.2Hz, τm = 0.4a, a0 =
10gcm−2s−2, fb = 1.2Hz,∆t = 0.0001

By creating mesh 450×40 and by appling Mat-
lab program, exhabit rheology non-Newtonian
of blood and geometry parametrs are abtained
through 2-10 figs and discussed.
As noted in section 2 the Power-low model is a
special case of Sisko model so, the axial velocity
profile of this study in the maximum stenotic
positions z = 28mm, t = 0.3s compared with
the result given in Ref [29]. It is seen that the
outcome are found to be in well agreement.
The results for the radial velocity curves for
various time are given in Fig. 3. Due, the
pressure gradient be maded by the heart, all
curves visualized. It is seen that the radial

velocity have negative values during the diastolic
phase from 0.5s to 0.7s. But, during the systolic
phase from 0.1s to 0.3s ,the profiles give positive
values.

The results of the radial velocity at 5 distinct
place at t = 0.45, τm = 0.4a shown in Fig.
4. z = 45mm, z = 15mm is a non-stenotic
region, so, curves of them have the same form.
Also, the radial velocity profiles at z = 28mm
is shown that is the center of the stenosis
location. Fig. 4 shows that all curves are
similarin behavior except the curve for z = 34
. Because the z = 34 is the end of stenosis region.

Fig. 5 shows 3-dimentian the volumetric
flow rate in the stenosed elastic artery in finite
time(t=1) at τm = 0.4a. It is seen that the
volumetric flow rate is increasing with increas
the time.

The results for the volumetric flow rate for
various time are gven in Fig. 6. It is seen
that the volumetric flow rate increase during
the diastolic phase from 0.5s to 0.7s. while the
volumetric flow rate decrease during the systolic
phase from 0.1 to 0.3s.

Figure 7 shows the influence of stenosis
severity on the volumetric flow rate at the same
specific location of z = 28mm. According to
this figure the volumetric flow rate decreses by
increasing the size of the stenosis.

Fig. 8 shows 3-dimentian the resistance
impedance along the stenosed elastic artery in
finit time (t=1) at τm = 0.4a. It is seen that the
resistance impedance is increasing with decresing
the time.

The results for the resistance impedance for
various time are given in Fig. 9. It is seen
that the resistance impedance decrease during
the diastolic phase from 0.5s to 0.7s. while the
resistance impedance rate increase during the
systolic phase from 0.1 to 0.3s.
Figure 10 shows the effect of stenosis severity
on the resistance impedance at the same specific
location of z = 28mm. According to this figure
the resistance impedance increase by decreasing
the severity of the stenosis.
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6 conclusions

In this research the unsteady pulsatile flow of
blood in a time-dependent stenotic elastic artery
is studied. The important factor of this study is
that the geometry of the elastic arterial to be have
time-dependen stenotic. For discribe rheology be-
havior of blood flow we used Sisko model. We
pointed out the explicit finite difference manner
for solving equation because of it found be good
effective for numerically solving. It is recorded
that the parametr such as volumetric flow, ve-
locity profile and resistance impedance are anal-
ysed and shown graphically. The radial velocity
and resistance imedance decreased during the di-
astolic phase but the volumetric flow rate increase
during the diastolic phase.
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