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Abstract 

The polygroup theory is a natural generalization of the group theory. In a group the 

composition of two elements is an element, while in a polygroup the composition of two 

elements is a set. Polygroups have been applied in many area, such as geometry, lattices, 

combinatorics, and color scheme. Also, Crossed modules and its applications play very 

important roles in category theory, homology and cohomology of groups, homotopy theory, 

algebra, k-theory, etc. In this paper, we have definition of a polyfunctor and transformation 

for polygroups. Also, we introduce the concept of the symmetric crossed module to the 

symmetric crossed polymodules. Our results extend the classical results of crossed modules 

to crossed polymodules of polygroups. 

 

 
Keywords: Group; Polygroup; Crossed Module; Crossed Polymodule; Symmetric Crossed 

Polymodule.

 

 

 

 

 

 

  

 
* Corresponding author: Email: Mdehghanizadeh@tvu.ac.ir 

 

http://sanad.iau.ir/journal/ijim/
mailto:Mdehghanizadeh@tvu.ac.ir


IJDEA Vol.4, No.2, (2016).737-749  

M. A. Dehghanizadeh, et al./ IJIM Vol.16, No.1, (2024), 93-108 

 

94 

 

1. Introduction 

The Yang-Baxter equation plays a fundamental role in various areas of mathematics. In fact, 

this equation plays a fundamental role in such apparently distant fields as statistical 

mechanics, particle physics, quantum field theory and quantum groups. Its solutions, called 

braidings, are built, among others, 

1. from Yetter-Drinfel’d modules over a Hopf algebra, 

2. from self-distributive structures, 

3. from crossed modules of groups. 

Also, Crossed modules and its applications play very important roles in category theory, 

homology and cohomology of groups, homotopy theory, algebra, k-theory etc. Therefore, 

study crossed modules and it’s all kinds automorphisms at least through this is very important. 

This is in fact one of the motivations of recent half-century studies in this field. Crossed 

modules was defined by Whitehead in [1]. So many mathematicians work on this subject. 

There are many application of crossed module such as Actor crossed module, Pullback 

crossed module, Pushout  crossed module and Induced crossed module, etc [2,3]. Nilpotent, 

Solvable, n-Complete and Representations of crossed modules were studied by 

Dehghanizadeh and Davvaz [4,5,6,7,8]. Polygroups were studied by Comer [9], also see in 

[10]. Specially, Comer and Davvaz developed the  algebraic theory for polygroups. Alp and 

Davvaz in [11] introduced the  notion of crossed polymodule of polygroups and they give some 

of its properties. Also, they introduced new important classes by the fundamental relations. 

Alp and Davvaz, introduce the concept of pullback and pushout crossed polymodules and 

describe the construction of pullback and pushout crossed polymodules. Arvasi, Porter and 

Onarh in [12,13] introduce the notion of an (co)-induced 2-crossed module, which extends the 

notion of an (co)-induced crossed module which were defined by Brown, Gilbert, Loday and 

Mosa [14,15,16]. The notion of crossed polysquares was introduced by Dehghanizadeh, 

Davvaz and Alp in [17]. They introduce the notion of crossed polysquare of polygroups and 

gave of its propertiesa Also, we extend the classical results of crossed squares to crossed 

polysquares [18].

 

2. Polygroups and crossed polymodules 

The polygroup theory is a natural generalization of the group theory. In a group the 

composition of two elements is an element, while in a polygroup the composition of two 

elements is a set. Polygroups have been applied in many areas, such as geometry, lattices, 

combinatorics, and color scheme. There exists a rich bibliography: publications appeared with 

in 2012 can be found in "Polygroup Theory and Related Systems" by Davvaz [10]. This book 

containsthe principle definitions endowed with examples and the basic results of the theory. 

Applications of hypergroups appear in special subclasses like polygroups that they were 

studied by Comer [9], also see in [10,19]. Specially, Comer and Davvaz developed the 

algebraic theory for polygroups. A polygroup is a completely regular, reversible in itself 

multigroup. According [9], a polygroup is a multi-valued system 1, ,P −=  , with e P , 

1: , : ( )P P P P P− →  → , where the following axioms hold for all , ,x y z  in P : 
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1. ( ) ( ),x y z x y z=   

2. ,e x x e x= =   

3. x y z  implies 
1y x z−  and 

1 .z y x−  

In this definition, ( )P
 is the set of all the non-empty subsets of P , and if x P  and ,A B  

are two non-empty subsets of P , then 

a A
b B

A x a b



= , and  A x A x= ,  x A x A= . 

The following elementary facts about polygroups follow easily from the axioms: 

1 1e x x x x− − , 
1e e− =  and ( )

1
1x x

−
− = . 

If K  is a non-empty subset of P , then K  is called a subpolygroup of P  if e K  and 
1, , ,K e −   is a polygroup. The subpolygroup N  of P  is said to be normal in P  if 

1a N a N−  , for every a P . There are several kinds of homomorphisms between 

polygroups [10]. In this paper, we apply only the notion of strong homomorphisms. Let 
1, , ,P e −   and 

1, , ,P e −   be two polygroups. A mapping   from P  into P  is said to 

be a strong homomorphism if ( )e e =  and ( ) ( ) ( )a b a b  =   for all ,a b P . A strong 

homomorphism   is said to be an isomorphism if   is one to one and onto. 

Definition 2.1. Let 
1, , ,P e −=   be a polygroup and   be a non-empty set. A map 

*: ( )P →  , where ( , ) : pp  =  is called a (left) polygroupaction on   if the 

following axioms hold: 

1. ,e =  

2. ( )h p h p = , where 
p p

a A

A a


=  and 
B b

b B

 


=  for all A  and B P . 

3. ,p






=   

4. for all ,p P  
1p pa b b a

−

   . 

Definition 2.2. [11] A crossed polymodule ( , , , )C P =   consists of polygroups 

1,*, ,C e −   and 
1, ,, eP −   together with a strong homomorphism : C P →  and a (left) 

action 
*: ( )P C C  →  on C , such that the following conditions hold: 

1. ( ) 1( )p c p c p− =   for all c C  and p P , 

2. ( ) 1c c c c c −=    for all ,c c C . 

Example 2.1. Every polygroup P  has its trivial subpolygroup 1 consisting of just the identity 

element of P . 

This subpolygroup is always a normal subpolygroups. Therefore we have crossed polymodule 

( ) ( )1 11, 1, , ,idcP P c= | .  
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Example 2.2. Every polygroup P  contains the whole polygroup P  as a normal 

subpolygroup. Therefore, we have crossed polymodule ( ) ( ), , , ,idPP P P P c= . 

Example 2.3. [11] A conjugation crossed polymodule is an inclusion of a normal 

subpolygroup N  of P , with action given by conjugation. In particular, for any polygroup P  

the identity map id :P P P→  is a crossed polymodule with the action of P  on itself by 

conjugation. Indeed, there are two canonical ways in which a polygroup P  may be regarded 

as a crossed polymodule: via the identity map or the inclusion of the trivial subpolygroup. 

Example 2.4. [11] If C  is a P -polymodule, then there is a well-defined action   of P  on 

C . This together with the zero homomorphism yields a crossed polymodule ( ), , ,C P  . 

Example 2.5. Let P  be a polygroup and N PΔ  be a normal subpolygroup. Consider the 

polygroup morphism 

: Aut( )

( )

N

N p

p N

C P N

p c n n

→

→  →  

Then we have a crossed polymodule 

( ) ( ), , , ,id .N P NN P N P C= |  

Definition 2.3. Let ( ), , ,C P =   and ( ), , ,C P     =   be two crossed polymodules. 

A crossed polymodule morphism ( ), :f   =  →  is a tuple of strong homomorphism, 

such that the diagram 

commutes, and ( ) ( ) ' ( )p c p c   =   for all ,p P  c C . 

 

3. Categories and polyfunctors 

   In this section we introduce the concept of categories and polyfunctors in the polygroups. 

Let , ,  and  be categories of polygroups, so a category is given by 

(Mor( ),Ob( ),( , , ), )s i t= •P  

 where Mor( )  is the set of morphisms, Ob( )  is the set of objects, (polygroups). 

: Mor( ) Ob( )s →  is the source map, : Ob( ) Mor( )i →  is the map sending an 

object to its identity morphism, : Mor( ) Ob( )t →  is the target map, and ( )•  is the 

composition of morphisms. 
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If 
1 2 3

u vP P P⎯⎯→ ⎯⎯→  is in , then we implicitly suppose given objects 1 2P P,  and 

3 Ob( )P   and morphisms Mor( )u v,  with 1 2us P ut P= =,  and 2 3.vs P vf P= =,  

Definition 3.1. A morphism 
1 2

uP P⎯⎯→  from Mor( )  is called a strong isomorphism, If 

there exists a morphism Mor( )v  such that 
1

idPu v• = and 
2

idPv u• =  hold, we write 

1v u−= , and we call 
1u−
 the inverse of u . 

If 1 2 Ob( )P P , , then we write  1 2 1 2( ) Mor( )P P a as P at P=  = =, | ,  for the set 

morphisms from 1P  to 2P . 

Definition 3.2. A polyfunctor from  to  is given by Mor( ) Ob( )): ( , , where 

Ob( ) : Ob( ) Ob( )→  and Mor( ) : Mor( ) Mor( )→ . A polyfunctor must 

satisfy these conditions: 

1 1

Ob( ) Mor( ) ,

Ob( ) Mor( ) ,

Mor( ) Ob( ) ,

us u s

ut u t

Pi P i

=

=

=

 

for Mor( )u , 1 Ob( )P  ,   

( )Mor( ) Mor( ) Mor( ),u v u v• = •  

and for 1 2 3

u vP P P⎯⎯→ ⎯⎯→  in . 

Also, for 1 Ob( )P  , we write 1 1Ob( ) Ob( )P P=  , and for Mor( ),u   

Mor( ) Mor( )u u=  . 

If : →  and →:  are polyfunctors, then we write ( ) : →  for the 

composite of  and , also if unambiguous, we write =   for brevity. 

Definition 3.3. A polyfunctor →:  is called an isopolyfunctor from  to , if 

there exists a polyfunctor →: such that id=  and id= , and we write 

1− = . Also, if =  then an isopolyfunctor →: is called an autopolyfunctor. 

We denote the set of autopolyfunctors from  to  by Aut( ) , that is 

 is an autopolyfunctor .→| : ,  

Also, if Aut( ) , we write ( ) ( )⎯⎯→ = ⎯⎯→
∼

 for Aut( ), , and 

1−= . 

Let →:  is a polyfunctor, '  and ' , also, suppose given a polyfunctor 

' ' '→: such that the following diagram commutes: 
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In other words, for ' Ob( ')P   and Mor( ')u , we have ' ' 'P P= and 'u u=

, then we write 
'

' ' : ' '= →| . 

Also, if '  is a subcategory of , then we write ', : 'J → , for embedding polyfunctor 

from '  to . We often abbreviate ', : 'J J= → . In the following, we write  ,

for the category of polyfunctors from  to . The set of objects  ( )Ob , of this 

category consists of the polyfuncrors from to . The set of morphisms  ( )Mor ,  

consists of the transformations between such polyfunctors. 

Definition 3.4. Let  ( ), Ob ,F G be polyfunctors from to . A transformation 

( )  ( )Mor ,aF G⎯⎯→  from F to G is a tuple of morphisms ( )1

1
1 1 Ob( )

Pa

P
PF PG


⎯⎯→  

with the property that the following diagram is commutative for 1 2 Mor( )uP P⎯⎯→   

Certainly, for more explanation, sometimes we write 

for the transformation from F to G . 

Definition 3.5. If  ( )( ') Mor ,aF F⎯⎯→   and  ( )( ') Mor ,bG G⎯⎯→  are 

transformations, then their horizontal composite, is defined by 

( )1

1

( )

1 1 Ob( )
' '

( ) ( ' ) ( ) ( ')

P a b

P
a b PFG PF G

aG F b Fb aG




 = ⎯⎯⎯→

• = •
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Pay attention for 1 Ob( )P  , the following diagram is commutative: 

Proposition 3.1. Horizontal composition   is associative. 

Proof. If 

 ( )

 ( )

' Mor , ,

' Mor , ,

a

b

F F

G G

⎯⎯→ 

⎯⎯→ 
 

and  ( )( ') Mor ,cH H⎯⎯→  , then 

( ) ( ) ( ' ')

( ' ) ( ' ')

( ) ( ' ' ' )

( ) '( ' )

( ) '( )

( ).

a b c a b H F G c

aG F b H F G c

aGH F bH F G c

aGH F bH G c

a GH F c b

a b c

  =  •

= • •

= • •

= • •

= • 

=  

 

Definition 3.6.  ( )( ) Mor ,aF G⎯⎯→  is an isotransformation, if for 1 Mor( )Pa  

is an isomorphism, for 1 Ob( )P  . 

Definition 3.7. If  ( )( '), ( ' '') Mor ,a bF F F F⎯⎯→ ⎯⎯→  are transformations, then 

thier vertical composite is 

( )1 1

1

( )( )

1 1 Ob( )
''Pa Pb

P
a b PF PF


 = ⎯⎯⎯⎯→  

Proposition 3.2. Vertical composition •  is associative.  

Proof. If ( )aE F⎯⎯→ , ( )bF G⎯⎯→ , and ( )cG H⎯⎯→ are in  ( )Mor , ,  then for 

1 Ob( )P  , we have 
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( )( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( )

( )( )

1 1 1

1 1 1

1 1 1 1

1 1

1 .

P a b c P a b Pc

Pa Pb Pc

Pa Pb Pc Pc

Pa P b c

P a b c

• • = • •

= • •

= • • •

= • •

= • •

 

 

4. Symmetric crossed polymodules 

In group theory, we have for each category  , a symmetric crossed module 

( ), , ,S M G f    = , where ( , , , )M G f   is a crossed module, and G consists of the 

autofunctors of  and M  consists of the isotransformations from the identity id to some 

autofunctor of  . In this section, we introduce the concept of the symmetric crossed module 

to crossed polymodules. 

Theorem 4.1. Suppose ( )Mor( ),Ob( ),( , , ),s i t  = •   be a category of polygroups. Also, 

consider the set  Aut( ) : , is an autopolyfunctorQ F F F   = = →| ,  together 

with the composition of functors ( ) , and  P Q H
 = such that H Q . Then QP


is 

polygroup by the appropriate hyperoperations. 

Proof. The composition of functors is associative, and therefore, the multiplication in Q is 

associative. If ,F G Q , then F G Q  . Also idF F = and, id F F  = . Hence 

1 idQ = . We have 
1 idF F 

− = and 
1 idF F 

−  = . So, the inverse for F is 
1F −
. Hence 

( ),Q   is a group. Now, if H Q , then we define on  QP Q H
 = , the 

hyperoperations as follows: 

1. id ,H H  =  

2. id idF F F  =  = , for all QF P


 , 

3. H F F H F =  = , for all  id ,QF P H
  − , 

4. F G F G =  , for all 
2( , )F G Q  such that 

1G F − , 

5.  1 id ,F F H

− = , for all  id ,QF P H
  − . 

We show that ( )1, ,id ,QP
 

−  is a polygroup. If    , , id ,F G K H = , then we have 

two following cases: 
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(i) 
1F G K−   and 

1F K − . In this case 

( ) ( )

( )

( )

F G K F G K

F G K

F G K

=  

=  

=  

 

(ii) There exists    , , ,u v F G K  such that 
1u v−= . Without losing generality, 

suppose that F u= and G v= . So  ( ) id ,F G K H K  =  . Hence 

 id , H K K  = .Therefore, if 
1G K −= , then 

  1( ) id ,F G K F H F G K

−  =  = = = , and if 
1G K − , we have 

( )

1

( )

( )

( )

id

F G K F G K

F G K

F F K

K K

−

  =  

=  

=  

=  =

 

On the other hand   is the associative. 

Now, if    , , id ,F G K H  , and let  id , ,F G K  , then the associativity 

condition holds. Suppose that      , , id ,F G K H H = . Without losing generality, let 

F H= , in this case we have 

( ) ( )

 

1

1

,

,

,

,

id , ,

H G H K H

K G H K H

G G H K HF G K F G K

G K G K G H K

H G K G H K

−

−

= =


= 

  =  =   = 
    


=  

 

Therefore, according to the structure of   we conclude that id is the identity element of 

QP


, and the other conditions for being polygroup hold too. 

Proposition 4.1. If Q  is a group, then 
Q

P

P
Q


 

 . 

Proof. It is straightforward. 
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Theorem 4.2. Suppose ( )Mor( ),Ob( ),( , , ),s i t  = •  be a category of polygroups. 

Consider the set  (id ) : Aut( )aP F F  = ⎯⎯→  , where a   a is an isotransformation, and 

on P , we define a multiplication by 

( ) ( ) ( )id id id ( ) ( ),a b a bF G FG a Fb b aG  

⎯⎯→  ⎯⎯→ = ⎯⎯→ = • = •  

then  PP P H
 =  such that H P , by the appropriate hyperoperation is polygroup. 

Proof. We have that multiplication ( )  is the horizontal composition of transformations. 

Hence in particular, ( )  is associative. 

If ( ) ( )id , ida bF G P  ⎯⎯→ ⎯⎯→  , then 

: id .a b a Fb b aG FG = • = →  

Hence, a b  is an isotransformation to an autofunctor FG . Therefore, a b P  .  But, we 

have 

( ) ( )
( )

idid

id

id

id id id id

id id ,

aa F

a a







  



 = ⎯⎯→  ⎯⎯⎯→

= • =
 

( ) ( )

( )

idid

id

id

id id id id

id id ,

a

F

a F

a F a a







   = ⎯⎯⎯→  ⎯⎯→

= • = • =

 

hence, id1 idP = . Now, we have  

( )
1

1 1 1: ida a F F

−
 − − −= →  

so ( )
1

a
−


 is an isotransformation, where 

1F −
 is an isofunctor. Hence, ( )

1

a P

−
  . 

But, 

 
( ) ( ) ( )

( ) ( ) ( )

1 1

1

1
1

1 1 1 1 1 1

id

id id

id id id 1 ,

a a F

F PFF

a a F F

a F aF a a F F
 

 

− −

−

−
 −

− − − − − −

 = ⎯⎯→  ⎯⎯⎯→

= • = • = = = =
 

( ) ( ) ( )

( )

1 11
1

1 1 1

id

id id

id 1 ,

a F a

P

a a F F

a a F F a a
 

 

− −−
 −

− − −

 = ⎯⎯⎯→  ⎯⎯→

= • = • = =
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hence, ( )
1

a
−


 is the inverse of a . 

Now, if K P , then we define on  PP P K
 = the hyperoprations as follows: 

1. id ,K K  =  

2. id idF F F  =  = , for all ,PF P


  

3. K F F K F =  = , for all  id ,PF P K
  − , 

4. F G F G =  , for all 
2( , )F G P  such that 

1G F − , 

5.  1 id ,F F K

− = , for all  id ,PF P K
  − , 

hence ( )1, ,id ,PP
 

−  is a polygroup. 

Theorem 4.3. Suppose ( )Mor( ),Ob( ),( , , ),s i t  = • be a category of polygroups, and 

suppose given functors , :F G  → .  Let given transformations ( )id a F ⎯⎯→  and 

( )id b F ⎯⎯→  such that idida b b a


 =  = holds, then 

1. We have , Aut( )F G  , i.e., the functors F and G  are autofunctors, and we have 
1G F −= . 

2. The transformations a  and b  are isotransformations. 

Proof. It is straightforward. 

Theorem 4.4. Let ( )Mor( ),Ob( ),( , , ),s i t  = •   be a category of polygroups, and 

( , , , )V P Q f=  be a crossed polymodule. Also Aut( )Q = , 

( ) id Aut( ) ,aP F F  = ⎯⎯→ |  

where, a  is an isotransformation. Then we have a polyaction of Q  on P , given by the 

polygroup morphism  

( ) ( )
1 1

: Aut( )

id id ,a Q aQ

Q P

Q F Q FQ

  

 



− −

→

→ ⎯⎯→ → ⎯⎯⎯→
 

and a polygroup morphism 

( )

:

id .a

f P Q

F F

  



→

⎯⎯→ →
 

Then ( ), , ,P Q f     is a crossed polymodule, (Symmetric Crossed Polymodule on  ), and 

we write 
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( ), , , .S P Q f    =  

Also, we write, for ( )id a F P ⎯⎯→  , and Q Q ,  

( )
1

1

( )

: id

Q

Q

a a Q

Q aQ F

Q FQ







−

−

=

= →

=

 

for the polyaction of Q  on a . 

 

Proof.  is well-defined, because according to the assumption Q Q  and id
a F ⎯⎯→ , 

id b H P ⎯⎯→  , we have 

1 1: id QQ aQ F Q FQ

− −→ =  

where 
1Q FQ−

 is an aut of unctor of  , and 
1Q aQ−

 is an isotransformation. Hence 

1Q aQ P

−  . But, 

1 1

1 1

1 1 1

1 1

( ) ( )

( )( )

( ) ( ).

Q a b Q Q a Fb Q

Q aQ Q FbQ

Q aQ Q FQ Q bQ

Q aQ Q bQ

− −

− −

− − −

− −

 = •

= •

= •

= 

 

Also, 

( ) ( )
1

1 1 1 1 1 ,Q Q aQ Q QQ aQQ a
−

− − − − −= =  

( )( )1
1 1 1 1 1 .Q Q aQ Q QaQ Q a

−
− − − − −= =  

Now, we show that   is a polygroup morphism. If ,Q H Q  and ( )id a F P ⎯⎯→  , 

then 
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( )( ) ( ) ( ) ( ) ( )( )
( )

( )( )

( )( )( )

( )( )

1

1 1

1

1

1 1

1

( ) id

id

id

id

( ) .

QH a QH

H Q aQH

Q aQ

a

a QH QH F QH

H Q FQH

Q FQ H

F Q H

a Q H






 

  

 



 

 

−

− −

−

−

− −

−

= ⎯⎯⎯⎯⎯→

= ⎯⎯⎯⎯→

= ⎯⎯⎯→

= ⎯⎯→

=

 

But f  is a polygroup morphism, since if ( ) ( )id , ida bF Q P  ⎯⎯→ ⎯⎯→  , then 

( ) ( )

( ) ( )

( ) ( )

id

id id

.

a b

a b

a b f FQ f FQ

F f Q f

af bf

  

   

 

 = ⎯⎯→ =

= ⎯⎯→  ⎯⎯→

= 

 

For two conditions of crossed polymodule, if ( )id a F P ⎯⎯→   and Q Q , then 

( ) ( )
1 1 1( ) id .

QQ aQQ Qa f Q FQ f Q FQ F af   

− − −= ⎯⎯⎯→ = = =  

Also suppose given ( ) ( )id , ida bF Q P  ⎯⎯→ ⎯⎯→  , then 

 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( )
( ) ( )

( )

1 1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

id id id

id

b

b Q a b

b

bfQ

a b a b

Q F Q

b Q Q a Q

b b Q Q a Q

b b Q Q Q aQ

b b Q aQ Q aQ a a 

  



− −

−

−

− − −

− − −

− − −

− − −

=  

= ⎯⎯⎯→  ⎯⎯→  ⎯⎯→

=   ⎯⎯→

= • •

= • •

= • • = = =

 

Definition 4.1. ( ), , ,P Q f     is a crossed polymodule, and called the Symmetric 

Crossed Polymodule on   and we write 

( ): , , , .S P Q f    =  
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5. Conclusion 

The paper presented a thorough definition of polyfunctors and transformations for 

polygroups.We also, introduced the notion of symmetric crossed modules to symmetric 

crossed polymodules. The study's findings expanded the classical results of crossed modules 

to encompass crossed polymodules of polygroups. In further studies, it will be interesting and 

useful to investigate the functors for crossed squares and also obtain the properties of 

symmetric crossed squares and study them. Then findings extended the classical results of 

crossed squares to crossed polysquares of polygroups. 
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