
 
Available online at http://sanad.iau.ir/journal/ijim/ 

Int. J. Industrial Mathematics (ISSN 2008-5621) 

Vol, 16, No.1, 2024, Article ID IJIM-1629, 12 pages 

Research Article 

 

 

Intuitionistic Fuzzy Multiset Finite Automata: An 

Algebraic-Based Study 

 

 

M. Shamsizadeh* 1, K. Abolpour2 

1 Department of Mathematics, Behbahan Khatam Alanbia University of Technology, 

Khouzestan, Iran, 
2 Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran. 

 

 

Submission Date: 2023/03/03, Revised Date: 2023/12/11, Date of Acceptance: 2024/05/18 

 

Abstract 

The current study aims to introduce the notions of intuitionistic fuzzy multiset finite 

automata (IFMFA) concerning a given IFMFA ℳ with states 𝑄. For a subset 𝑇 of 𝑄, 

we present the notion of intuitionistic fuzzy multiset submachine generated by 𝑇. 

Furthermore, the behavior of IFMFA is studied and explicated by using algebraic 

techniques. Further, it is shown that the union and the intersection of a family of an 

IFMFSA are IFMFSA, as well. Subsequently, it is proved that if IFMFA ℳ has a 

basis, then the cardinality of the basis is unique. Moreover, the language of IFMFA is 

examined and some theorems are suggested.  
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1. Introduction 

Fuzzy automaton was introduced by Wee [1] in 1967 and Santos [2] in 1978.  Fuzzy automata 

offer a constructive useful surrounding for ambiguous and confusing computation and have 

revealed their importance in solving meaningful problems concerning learning systems, 

pattern recognition, and database theory. Moreover, the intuitionistic fuzzy sets introduced by 

Atanassov [3] are highly useful in dealing with vagueness. It was conducted by adding non-

membership value, which may express more accurate and flexible information than fuzzy sets. 

Using the notion of intuitionistic fuzzy sets, Jun [4] proposed the concept of intuitionistic 

fuzzy finite state machines as a generalization of fuzzy finite state machines. Further in 2015, 

Shamsizadeh and Zahedi presented the notion of max-min intuitionistic general fuzzy 

automaton [5-8]. Real-life systems have been modeled via various mathematical notions, such 

as weighted graphs, weighted automata, labeled transition systems, weighted networks, 

weighted Petri nets, discrete event systems, etc., depending on the fields of application. For a 

chosen mathematical notion, it happens frequently that multiple models exist for the observed 

system. Thus, it is not a surprise that numerous techniques have been developed to determine 

the minimality of these models. In this respect, several studies have been carried out on the 

minimization problem of fuzzy finite automaton (see e.g., [9-13]). A multiset, which is a 

collection of elements where these elements can occur several times, is a generalization of a 

set [14]. Multiset processing has emerged substantially in different fields of mathematics, 

computer science, biology, and biochemistry (see e.g., [15-18]). Csuhajvarjú Martin-Vide and 

Mitrana [19] have proposed multiset automata. Further, Sharma, Tiwari, and Sharan [20] and 

Tiwari, Vinay, and Dubey [21] have discussed the issues of minimization of fuzzy multiset 

automata and the algebraic properties of fuzzy multiset finite automata, respectively. 

Recently, Shamsizadeh et al then studied reduced and irreducible of fuzzy multiset finite 

automata [22,23]. In this paper, we have discussed the notion of behavior of multiset finite 

automata and algebraic properties of intuitionistic fuzzy multiset finite automata. In fact, finite 

multiset automata processing has appeared frequently in various areas of mathematics, Petri 

nets, membrane computing, biology, and biochemistry. Even, membrane computing has been 

connected with the theory of mealy multiset automata. The present paper is organized as 

follows: In Sect. 2, we recall some concepts of multisets, intuitionistics and fuzzy multiset 

finite automaton (FMFA), and in Sect. 3 we focus on the study of the concepts of intuitionistic 

fuzzy multiset finite automata (IFMFA) and intuitionistic fuzzy multiset submachine 

generated by T. Also, we study and explain the behavior of IFMFA by using algebraic 

techniques. Moreover, we prove that if IFMFA M has a basis, then the cardinality of the basis 

is unique. Also, we prove that if ℳ = (𝑄, Σ, 𝐴, 𝐵, 𝐶) is a swap intuitionistic fuzzy multiset 

finite automata with threshold (𝑎, 𝑏) and {𝑞1, 𝑞2, . . . , 𝑞𝑛} is a basis of ℳ with threshold (𝑎, 𝑏), 
then ℳ = ≪ 𝑞1 ≫

(𝑎,𝑏) ⊔ ≪ {𝑞2} ≫
(𝑎,𝑏) ⊔ . . . ⊔ ≪ 𝑞𝑛 ≫

(𝑎,𝑏).   

 

2. Preliminaries 

In this section, some concepts and definitions related to multisets and automata are introduced.  

Definition 1. [14]  If 𝛴 is a finite alphabet, then 𝛼: 𝛴 → 𝑁 is a multiset over 𝛴, where 𝑁 

denotes the set of natural numbers including 0. The 𝛼 norm of 𝛴 is defined by  

|𝛼| = ∑𝑎∈𝛴 𝛼(𝑎).  
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We shall denote by Σ⊕ the set of all multiset over Σ. The multiset 0Σ ∈ Σ
⊕ is defined by 

0Σ(𝑎) = 0, for every 𝑎 ∈ Σ. For 𝑏 ∈ Σ, we shall denote by < 𝑏 >(𝑎,𝑏) a singleton multiset and 

is defined by:  

< 𝑏 > (𝑎) = {
1 if 𝑏 = 𝑎
0 otherwise

,  

for every 𝑎 ∈ Σ. For a given set 𝐴, let �̅� = {< 𝑎 > |𝑎 ∈ 𝐴}. For two multisets 𝛼, 𝛽 ∈ Σ⊕, the 

operations inclusion ⊆, addition ⊕ and difference ⊖ are defined as follows:   

    1.  𝛼 ⊆ 𝛽 if 𝛼(𝑎) ≤ 𝛽(𝑎),  
    2.  (𝛼 ⊕ 𝛽)(𝑎) = 𝛼(𝑎) + 𝛽(𝑎),  
    3.  (𝛼 ⊖ 𝛽)(𝑎) = max(0, 𝛼(𝑎) − 𝛽(𝑎)),  

for every 𝛼 ∈ Σ. Furthermore, 𝛼 ⊂ 𝛽 if 𝛼 ⊆ 𝛽 and 𝛼 ≠ 𝛽. Clearly, Σ⊕ is a commutative 

monoid with identity element 0Σ with respect to ⊕.  

Definition 2. [7] A multiset finite automata (MFA) is a 5-tuple ℳ = (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), where   

    1.  𝑄 and Σ are nonempty finite sets called the state-set and input-set,  

    2.  𝛿:𝑄 × Σ⊕ → 2𝑄 is a map called transition map,  

    3.  𝑞0 ∈ 𝑄 is called the initial state,  

    4.  𝐹 ⊆ 𝑄 is called the set of final states.  

Now, we recall the following concepts of fuzzy multiset finite automaton (FMFA) from [21].  

Definition 3. A fuzzy multiset finite automaton (or FMFA, for short) is a 5-tuple  

ℳ = (𝑄, 𝛴, 𝛿, 𝜄, 𝜏), where   

    1.  𝑄 and Σ are nonempty finite sets called the state-set and input-set, respectively,  

    2.  𝛿:𝑄 × Σ⊕ × 𝑄 → [0, 1] is a map called fuzzy transition map,  

    3.  𝜄: 𝑄 → [0, 1] is a map called the fuzzy set of initial states,  

    4.  𝜏: 𝑄 → [0, 1] is a map called the fuzzy set of final states.  

A configuration of fuzzy multiset finite automaton ℳ is a pair (𝑞, 𝛽), where 𝑞 and 𝛽 denote 

current state and current multiset, respectively. The transition from configuration (𝑞, 𝛽) leads 

to configuration (𝑝, 𝛾) with membership value 𝑘 ∈ [0, 1] if there exists a multiset 𝛼 ∈ Σ⊕ 

with 𝛼 ⊆ 𝛽, 𝛿(𝑞, 𝛼, 𝑝) = 𝑘 and 𝛾 = 𝛽 ⊖ 𝛼 and is denoted by (𝑞, 𝛽)
𝑘
→ (𝑝, 𝛾).  

𝑘′
→
∗

 denote the 

reflexive and transitive closure of 
𝑘′
→, i. e., for (𝑞, 𝛽), (𝑝, 𝛾) ∈ 𝑄 × Σ⊕, (𝑞, 𝛽)

𝑘′
→
∗

(𝑝, 𝛾) if for 

some 𝑛 ≥ 0, there exist (𝑛 + 1) states 𝑞0, . . . , 𝑞𝑛 and (𝑛 + 1) multisets 𝛽0, 𝛽1, . . . , 𝛽𝑛 such 

that 𝑝0 = 𝑞, 𝑝𝑛 = 𝑝, 𝛽0 = 𝛽,𝛽𝑛 = 𝛾 and (𝑝𝑖, 𝛽𝑖)
𝑘𝑖
→ (𝑝𝑖+1, 𝛽𝑖+1), for every 𝑖 = 0, 1, . . . , 𝑛 − 1, 

where 𝑘′ = 𝑘0 ∧ 𝑘1 ∧. . . ∧ 𝑘𝑛−1. Now, we define  

 𝜇𝑀((𝑞, 𝛽) →
∗ (𝑝, 𝛾)) =∨ {𝜇ℳ((𝑞, 𝛽)) →

∗ (𝑟, 𝛽 ⊖ 𝛼)) 
 ∧ 𝜇ℳ((𝑟, 𝛽 ⊖ 𝛼)) →∗ (𝑝, 𝛾))|𝑟 ∈ 𝑄, 𝛼 ∈ Σ⊕, 𝛼 ⊆ 𝛽},  
 and  

𝜇ℳ((𝑞, 𝛽)) →
∗ (𝑝, 𝛽)) = {

1 if 𝑞 = 𝑝
0 if 𝑞 ≠ 𝑝

.  (1) 
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Definition 4. [3] Let 𝐸 be a (crisp) fixed set and let 𝐴 be a given subset of 𝐸. An intuitionistic 

fuzzy set (IFS) 𝐴+ in 𝐸 is an object of the following form  

𝐴+ = {< 𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) > |𝑥 ∈ 𝐸}, 

where the functions 𝜇𝐴: 𝐸 → [0,1] and 𝜈𝐴: 𝐸 → [0,1] define the value of membership and the 

value of non-membership of the element 𝑥 ∈ 𝐸 to the set 𝐴, respectively and for every 𝑥 ∈ 𝐸, 

0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1. Obviously, every ordinary fuzzy set {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝐸} has an 

intuitionistic form {< 𝑥, 𝜇𝐴(𝑥), 1 − 𝜇𝐴(𝑥) > |𝑥 ∈ 𝐸}. If 𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥), then 

𝜋𝐴(𝑥) is the value of non-determinacy (uncertainty) of the membership of element 𝑥 ∈ 𝐸 to 

the set 𝐴. In the case of ordinary fuzzy sets, where 𝜈𝐴(𝑥) = 1 − 𝜇𝐴(𝑥), we have 𝜋𝐴(𝑥) = 0, 

for every 𝑥 ∈ 𝐸.  

  

3. Intuitionistic fuzzy multiset finite automata 

In this section, the notion of intuitionistic fuzzy multiset finite automata (IFMFA) is presented. 

Moreover, the behavior of IFMFA is studied and explained by using algebraic techniques.   

Definition 5. An intuitionistic fuzzy multiset finite automata (IFMFA) ℳ is defined as: 

 ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶), where   

1.  𝑄 is a set of states,  

2.  Σ is a non-empty set of input alphabet,  

3.  𝐴 = (𝜇𝐴, 𝜈𝐴) is an intuitionistic fuzzy set, where 𝜇𝐴, 𝜈𝐴: 𝑄 × Σ
⊕ × 𝑄 → [0, 1] and 𝜇𝐴, 𝜈𝐴 

are called intuitionistic fuzzy transition relation of states,  
4. 𝐵: (𝜇𝐵, 𝜈𝐵) is an intuitionistic fuzzy set, 𝜇𝐵, 𝜈𝐵: 𝑄 → [0, 1] and 𝜇𝐵, 𝜈𝐵 are called 

intuitionistic initial function,  

5. 𝐶: (𝜇𝐶 , 𝜈𝐶) is an intuitionistic fuzzy set, 𝜇𝐶 , 𝜈𝐶 : 𝑄 → [0, 1] and 𝜇𝐶 , 𝜈𝐶  are called 

intuitionistic output function.  

The instruction 𝜇𝐴(𝑝1, 𝜃 ⊕ 𝜎, 𝑝2)(𝜈𝐴(𝑝1, 𝜃 ⊕ 𝜎, 𝑝2)) stands for the current state 𝑝1, with 

inputting the multiset 𝜃 or 𝜎 being scanned, can go to the state 𝑝2, that is, the selection of 

intuitionistic fuzzy mutiset relation between applicable instructions (𝑝1, 𝜃, 𝑝2) and (𝑝1, 𝜎, 𝑝2) 
possibly being scanned by different parts of the inputting multiset is non-deterministic. A 

configuration of an IFMFA is described by (𝑝, 𝜃) ∈ (𝑄, Σ⊕). The IFMFA is non-

deterministic, so there may be several transition relations that are possible in a given 

configuration. Thus, for an IFMFA ℳ and its two configurations (𝑝1, 𝜃) and (𝑝2, 𝜎), we 

define a move from (𝑝1, 𝜃) to (𝑝2, 𝜎) with degree of membership and nonmembership 𝑢, 𝑣 ∈

[0, 1], written as (𝑝1, 𝜃)
(𝑢,𝑣)
→  (𝑝2, 𝜎) or 𝜇ℳ(𝑝1, 𝜃) → (𝑝2, 𝜎)) = 𝑢 and 𝜈ℳ(𝑝1, 𝜃) →

(𝑝2, 𝜎)) = 𝑣. , if there exists a multiset 𝜔 ∈ Σ⊕ with 𝜔 ⊆ 𝜃 such that 𝜇𝐴(𝑝1, 𝜔, 𝑝2) = 𝑢 and 

𝜈𝐴(𝑝1, 𝜔, 𝑝2) = 𝑣. We use →∗ to denote reflexive and transitive closure of →. Let 

(𝑝1, 𝜃), (𝑝2, 𝜎) ∈ (𝑄, Σ
⊕), we have (𝑝1, 𝜃)

(𝑙,𝑘)
→  

∗

(𝑝2, 𝜎) if there exists 𝑛 + 1(𝑛 ≥ 1) 

configurations (𝑝1, 𝜃), (𝑞1, 𝜃1), . . . , (𝑞𝑛−1, 𝜃𝑛−1), (𝑝2, 𝜎), such that (𝑝1, 𝜃)
(𝑙1,𝑘1)
→    (𝑞1, 𝜃1)

(𝑙2,𝑘2)
→    . . .

(𝑙𝑛−1,𝑘𝑛−1)
→        (𝑞𝑛−1, 𝜃𝑛−1)

(𝑙𝑛,𝑘𝑛)
→    (𝑝2, 𝜎), 𝑙𝑖, 𝑘𝑖 ∈ [0, 1], then 𝑙 = 𝑙1 ∧ 𝑙2 ∧. . . ∧ 𝑙𝑛−1 ∨ 𝑙𝑛 

and 𝑘 = 𝑘1 ∨ 𝑘2 ∨ . . . ∨ 𝑘𝑛. Naturally, the membership degrees and nonmembership degrees 

of a configuration (𝑝1, 𝜃), which derive another configuration (𝑝2, 𝜎), are expressed as 

follows:  
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 𝜇𝑀((𝑝1, 𝜃) →
∗ (𝑝2, 𝜎)) =∨ {𝜇ℳ((𝑝1, 𝜃)) →

∗ (𝑠, 𝜃 ⊖𝜔)) 
 ∧ 𝜇ℳ((𝑠, 𝜃 ⊖𝜔)) →∗ (𝑝2, 𝜎)) 
 |𝑠 ∈ 𝑄,𝜔 ∈ Σ⊕, 𝜔 ⊆ 𝜃},  
  
 𝜈𝑀((𝑝1, 𝜃) →

∗ (𝑝2, 𝜎)) =∧ {𝜈ℳ((𝑝1, 𝜃)) →
∗ (𝑠, 𝜃 ⊖𝜔)) 

 ∨ 𝜈ℳ((𝑠, 𝜃 ⊖ 𝜔)) →∗ (𝑝2, 𝜎)) 

 |𝑠 ∈ 𝑄,𝜔 ∈ Σ⊕, 𝜔 ⊆ 𝜃},  
 and  

𝜇ℳ((𝑝1, 𝜃)) →
∗ (𝑝2, 𝜃)) = {

1 if 𝑝1 = 𝑝2
0 if 𝑝1 ≠ 𝑝2

,  (2) 

 𝜈ℳ((𝑝1, 𝜃)) →
∗ (𝑝2, 𝜃)) = {

0 if 𝑝1 = 𝑝2
1 if 𝑝1 ≠ 𝑝2

.  (3) 

Definition 6. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Let 𝑝, 𝑞 ∈ 𝑄. Then 𝑝 is called an 

immediate successor of 𝑞 with threshold (𝑎, 𝑏) if there exists 𝛼 ∈ 𝛴 such that 𝜇ℳ((𝑞, 𝛼) →
(𝑝, 0𝛴)) ≥ 𝑎 and 𝜈ℳ((𝑞, 𝛼) → (𝑝, 0𝛴)) ≤ 𝑏. Also, we say that 𝑝 is a successor of 𝑞 with 

threshold (𝑎, 𝑏) if there exists 𝛽 ∈ 𝛴⊕ such that 𝜇ℳ((𝑞, 𝛽) →
∗ (𝑝, 0𝛴)) ≥ 𝑎 and 

𝜈ℳ((𝑞, 𝛽) → (𝑝, 0𝛴)) ≤ 𝑏, where 𝑎, 𝑏 ∈ [0, 1] and 0 ≤ 𝑎 + 𝑏 ≤ 1. We say that 𝑝 is a strong 

successor of 𝑞 if and only if 𝑝 is a successor of 𝑞 with threshold (1, 0). If 𝑝 is a strong 

successor of 𝑞, then 𝑝 is a successor of 𝑞 with threshold arbitrary (𝑎, 𝑏), where  

0 ≤ 𝑎 + 𝑏 ≤ 1 and 𝑎, 𝑏 ∈ [0, 1].  

Accordingly, let 𝑎, 𝑏 ∈ [0, 1] and 0 ≤ 𝑎 + 𝑏 ≤ 1.  

Theorem 1. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be a IFMFA and 𝑝, 𝑞, 𝑟 ∈ 𝑄. Then the following holds:  

1.  𝑞 is a strong successor of 𝑞,  

2.  if 𝑝 is a successor of 𝑞 with threshold (𝑎1, 𝑏1) and 𝑟 is a successor of 𝑝 with threshold 

(𝑎2, 𝑏2), then 𝑟 is a successor of 𝑞 with threshold (𝑎, 𝑏), where 𝑎 = 𝑎1 ∧ 𝑎2, 𝑏 = 𝑏1 ∨ 𝑏2.  

Proof. 1. By definitions 𝜇ℳ and 𝜈ℳ, we have 𝜇ℳ((𝑞, 0Σ) ⟶ (𝑞, 0Σ)) = 1 ≥ 1 and 

𝜈ℳ((𝑞, 0Σ) ⟶ (𝑞, 0Σ)) = 0 ≤ 0. Then 𝑞 is a strong successor of 𝑞. 2. Since 𝑝 is a successor 

of 𝑞 with threshold (𝑎1, 𝑏1), then there exists 𝛼 ∈ Σ⊕ such that 𝜇ℳ((𝑞, 𝛼) ⟶
∗ (𝑝, 0Σ)) ≥ 𝑎1 

and 𝜈ℳ((𝑞, 𝛼) ⟶
∗ (𝑝, 0Σ)) ≤ 𝑏1. Also, 𝑟 is a successor of 𝑝 with threshold (𝑎2, 𝑏2), then 

there exists 𝛽 ∈ Σ⊕ such that 𝜇ℳ((𝑝, 𝛽) ⟶
∗ (𝑟, 0Σ)) ≥ 𝑎2 and 𝜈ℳ((𝑝, 𝛽) ⟶

∗ (𝑟, 0Σ)) ≤
𝑏2. So,  

𝜇ℳ((𝑞, 𝛼 ⊕ 𝛽) ⟶∗ (𝑟, 0Σ)) = ∨𝑠∈𝑄 𝜇ℳ((𝑞, 𝛼 ⊕ 𝛽)) ⟶∗ (𝑠, 𝛽)) ∧  𝜇ℳ((𝑠, 𝛽) ⟶
∗ (𝑟, 0Σ)) 

≥ 𝜇ℳ((𝑞, 𝛼 ⊕ 𝛽)) ⟶∗ (𝑝, 𝛽)) ∧ 𝜇ℳ((𝑝, 𝛽) ⟶
∗ (𝑟, 0Σ)) ≥ 𝑎1 ∧ 𝑎2 = 𝑎,  

 also,  

𝜈ℳ((𝑞, 𝛼 ⊕ 𝛽) ⟶∗ (𝑟, 0Σ)) = ∧𝑠∈𝑄 𝜈ℳ((𝑞, 𝛼 ⊕ 𝛽)) ⟶∗ (𝑠, 𝛽)) ∨  𝜈ℳ((𝑠, 𝛽) ⟶
∗ (𝑟, 0Σ))  

≤ 𝜈ℳ((𝑞, 𝛼 ⊕ 𝛽)) ⟶∗ (𝑝, 𝛽)) ∨ 𝜈ℳ((𝑝, 𝛽) ⟶
∗ (𝑟, 0Σ)) ≤ 𝑏1 ∨ 𝑏2 = 𝑏.  

Hence, the claim holds.  

Definition 7.  Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑞 ∈ 𝑄. We denote by 𝑆(𝑎,𝑏)(𝑞) the 

set of all successor of 𝑞 with threshold (𝑎, 𝑏).  

Definition 8.  Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇 ⊆ 𝑄. The set of all successors of 

𝑇 with threshold (𝑎, 𝑏) is defined as follows: 𝑆(𝑎,𝑏)(𝑇) =∪𝑞∈𝑇 𝑆
(𝑎,𝑏)(𝑞).  
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Theorem 2.  Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA, and 𝐸 and 𝐹 be the subsets of 𝑄. Then 

the following holds:   

    1.  If 𝐸 ⊆ 𝐹, then 𝑆(𝑎,𝑏)(𝐸) ⊆ 𝑆(𝑎,𝑏)(𝐹),  
    2.  𝐸 ⊆ 𝑆(𝑎,𝑏)(𝐸),  
    3.  𝑆(𝑎,𝑏)(𝑆(𝑎,𝑏)(𝐸)) = 𝑆(𝑎,𝑏)(𝐸),  
    4.  𝑆(𝑎,𝑏)(𝐸 ∪ 𝐹) = 𝑆(𝑎,𝑏)(𝐸) ∪ 𝑆(𝑎,𝑏)(𝐹),  
    5.  𝑆(𝑎,𝑏)(𝐸 ∩ 𝐹) ⊆ 𝑆(𝑎,𝑏)(𝐸) ∩ 𝑆(𝑎,𝑏)(𝐹).  

Proof.  Proving 1, 4 and 5 are simple. 2. Let 𝑞 ∈ 𝐸. Then 𝜇ℳ((𝑞, 0Σ) ⟶
∗ (𝑞, 0Σ)) = 1 ≥ 𝑎 

and 𝜈ℳ((𝑞, 0Σ) ⟶
∗ (𝑞, 0Σ)) = 0 ≤ 𝑏.  Then 𝑞 is a successor of 𝑞 with threshold (𝑎, 𝑏). So, 

𝑞 ∈ 𝑆(𝑎,𝑏)(𝐸). Hence, the claim holds. 3. Let 𝑞 ∈ 𝑆(𝑎,𝑏)(𝐸). Then there exists 𝑝 ∈ 𝐸 such that 

𝑞 is a successor of 𝑝 with threshold (𝑎, 𝑏). On the other hand, 𝑝 is a successor of 𝑝 with 

threshold (𝑎, 𝑏). Then 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑝) and 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑝). So, 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑆(𝑎,𝑏)(𝑝)). Now, let 

𝑞 ∈ 𝑆(𝑎,𝑏)(𝑆(𝑎,𝑏)(𝐸)). Then there exists 𝑝 ∈ 𝑆(𝑎,𝑏)(𝐸) such that 𝑞 is a successor of 𝑝 with 

threshold (𝑎, 𝑏). Also, there exists 𝑟 ∈ 𝐸 such that 𝑝 is a successor of 𝑟 with threshold (𝑎, 𝑏). 
So, 𝑞 is a successor of 𝑟 with threshold (𝑎, 𝑏) that it means 𝑞 ∈ 𝑆(𝑎,𝑏)(𝐸).  

In the next example, we show that 𝑆(𝑎,𝑏)(𝐸 ∩ 𝐹) ≠ 𝑆(𝑎,𝑏)(𝐸) ∩ 𝑆(𝑎,𝑏)(𝐹).   

Example 1. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Let 𝑄 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}, and  

𝛴 = {𝑢, 𝑣}. Then 𝐴 is defined as follows:  

𝐴(𝑝1, < 𝑢 > , 𝑝1) = (0.4, 0.6),                                 𝐴(𝑝2, < 𝑢 > , 𝑝1) = (0.8, 0.1),   

𝐴(𝑝3, < 𝑢 >⊕< 𝑣 > , 𝑝1) = (0.9, 0.1),                 𝐴(𝑝3, < 𝑢 > , 𝑝2) = (0.1, 0.9),   

𝐴(𝑝4, < 𝑢 >⊕< 𝑣 > , 𝑝5) = (0.2, 0.3),                 𝐴(𝑝4, < 𝑣 >⊕< 𝑣 > , 𝑝4) = (0.5, 0.5),   

𝐴(𝑝5, < 𝑢 >⊕< 𝑣 > , 𝑝5) = (0.2, 0.3),                 𝐴(𝑝5, < 𝑣 > , 𝑝4) = (0.5, 0.5).   

Let 𝐸 = {𝑝2} and 𝐹 = {𝑝3} and 𝑎 = 0.2, 𝑏 = 0.8. Then we have  

𝑆(0.2,0.8)(𝐸) = {𝑝1}, 𝑆
(0.2,0.8)(𝐹) = {𝑝1}. Then 𝑆(0.2,0.8)(𝐸) ∩ 𝑆(0.2,0.8)(𝐹) = {𝑝1}, but  

𝐸 ∩ 𝐹 = ∅ so 𝑆(0.2,0.8)(∅) = ∅. Hence, 𝑆(0.2,0.8)(𝐸) ∩ 𝑆(0.2,0.8)(𝐹) ≠ 𝑆(0.2,0.8)(𝐸 ∩ 𝐹).  

Definition 9. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Let 𝑝, 𝑞 ∈ 𝑄 and 𝑇 ⊆ 𝑄. We say that ℳ 

is a swap IFMFA with threshold (𝑎, 𝑏) if 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑇 ∪ {𝑞}), 𝑝 ∉ 𝑆(𝑎,𝑏)(𝑇), then  

𝑞 ∈ 𝑆(𝑎,𝑏)(𝑇 ∪ {𝑝}).  

Theorem 3. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Then the following are equivalent:   

    1.  ℳ is a swap IFMFA with threshold (𝑎, 𝑏),  
    2.  𝑞 ∈ 𝑆(𝑎,𝑏)(𝑝) if and only if 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞), for every 𝑝, 𝑞 ∈ 𝑄.  

Proof.  1 → 2.  Let 𝑝, 𝑞 ∈ 𝑄 and 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑝). Also, 𝑞 ∉ 𝑆(𝑎,𝑏)(∅). Since ℳ is a swap 

IFMFA, then 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞). Hence, 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑝) if and only if 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞). 2 → 1.  Let 

𝑝, 𝑞 ∈ 𝑄 and 𝑇 ⊆ 𝑄. Let 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑇 ∪ {𝑞}) and 𝑝 ∉ 𝑆(𝑎,𝑏)(𝑇). Then 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞). So, 𝑞 ∈
𝑆(𝑎,𝑏)(𝑝). Hence, the claim holds.  

Definition 10. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇 ⊆ 𝑄. Let 𝐴𝑇 be a intuitionistic 

fuzzy subset of 𝑇 × 𝛴 × 𝑇, 𝐵𝑇 be a intuitionistic fuzzy subset of 𝑇, 𝐶𝑇 be a intuitionistic fuzzy 

subset of 𝑇 and suppose that 𝒩 = (𝑇, 𝛴, 𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇). The IFMFA 𝒩 is called an intuitionistic 

fuzzy multiset finite subautomata (IFMFSA) of ℳ if: 

    1.  𝐴|𝑇×Σ×𝑇 = 𝐴𝑇,  
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    2.  𝑆(𝑎,𝑏)(𝑇) ⊆ 𝑇,  

    3.  𝐵|𝑇 = 𝐵𝑇,  

    4.  𝐶|𝑇 = 𝐶𝑇.  

It is clear that if ℳ is an intuitionistic fuzzy multiset finite subautomata of 𝒩 with threshold 

(𝑎1, 𝑏1) and 𝒩 is an intuitionistic fuzzy multiset finite subautomata of ℛ with threshold 

(𝑎2, 𝑏2), then ℳ is an IFMFSA of ℛ with threshold (𝑎, 𝑏), where 𝑎 = 𝑎1 ∧ 𝑎2 and  

𝑏 = 𝑏1 ∨ 𝑏2.  

Theorem 4.  Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Let ℳ𝑖 = (𝑄𝑖, 𝛴, 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖), 𝑖 ∈ 𝐼 be a 

family of IFMFSA of ℳ with threshold (𝑎, 𝑏), where 𝑄𝑖 ⊆ 𝑄. Then the following claim holds: 

1. ∩𝑖∈𝐼ℳ𝑖 = (∩𝑖∈𝐼 𝑄𝑖, Σ, 𝐴′, 𝐵′, 𝐶′) is an IFMFSA of ℳ with threshold (𝑎, 𝑏), where  

𝐴′ = 𝐴|∩𝑖∈𝐼𝑄𝑖×Σ×∩𝑖∈𝐼𝑄𝑖 ,  𝐵′ = 𝐵|∩𝑖∈𝐼𝑄𝑖 and 𝐶′ = 𝐶|∩𝑖∈𝐼𝑄𝑖.  

2. ∪𝑖∈𝐼ℳ𝑖 = (∪𝑖∈𝐼 𝑄𝑖, Σ, 𝐴′′, 𝐵′′, 𝐶′′) is an IFMFSA of ℳ with threshold (𝑎, 𝑏), where  

𝐴′′ = 𝐴|∪𝑖∈𝐼𝑄𝑖×Σ×∪𝑖∈𝐼𝑄𝑖, 𝐵′′ = 𝐵|∪𝑖∈𝐼𝑄𝑖 and 𝐶′′ = 𝐶|∪𝑖∈𝐼𝑄𝑖.  

Proof.  I. By Theorem 2, we have 𝑆(𝑎,𝑏)(∩𝑖∈𝐼 𝑄𝑖) ⊆∩𝑖∈𝐼 𝑆
(𝑎,𝑏)(𝑄𝑖). On the other hand, ℳ𝑖 is 

IFMFSA of ℳ with threshold (𝑎, 𝑏), for every 𝑖 ∈ 𝐼, then 𝑆(𝑎,𝑏)(𝑄𝑖) ⊆ 𝑄𝑖, for every 𝑖 ∈ 𝐼. 
So, 𝑆(𝑎,𝑏)(∩𝑖∈𝐼 𝑄𝑖) ⊆∩𝑖∈𝐼 (𝑄𝑖). Hence, the claim holds. II. By Theorem 2, we have 

𝑆(𝑎,𝑏)(∪𝑖∈𝐼 𝑄𝑖) =∪𝑖∈𝐼 𝑆
(𝑎,𝑏)(𝑄𝑖). Also, 𝑆(𝑎,𝑏)(𝑄𝑖) ⊆ 𝑄𝑖, for every 𝑖 ∈ 𝐼. Then 

𝑆(𝑎,𝑏)(∪𝑖∈𝐼 𝑄𝑖) ⊆∪𝑖∈𝐼 𝑄𝑖. Therefore, the claim holds.  

Definition 11.  Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Then ℳ is called strongly connected 

with threshold (𝑎, 𝑏) if for every 𝑝, 𝑞 ∈ 𝑄, 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞).  

Definition 12. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝒩 = (𝑇, 𝛴, 𝐴′, 𝐵′, 𝐶′) be an 

IFMFSA of ℳ with threshold (𝑎, 𝑏). Then we say that 𝒩 is nontrivial if 𝑇 ≠ 𝑄 and 𝑇 ≠ ∅.  

Theorem 5. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Then ℳ is strongly connected with 

threshold (𝑎, 𝑏) if and only if ℳ has not nontrivial IFMSA.  

Proof.  Let ℳ be strongly connected with threshold (𝑎, 𝑏) and 𝒩 = (𝑇, Σ, 𝐴′, 𝐵′, 𝐶′) be an 

IFMSA of ℳ with threshold (𝑎, 𝑏), where 𝑇 ⊆ 𝑄 and 𝑇 ≠ ∅. Then there exists 𝑞 ∈ 𝑇. Let 

𝑝 ∈ 𝑄. Since ℳ is strongly connected with threshold (𝑎, 𝑏), then 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞). So, 𝑝 ∈
𝑆(𝑎,𝑏)(𝑞) ⊆ 𝑆(𝑎,𝑏)(𝑇) ⊆ 𝑇. Therefore, 𝑄 ⊆ 𝑇. Hence, 𝑇 = 𝑄 and ℳ =𝒩. Now, let ℳ has 

not nontrivial IFMFSA with threshold (𝑎, 𝑏). Let 𝑝, 𝑞 ∈ 𝑄 and let  

𝒩 = (𝑆(𝑎,𝑏)(𝑞), Σ, 𝐴′, 𝐵′, 𝐶′), where 𝐴′ = 𝐴|𝑆(𝑎,𝑏)(𝑞)×Σ×𝑆(𝑎,𝑏)(𝑞), 𝐵′ = 𝐵|𝑆(𝑎,𝑏)(𝑞) and  

𝐶′ = 𝐶|𝑆(𝑎,𝑏)(𝑞). Then 𝒩 is an IFMFSA of ℳ with threshold (𝑎, 𝑏). Also, 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑞), then 

𝑆(𝑎,𝑏)(𝑞) ≠ ∅. So, 𝑆(𝑎,𝑏)(𝑞) = 𝑄. Therefore, 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞). Hence, ℳ is strongly connected 

with threshold (𝑎, 𝑏).  

Proposition 1. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇 ⊆ 𝑄. Then  

𝒩 = (𝑆(𝑎,𝑏)(𝑇), 𝛴, 𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇) is an IFMFSA of ℳ with threshold (𝑎, 𝑏), where  

𝐴𝑇 = 𝐴|𝑆(𝑎,𝑏)(𝑇)×𝛴⊕×𝑆(𝑎,𝑏)(𝑇), 𝐵𝑇 = 𝐵|𝑆(𝑎,𝑏)(𝑇) and 𝐶𝑇 = 𝐶|𝑆(𝑎,𝑏)(𝑇).   

Definition 13. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. Let 𝑇 ⊆ 𝑄 and {𝒩𝑖|𝑖 ∈ 𝐼} be the 

collection of all IFMFSA with threshold (𝑎, 𝑏) of ℳ, where state set contains 𝑇. Let  

≪ 𝑇 ≫(𝑎,𝑏)=∩𝑖∈𝐼 {𝒩𝑖|𝑖 ∈ 𝐼}. Then ≪ 𝑇 ≫(𝑎,𝑏) is called the intuitionistic fuzzy multiset 

submachine generated by 𝑇 with threshold (𝑎, 𝑏).  
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Clearly, ≪ 𝑇 ≫(𝑎,𝑏) is the smallest IFMFSA of ℳ with threshold (𝑎, 𝑏) whose state set 

contains 𝑇.  

Definition 14.  Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and  

 𝐿(𝑎,𝑏)(ℳ) = {𝛼 ∈ Σ⊕|𝜇𝐴(𝑝) ∧ 𝜇ℳ((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∧ 𝜇𝐶(𝑞) ≥ 𝑎,  

   𝜈𝐴(𝑝) ∨ 𝜈ℳ((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∨ 𝜈𝐶(𝑞) ≤ 𝑏, forsome 𝑝, 𝑞 ∈ 𝑄}.  

 Then 𝐿(𝑎,𝑏)(ℳ) is called the multiset language with threshold (𝑎, 𝑏) recognized by IFMFA 

ℳ.  

Theorem 6. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇 ⊆ 𝑄. Let  

ℳ𝑇 = (𝑆
(𝑎,𝑏)(𝑇), 𝛴, 𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇), where 𝐴𝑇 = 𝐴|𝑆(𝑎,𝑏)(𝑇)×𝛴×𝑆(𝑎,𝑏)(𝑇), 𝐵𝑇 = 𝐵|𝑆(𝑎,𝑏)(𝑇) and 

𝐶𝑇 = 𝐶|𝑆(𝑎,𝑏)(𝑇). Then 𝐿(𝑎′,𝑏′)(ℳ𝑇) = 𝐿
(𝑎′,𝑏′)(≪ 𝑇 ≫(𝑎,𝑏)), where 𝑎′ ≥ 𝑎 and 𝑏′ ≤ 𝑏, 

𝑎′, 𝑏′ ∈ [0, 1] and 0 ≤ 𝑎′ + 𝑏′ ≤ 1.  

Proof.  Let ≪ 𝑇 ≫(𝑎,𝑏)= (∩𝑖∈𝐼 𝑄𝑖, Σ, 𝐴′, 𝐵′, 𝐶′), where {𝒩𝑖|𝑖 ∈ 𝐼} is the collection of all 

IFMFSA of ℳ with threshold (𝑎, 𝑏) whose state set contains 𝑇 and 𝒩𝑖 =
(𝑄𝑖 , Σ, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖), 𝐴′ = 𝐴|∩𝑖∈𝐼𝑄𝑖×Σ×∩𝑖∈𝐼𝑄𝑖 , 𝐵′ = 𝐵|∩𝑖∈𝐼𝑄𝑖 and 𝐶′ = 𝐶|∩𝑖∈𝐼𝑄𝑖. Now, we show that 

𝑆(𝑎,𝑏)(𝑇) =∩𝑖∈𝐼 𝑄𝑖. (𝑆
(𝑎,𝑏)(𝑇), Σ, 𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇) is an IFMFSA of ℳ with threshold (𝑎, 𝑏) and 

𝑇 ⊆ 𝑆(𝑎,𝑏)(𝑇). So, ∩𝑖∈𝐼 𝑄𝑖 ⊆ 𝑆
(𝑎,𝑏)(𝑇). Then there exists 𝑡 ∈ 𝑇 and 𝛼 ∈ Σ⊕ such that 

𝜇ℳ((𝑡, 𝛼) ⟶
∗ (𝑝, 0Σ)) ≥ 0 and 𝜈ℳ((𝑡, 𝛼) ⟶

∗ (𝑝, 0Σ)) ≤ 1. On the other hand, 𝑡 ∈∩𝑖∈𝐼 𝑄𝑖 
and since ≪ 𝑇 ≫(𝑎,𝑏) is an IMFSA of ℳ with threshold (𝑎, 𝑏), then 𝑝 ∈∩𝑖∈𝐼 𝑄𝑖. So, 

𝑆(𝑎,𝑏)(𝑇) ⊆∩𝑖∈𝐼 𝑄𝑖. Therefore, 𝑆(𝑎,𝑏)(𝑇) =∩𝑖∈𝐼 𝑄𝑖. So, ≪ 𝑇 ≫(𝑎,𝑏)=ℳ𝑇. Hence, 

𝐿(𝑎′,𝑏′)(ℳ𝑇) = 𝐿
(𝑎′,𝑏′)(≪ 𝑇 ≫(𝑎,𝑏))  

Definition 15. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA. ℳ is called intuitionistic single 

generated if there exists 𝑞 ∈ 𝑄 such that ℳ =≪ {𝑞} ≫(𝑎,𝑏). In this case, 𝑞 is called an 

intuitionistic generator of ℳ and we say that ℳ is generated by 𝑞.  

Theorem 7. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇, 𝑅 ⊆ 𝑄. Let ≪ 𝑅 ∪ 𝑇 ≫(𝑎,𝑏)=
(𝑆(𝑎,𝑏)(𝑅 ∪ 𝑇), 𝛴, 𝐴′, 𝐵′, 𝐶′), such that 𝐴′ = 𝐴|𝑆(𝑎,𝑏)(𝑅∪𝑇)×𝛴×𝑆(𝑎,𝑏)(𝑅∪𝑇), 𝐵′ =

𝐵|𝑆(𝑎,𝑏)(𝑅∪𝑇), 𝐶′ = 𝐶|𝑆(𝑎,𝑏)(𝑅∪𝑇), and ≪ 𝑅 ≫(𝑎,𝑏)∪≪ 𝑇 ≫(𝑎,𝑏)= (𝑆(𝑎,𝑏)(𝑅) ∪

𝑆(𝑎,𝑏)(𝑇), 𝛴, 𝐴′′, 𝐵′′, 𝐶′′), such that  A’=A  |_S^(a, b)(R)  S^(a, b)(T)   S^(a, b)(R)  S^(a, b)(T), 

𝐵′ = 𝐵|𝑆(𝑎,𝑏)(𝑅)∪𝑆(𝑎,𝑏)(𝑇) and 𝐶′ = 𝐶|𝑆(𝑎,𝑏)(𝑅)∪𝑆(𝑎,𝑏)(𝑇). Then 𝐿(𝑎′,𝑏′)(≪ 𝑅 ∪ 𝑇 ≫(𝑎,𝑏)) =

𝐿(𝑎′,𝑏′)(≪ 𝑅 ≫(𝑎,𝑏)∪≪ 𝑇 ≫(𝑎,𝑏)), where 𝑎′ ≥ 𝑎, 𝑏′ ≤ 𝑏 and 𝑎′, 𝑏′ ∈ [0, 1] and 0 ≤ 𝑎′ + 𝑏′ ≤
1.  

Proof.  Let 𝛼 ∈ 𝐿(𝑎′,𝑏′)(≪ 𝑅 ∪ 𝑇 ≫(𝑎,𝑏)). Then there exist 𝑝, 𝑞 ∈ 𝑄 such that  

 𝜇𝐴′(𝑝) ∧ 𝜇≪𝑅∪𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∧ 𝜇𝐶′(𝑞) ≥ 𝑎′,  

 𝜈𝐴′(𝑝) ∨ 𝜈≪𝑅∪𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∨ 𝜈𝐶′(𝑞) ≤ 𝑏′.  

 By considering Theorem 2, we have 𝑆(𝑎,𝑏)(𝑅 ∪ 𝑇) = 𝑆(𝑎,𝑏)(𝑅) ∪ 𝑆(𝑎,𝑏)(𝑇). Now,  

 𝐴𝑆(𝑎,𝑏)(𝑅∪𝑇) = 𝐴|𝑆(𝑎,𝑏)(𝑅∪𝑇)×Σ⊕×𝑆(𝑎,𝑏)(𝑅∪𝑇) 

                     = 𝐴|𝑆(𝑎,𝑏)(𝑅)∪𝑆(𝑎,𝑏)(𝑇)×Σ⊕×𝑆(𝑎,𝑏)(𝑅)∪𝑆(𝑎,𝑏)(𝑇) 
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                      = 𝐴𝑆(𝑎,𝑏)(𝑅)∪𝑆(𝑎,𝑏)(𝑇),  

similarly, 𝐵|𝑆(𝑎,𝑏)(𝑅∪𝑇) = 𝐵|𝑆(𝑎,𝑏)(𝑅)∪𝑆(𝑎,𝑏)(𝑇) and 𝐶|𝑆(𝑎,𝑏)(𝑅∪𝑇) = 𝐶|𝑆(𝑎,𝑏)(𝑅)∪𝑆(𝑎,𝑏)(𝑇). So, it is 

clear that,  

𝜇𝐴′′(𝑝) ∧ 𝜇≪𝑅≫(𝑎,𝑏)∪≪𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∧ 𝜇𝐶′′(𝑞) ≥ 𝑎′,  

𝜈𝐴′′(𝑝) ∨ 𝜈≪𝑅≫(𝑎,𝑏)∪≪𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∨ 𝜈𝐶′′(𝑞) ≤ 𝑏′.  

So, 𝐿(𝑎′,𝑏′)(≪ 𝑅 ∪ 𝑇 ≫(𝑎,𝑏)) ⊆ 𝐿(𝑎′,𝑏′)(≪ 𝑅 ≫(𝑎,𝑏)∪≪ 𝑇 ≫(𝑎,𝑏)). Similarly,  

𝐿(𝑎′,𝑏′)(≪ 𝑅 ≫(𝑎,𝑏)∪≪ 𝑇 ≫(𝑎,𝑏)) ⊆ 𝐿(𝑎′,𝑏′)(≪ 𝑅 ∪ 𝑇 ≫(𝑎,𝑏)). Hence, the claim holds.  

Theorem 8. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇, 𝑅 ⊆ 𝑄. Let ≪ 𝑅 ∩ 𝑇 ≫(𝑎,𝑏)=
(𝑆(𝑎,𝑏)(𝑅 ∩ 𝑇), 𝛴, 𝐴′, 𝐵′, 𝐶′), such that 𝐴′ = 𝐴|𝑆(𝑎,𝑏)(𝑅∩𝑇)×𝛴×𝑆(𝑎,𝑏)(𝑅∩𝑇), 𝐵′ = 𝐵|𝑆(𝑎,𝑏)(𝑅∩𝑇),  

𝐶′ = 𝐶|𝑆(𝑎,𝑏)(𝑅∩𝑇), and ≪ 𝑅 ≫(𝑎,𝑏)∩≪ 𝑇 ≫(𝑎,𝑏)= (𝑆(𝑎,𝑏)(𝑅) ∩ 𝑆(𝑎,𝑏)(𝑇), 𝛴, 𝐴′′, 𝐵′′, 𝐶′′), 

such that  A’=A  |_S^(a, b)(R)  S^(a, b)(T)   S^(a, b)(R)  S^(a, b)(T), 𝐵′ = 𝐵|𝑆(𝑎,𝑏)(𝑅)∩𝑆(𝑎,𝑏)(𝑇) 

and 𝐶′ = 𝐶|𝑆(𝑎,𝑏)(𝑅)∩𝑆(𝑎,𝑏)(𝑇). Then 𝐿(𝑎′,𝑏′)(≪ 𝑅 ∩ 𝑇 ≫(𝑎,𝑏)) ⊆ 𝐿(𝑎′,𝑏′)(≪ 𝑅 ≫(𝑎,𝑏)∩≪

𝑇 ≫(𝑎,𝑏)), where 𝑎′ ≥ 𝑎, 𝑏′ ≤ 𝑏 and 𝑎′, 𝑏′ ∈ [0, 1] and 0 ≤ 𝑎′ + 𝑏′ ≤ 1.  

Proof. By Theorem 2, we have 𝑆(𝑎,𝑏)(𝑅 ∩ 𝑇) ⊆ 𝑆(𝑎,𝑏)(𝑅) ∩ 𝑆(𝑎,𝑏)(𝑇). Let 𝛼 ∈ 𝐿(𝑎′,𝑏′)(≪
𝑅 ∩ 𝑇 ≫(𝑎,𝑏)). Then there exists 𝑝, 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑅 ∩ 𝑇) such that  

𝜇𝐴′(𝑝) ∧ 𝜇≪𝑅∩𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∧ 𝜇𝐶′(𝑞) ≥ 𝑎′,  

 𝜈𝐴′(𝑝) ∨ 𝜈≪𝑅∩𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∨ 𝜈𝐶′(𝑞) ≤ 𝑏′.  

By considering 𝑆(𝑎,𝑏)(𝑅 ∩ 𝑇) ⊆ 𝑆(𝑎,𝑏)(𝑅) ∩ 𝑆(𝑎,𝑏)(𝑇), we have 𝑝, 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑅) ∩ 𝑆(𝑎,𝑏)(𝑇). 
So,  

 𝜇𝐴′′(𝑝) ∧ 𝜇≪𝑅≫(𝑎,𝑏)∩≪𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∧ 𝜇𝐶′′(𝑞) ≥ 𝑎′,  

  𝜈𝐴′′(𝑝) ∨ 𝜈≪𝑅≫(𝑎,𝑏)∩≪𝑇≫(𝑎,𝑏)((𝑝, 𝛼) →
∗ (𝑞, 0Σ)) ∨ 𝜈𝐶′′(𝑞) ≤ 𝑏′.  

Hence, the claim holds.  

Definition 16. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and ℳ𝑖 = (𝑄𝑖, 𝛴, 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖), 𝑖 = 1, 2 be 

two IFMFSA of ℳ with threshold (𝑎, 𝑏). If ℳ =≪ 𝑄1 ∪ 𝑄2 ≫
(𝑎,𝑏), then we say that ℳ is 

the union of ℳ1 and ℳ2 with threshold (𝑎, 𝑏) and we write ℳ =ℳ1 ∪ℳ2. If ℳ =ℳ1 ∪
ℳ2 and 𝑄1 ∩ 𝑄2 = ∅, then we say that ℳ is the direct union of ℳ1 and ℳ2 with threshold 

(𝑎, 𝑏) and we write ℳ =ℳ1 ⊔(𝑎,𝑏)ℳ2.  

Suppose ℳ =ℳ1 ∪ℳ2. Then 𝑆(0,1)(𝑄𝑖) = 𝑄𝑖 in ℳ, 𝑖 = 1, 2. Since ℳ𝑖 is an IFMFSA of 

ℳ, 𝑖 = 1, 2. Now, 𝑆(1,0)(𝑄1 ∪ 𝑄2) = 𝑆
(1,0)(𝑄1) ∪ 𝑆

(1,0)(𝑄2) = 𝑄1 ∪ 𝑄2.  

Definition 17. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇 ⊆ 𝑄. 𝑇 is called free with 

threshold (𝑎, 𝑏) if and only if for every 𝑡 ∈ 𝑇, 𝑡 ∉ 𝑆(𝑎,𝑏)(𝑇\{𝑡}).  
  
Definition 18. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be an IFMFA and 𝑇 ⊆ 𝑄. If 𝑇 is free with threshold 

(𝑎, 𝑏) and ℳ =≪ 𝑇 ≫(𝑎,𝑏), then 𝑇 is called a basis of ℳ.  

Theorem 9. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be a swap IFMFA with threshold (𝑎, 𝑏). Let 

{𝑞1, 𝑞2, . . . , 𝑞𝑛} be a basis of ℳ with threshold (𝑎, 𝑏). Then 𝐿(𝑎′,𝑏′)(ℳ) = 𝐿(𝑎′,𝑏′)(≪

𝑞1 ≫
(𝑎,𝑏)⊔≪ {𝑞2} ≫

(𝑎,𝑏)⊔ . . . ⊔≪ 𝑞𝑛 ≫
(𝑎,𝑏)).  
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Proof. We have ≪ 𝑞𝑖 ≫
(𝑎,𝑏)= (𝑆(𝑎,𝑏)(𝑞𝑖), Σ, 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖), where 𝐴𝑖 = 𝐴|𝑆(𝑎,𝑏)(𝑞𝑖)×Σ×𝑆(𝑎,𝑏)(𝑞𝑖), 

𝐵𝑖 = 𝐵|𝑆(𝑎,𝑏)(𝑞𝑖) and 𝐶𝑖 = 𝐶|𝑆(𝑎,𝑏)(𝑞𝑖). Now, let 𝑖 ≠ 𝑗. Then 𝑆(𝑎,𝑏)(𝑞𝑖) ∩ 𝑆
(𝑎,𝑏)(𝑞𝑗) = ∅. Also, 

for every 𝑝, 𝑞 ∈ 𝑄, 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞) if and only if 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑝). Since ℳ =≪
𝑞1, 𝑞2, . . . , 𝑞𝑛 ≫

(𝑎,𝑏), then ℳ =≪ 𝑞1 ≫
(𝑎,𝑏)⊔≪ 𝑞2 ≫

(𝑎,𝑏)⊔ . . . ⊔≪ 𝑞𝑛 ≫. Hence, 

𝐿(𝑎′,𝑏′)(ℳ) = 𝐿(𝑎′,𝑏′)(≪ 𝑞1 ≫
(𝑎,𝑏)⊔≪ {𝑞2} ≫

(𝑎,𝑏)⊔ . . . ⊔≪ 𝑞𝑛 ≫
(𝑎,𝑏)).  

Theorem 10. Let ℳ = (𝑄, 𝛴, 𝐴, 𝐵, 𝐶) be a swap IFMFA with threshold (𝑎, 𝑏). Then ℳ has 

a basis with threshold (𝑎, 𝑏) and the cardinality of the basis is unique.  

Proof. Let 𝑇1 = 𝑄 and 𝑝, 𝑞 ∈ 𝑄. If 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑞) and 𝑞 ∈ 𝑆(𝑎,𝑏)(𝑝). Consider 𝑇2 = 𝑇1\{𝑝}. 
Then 𝑝 ∈ 𝑆(𝑎,𝑏)(𝑇2). If 𝑇2 is the smallest generator of ℳ with threshold (𝑎, 𝑏), the proof is 

complete, otherwise we continue in the same way until we reach 𝑇𝑘 such that we cannot delete 

another state of 𝑇𝑘. So, 𝑇𝑘 is the smallest generator with threshold (𝑎, 𝑏).  

  

4. Conclusion 

In this paper, we have discussed the notion of lattice multiset finite automata and algebraic 

properties of intuitionistic fuzzy multiset finite automata. In fact, finite multiset automata 

processing has appeared frequently in various areas of mathematics, Petri nets, membrane 

computing, biology and biochemistry. Even, membrane computing has been connected with 

the theory of mealy multiset automata. The present study was an attempt to propose the 

notions of intuitionistic fuzzy multiset finite automata (IFMFA) and intuitionistic fuzzy 

multiset submachine generated by T. Subsequently, it was shown that the union and the 

intersection of a family of one IFMFSA are also an IFMFSA. Moreover, this research work 

proved that if IFMFA M has a basis, then the cardinality of the basis is unique. Multiset 

automata are connected with membrane computing, we will try to introduce the concept of 

membrane general fuzzy automata to explore the applications of deterministic intuitionistic 

general fuzzy multiset finite automata in the area of membrane computing.  
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