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Abstract 

Investors usually hold only a small number of stocks to construct portfolio because of the 

cardinality constrained portfolio selection problem which arises due to the transaction cost 

and other market frictions. The cardinality constrained portfolio selection with the traditional 

mean-variance criteria (Mixed-integer and quadratic programming) and mean-CVaR (linear 

Mixed-integer) are an NP-Hard optimization problem. To solve this mixed-integer nonlinear 

programming (NP-Hard), a corresponding genetic algorithm (GA) is utilized. In this paper, 

we presented an algorithm that implements the model mean-CVaR as a linear model for 

solving this problem. Furthermore, this algorithm can be suggested all possible optimal and 

find the exact solution. Additionally, a numerical example, which includes an application of 

the algorithm by considering the stock’s price of the 15 stocks, during the period from 

8/16/2019 to 8/14/2020 that obtained from a real dataset, is presented in order to demonstrate 

that the algorithm is useful for portfolio detection. 
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1. Introduction 

In financial studies, both portfolio performance assessment and efficient portfolio selection 

are important areas. The purpose of creating a portfolio is the risk reduction of the investment, 

so that the profit of an asset compensates loss of another asset. The portfolio selection was 

first introduced by Markowitz in [1] . This model is known as the Markowitz model or the 

mean-variance model. He believed that the investor should maximize return and minimize 

risk. 

One problem pertaining to Markowitz model is its computational complexity. Tobin [2] in 

1958, Hanoch, and Levy [3] took steps to improve the Markowitz model. Sharp [4] Trainer 

[5] and Jensen [6] provided benchmarks for portfolio assessment. The Sharpe index is the risk 

premium per unit of the total risk. The Treynor index is the risk premium per unit of the 

systematic risk, and the Jensen index is defined as the difference between the actual portfolio 

return and the estimated benchmark return. Scutellà et al. [7] reviewed several mathematical 

models, and related algorithmic approaches, that have been proposed to address uncertainty 

in portfolio asset allocation, focusing on Robust Optimization methodology. They also 

analyzed the relationship between the concepts of robustness and convex risk measures. 

Regulations for finance businesses, formulate some of the risk management requirements in 

terms of percentiles of loss distributions. An upper percentile of the loss distribution is called 

Value-at-Risk (VaR). Value at risk is one of the most popular measures that is deeply rooted 

in its simplicity, which has achieved the high status of being written into industry regulations. 

VaR can be quite efficiently estimated and managed when underlying risk factors are normally 

distributed. For instance, 95%-VaR is an upper estimate of losses which is exceeded with 5% 

probability. 

Artzner e t al., [8, 9] proposed, for non-normal distributions, VaR may have undesirable 

properties such as lack of sub-additivity, i.e., VaR of a portfolio with two instruments may be 

greater than the sum of individual VaRs of these two instruments. Also, Value at risk is 

difficult to optimize for discrete distributions, when it is calculated using scenarios. But this 

risk measure is neither sub-additive, not convex. This risk measure is proposed by Baumol 

[10]. Glasserman et al. [11] used the Monte Carlo method along with quadratic estimation to 

measure the portfolio’s VaR. Chen and Tang [12] verified other nonparametric approximation 

of VaR for related financial returns. Rockefeller and Uryasev [13, 14], expressed another risk 

measure which was named Conditional Value at Risk (CVaR). 

CVaR is also called Expected shortfall (ES), Average Value at Risk (AVaR) and expected tail 

loss (ETL). CVaR is defined as the weighted average of VaR and losses strictly exceeding 

VaR for general distribution. The CVaR risk measure is proved to be a coherent risk measure 

(Pflug [15], Ogryczak and Ruszczynski [16]) and researcher use CVaR as a risk measure for 

portfolio and financial problems. Hong and Liu [17] used the Monte Carlo simulation method 

to calculate CVaR for portfolio optimization. 

In the real investment, due to various frictions including transaction cost and management 

cost, the investors only hold few stocks to construct the portfolio because of the cardinality 

constrained portfolio selection problem which arises due to the transaction cost and other 

market frictions. This phenomenon motives the researchers to study the cardinality 

constrained portfolio optimization problem. This problem has been explored by several 

researchers under the mean-variance criteria [18]. In 1993, Speranza [19] presented a more 
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general model with a weighted risk function and also in 1996 [20] proposed a mixed-integer 

programming, considering realistic characteristics in portfolio selection, such as minimum 

transaction lots and maximum number of securities. Yoshimoto [21] considered multi period 

portfolio selection with transaction costs based on Markowitz’s model. Speranza and Mansini 

[22] regarded transaction costs with and without minimum transaction lots but again not based 

on Markowitz’s model. Konno [23] proposed an algorithm for his portfolio optimization 

problems regarding transaction costs and minimum transaction lots. 

The main idea is to use the special structure of the problem to design the efficient solution 

algorithm for this NP-hard optimization problem. For example, Bienstock [24] showed a way 

to use surrogate constraint to approximate cardinality constraint. Bertsimas and Shioda [25] 

developed an exact algorithm based on branch-and-bound method by using the convex 

relaxation. Gao and Li [18] develop an efficient solution scheme by incorporating the convex 

conic programming techniques and using the geometrical properties of this problem. On the 

other hand, Chen et al [26] relax the cardinality constraint by finding the sparse solution of 

this problem. 

Almost all researches on the cardinality constrained portfolio model are based on the mean-

variance model for example in [27] a portfolio selection model which is based on Markowitz’s 

portfolio selection problem including three of the most important limitations.is considered. 

However, the variance is not an ideal term for risk measure, since it penalizes symmetrically 

for both parts below and above the mean value. Instead of using the traditional mean-variance 

criteria, used the Conditional Value-at-Risk (CVaR) as the risk measure to build the 

cardinality constrained portfolio optimization model. Cheng et al [29] proposed to use the 

reweighed 1l -norm method to find the approximated solution of this problem. In this work, 

instead of finding the exact solution, they proposed some methods to identify the 

approximated solution. 

This paper presents an algorithm for the purpose of evaluating the cardinality constrained 

portfolio selection problem. This algorithm is presented using model mean-CVaR that has 

been a linear model to solve this problem. Furthermore, this algorithm can be suggested all 

possible optimal and find the exact solution. The remainder of the paper is organized as 

follows: 

Section 2 reviews the basic definitions and briefly describes portfolio efficiency in cardinality 

constraint mean-variance and conditional value at risk. Section 3 first shows how the selection 

of portfolio according to the existing restrictions and then presents the proposed model. 

Section 4 details the applications of the proposed approach. Section 5 concludes the results. 

 

2. Basic definitions 

2.1. Markowitz-based portfolio selection 

Because investors have contrasting preferences regarding return and risk, Investments are 

determined according to the investor's preferences. Therefore, risk-taking and returns are two 

criteria that determine the amount of utility of an investment for selecting a portfolio of 

investment assets. Markowitz defined a return of capital as the mathematical expectation of 

the returns in the past. He measured the risk through the variance of the returns and then 

presented a model by implementing these two criteria and considering the idea that the main 
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goal is always to reduce risk. This model is a non-linear model, then this model is the 

computational complexity.  

The first portfolio theory was published by Markowitz [1]. This model is known for 

“Markowitz model” or “mean-variance model”. Suppose that there are “n” assets available in 

market at this model that is a quadratic model, the return vector and covariance matrix are 

given 
1( ,..., )nR R R=  and [ ]ijG =  expected return of investor is expectedR . 

jx  is the 

proportion of portfolio’s initial value invested in asset j [1]. 
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The cardinality constrained portfolio selection problem arises due to the empirical findings 

that investors tend to hold a limited number of assets. Let k be the desired number of risky 

assets in constructing portfolios [28]. To solve this problem, Markowitz’s model is a quadratic 

programming and mixed-integer programming problem. Mixed-integer nonlinear 

programming is NP-Hard. This model is as follows [28]: 
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Where   is a non-Archimedean element smaller than any positive real number and M is a 

very large number.  
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2.2. CVaR-based portfolio selection 

2.2.1. Value at Risk  

VaR is defined as maximum quantity of invest that one may lose in a specified time interval, 

that tp  is initial wealth, and 
t kp +

 is secondary wealth after k  period time, probability of loss 

is:  

( ) (3)
k t

p p VaR −  =  

Where 
k t t k t
p p p

+
 = −  and 1 −  is margin of error, correspondingly   is confidence 

level . 

There are different methods for computing the VaR, such as Variance-Covariance method, 

historical simulation, and also Monte Carlo simulation.  

The variance-Covariance method only uses for normal distribution. There is no need for 

normal distribution data in either of historical simulation and Monte 

Carlo simulation methods. 

Historical simulation is no need to know the distribution of data for calculating the VaR. In 

fact, VaR is computed by putting concentration on an assumptive time series of returns and 

supposition that changes future data based on historical changes. The convenience of this 

method is that there is a need for variance and covariance calculation. This method believes 

that the behavior of returns is the same as before. However, VaR lacks sub-additivity, when 

analyzed with scenarios. The VaR is nonconvex as well as nondifferentiable, and hence, it is 

difficult to find a global minimum via conventional optimization techniques. Alternatively, 

conditional VaR (CVaR), introduced by Rockafellar and Uryasev [13], and further developed 

in [14]. 

Let ( ,R)f x  be the loss associated with the decision vector x , to be chosen from a certain 

subset X  of 
nR , and the random vector R  in 

mR . The vector x  can be interpreted as a 

portfolio, with X  as the set of available portfolios (subject to various constraints), but other 

interpretations could be made as well. The vector stands for the uncertainties, e.g., market 

prices that can affect the loss. Of course, the loss might be negative and thus, in effect, 

constitutes a gain.  

CVaR is defined as the conditional expectation of the portfolio loss exceeding. 

f(x,R)

1
(x) f(x,R) ( )dR (4)

1
CVaR p R


 

=
− 

 

Where ( )p R  is a probability density function of R  . For general distributions, including 

discrete distributions, CVaR is a weighted average of VaR, and the conditional expectation 

given by (4) (see [13]). To avoid complications caused by an implicitly defined function 

(x)VaR
 , Rockafellar and Uryasev [12] have provided an alternative function given by: 

f(x,R)

1
F (x, ) (f(x,R) ) ( )dR (5)

1
p R




  
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= + −
−   
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For which, they show that minimizing F (x, )


  with respect to (x, )  yields the minimum 

CVaR and its solution. (This statement is again true for general distributions) In case that the 

probability distribution of R  is not available or an analytical solution is difficult, it is possible 

to exploit price scenarios, which can be obtained from past price data and/or through Monte 

Carlo simulation. Assuming that this price data is equally identical (e.g., random sampling 

from a joint price distribution). Given price data 
,p s

R  for 1,...,Ss = , F (x, )


  can be 

approximated by 
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We can find a portfolio that minimizes CVaR by considering the following nondifferentiable 

optimization (NDO) problem, which is intended to be, solved [13] 
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This model can be reformulated as a mixed-integer optimization [29] 
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(8.9)
 

To evaluate the CVaR, it is necessary to generate a large number of scenarios, which 

significantly increases the size of this problem. In consequence, it is not practical to solve the 

resulted mixed-integer programming problem (mixed-integer optimization) directly. 

This model (7) is linear. In the following section, how to choose an efficient portfolio based 

on cardinality constraints with the help of the mean-CVaR model, is discussed. 

 

3. Selection of portfolio according to the existing restrictions 

The cardinality-constrained portfolio selection problem is a quadratic programming and 

mixed-integer programming problem. Mixed-integer nonlinear programming is NP-Hard and 

since solving model (8) directly for the exact solution is difficult when the problem size n and 

S are large. In this section, it is discussed how to choose an efficient portfolio based on 

cardinality constraints with the help mean-CVaR model that this model which is a linear 

model. 

In this study, the following algorithm is implemented to solve the cardinality constraints 

portfolio selection problem. 

k
 
is, the number of assets that an investor would like to invest. 

Step 1  

Model (7) is evaluated for return that expect an investor to invest and 
* * *( , , )spx R +

 is optimal 

model (7) then 
*{ | 0}iG i x=  . If the cardinal of sets G  is less than k , this set is the optimal 

answer to the cardinality constrained portfolio selection problem, otherwise go to the step 2. 

Step 2 
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Let | |G m= . We know that the number of subsets k  members of a set of m  members is 

equal: 

m
d

k

 
=  
   

We can show subsets with lA  ( 1,...,l d= ) 

Step 3 

On the other hand, according to model (7) (constraint (7.3)) sets of assets can be considered 

to make an efficient portfolio that convex combination of their returns greater than or equal 

to the expected return on investment. As a result, we eliminate subsets that maximum their 

return is less than to the expected return of investor or only one of the assets of that subset has 

a maximum return and that return is equal to the expected return. We show subsets were not 

eliminated with hI  (let 1, ,h q= ) and q d . 
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Where: 

iR =  The expected return of asset i  

siR =  The returns asset i in scenario s 

Step 5 

If 1f =   

    ( ) ( )CVaR b CVaR f=   

     { }fW W I=   
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If 1f    

         If ( ) ( )CVaR f CVaR b   

                 

, 1

{ }

( ) ( )

b f

b

W b

J I

W J

CVaR b CVaR f

= =

=

=

=

  

       Else  

         If ( ) ( )CVaR f CVaR b=   

              1b b= +   

               
b fJ I=   

               { }bW W J=   

Step 6 

If f q   

    1c c= +   

    Go to step 4 

Else 

       If 1b    

           T = {{ }hJ W  | 
* *

exp exp 1,...,h f

eced slack eced slackR S R S f b+  + = } 

          T is the set of all optimal sets with 
*

exp( ( ), )h

h eced slackCVaR J R S+ . 

       Else If 1b =   

            bJ  is set optimal with 
*

exp( ( ), )b

b eced slackCVaR J R S+   

End 

Theorem 1: In step 3 always 1q   or the algorithm ends in the first step 

Proof 

According to model (7) (constraint (7.3)) sets of assets can be considered to make an efficient 

portfolio that convex combination of their returns greater than or equal to the expected return 

on investment then in G  there is at least one asset that its return is greater than or equal 

expectedR  then if there is only one asset that its return is equal expectedR  then according 

constraint (7.3) G  has only this asset otherwise 1q    

The above algorithm tries to reduce the computational volume in each step and this algorithm 

uses a linear model thus reducing the computation time and also identifies it if there are 

multiple answers. It is also possible that the problem is solved only by solving a linear model 

and we do not enter the next steps of the algorithm. Considering that model (9) is the same as 

model (7) and also according to step 3 then this algorithm is always feasible. 
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4. Empirical application  

The dataset was randomly collected from the stock’s price of the 15 stocks, from 8/16/2019 

to 8/14/2020. Besides, missing data over holidays estimated through interpolation. The dataset 

was obtained from “https://finance.yahoo.com/most-active”. All of the stock companies are 

shown by the company symbol, in Table 1. In this example, we have used GAMS and 

MATLAB software. 

Table1. Symbol of stock companies that were used. 

Company symbol       Company symbol       Company symbol       Company symbol          Company symbol 

AAL ( 1DMU
 
)              AMAT ( 4DMU  )         IQ ( 7DMU

 
)                  NIO ( 10DMU

 
)          UAL ( 13DMU  )

 
AAPL ( 2DMU

 
)           GE ( 5DMU

 
)                ITUB ( 8DMU  )             OXY ( 11DMU  )        WFC ( 14DMU

 
)
 

BAC ( 3DMU
 
)              INO ( 6DMU

 
)             MESO ( 9DMU  )            PLUG ( 12DMU

 
)       SRNE ( 15DMU

 
) 

 

 
Figure 1. Efficient portfolio frontier CVaR, 90% =   

 
Figure 2. Efficient portfolio frontier CVaR, 

 
95% =

  



IJDEA Vol.4, No.2, (2016).737-749  

F. Fattahi, et al./ IJIM Vol.16, No.3, (2024), 20-33 

 

30 

 

 
Figure 3. Efficient portfolio frontier CVaR, 

 
99% =

  

Suppose k=3 is the number of assets that an investor would like to invest and 

exp 0.006 ectedR = .
 

Table 2. Minimum CVaR model 7, 8 and 9 

 Model 7 Model 8 and 9 

Min CVaR
 

90% =
 

0.0603268638244 0.0691613115168 

Min CVaR 95% =
 

0.0785472478613 0.0878562074744 

Min CVaR
 

99% =
 

0.1160966677940 0.1258278591750 

As can be seen in Table 2, the efficient portfolio frontier is drawn to the right by a new 

constraint because the optimal value of Model 7 is less than the optimal value of Model 8. 

In Table 3, we represent optimal assets which are obtained from model 7 and 8 for all
 
 .

 

Table 3. Optimal assets 

Optimal assets Model 7 Model 8  

CVaR  

90% =
  

2

6

9

10

12

15

0.14873545

0.15950859

0.13892124

0.12393643

0.30886486

0.12003344

x

x

x

x

x

x

=

=

=

=

=

=

  

2

12

15

0.21775348

0.51939371

0.26285281

x

x

x

=

=

=
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CVaR  

95% =
  

2

6

9

10

12

15

0.19905731

0.15615197

0.01822843

0.14361221

0.27522153

0.20772856

x

x

x

x

x

x

=

=

=

=

=

=

  

2

12

15

0.21959218

0.42595438

0.35445345

x

x

x

=

=

=
  

CVaR  

99% =
  

2

6

10

12

15

0.14844514

0.13408635

0.37514260

0.24774203

0.09458389

x

x

x

x

x

=

=

=

=

=

 

2

12

15

0.21762934

0.52570221

0.25666844

x

x

x

=

=

=
 

If the example is solved with the help of algorithm for 90% =
, 

95% = , | | 6G =  

( 1,...,20)lA l = , and ( 1,...,19)hI h = , then 1b =  (
1

,  ,  }{AAPL PJ LUG SRNE= ); and for 

99% =  | | 5G =  ( 1,...,10)lA l = , and ( 1,...,10)hI h = , then 1b =  (

1 , }{  ,  AAPL PLUG SJ RNE= ). This example has only an optimal solution. 

 

5. Conclusion 

The cardinality constrained portfolio selection problem arises due to the empirical findings 

that investors tend to hold a limited number of assets. Almost all researches on the cardinality 

constrained portfolio model are based on the mean-variance model. However, the variance is 

not an ideal term for risk measure, since it penalizes symmetrically for both parts below and 

above the mean value. Instead of using the traditional mean-variance criteria, used the 

Conditional Value-at-Risk (CVaR) as the risk measure to build the cardinality constrained 

portfolio optimization model. These mixed-integer nonlinear programs are NP-Hard program. 

The purpose of this study is to develop an algorithm to solve the cardinality constrained 

portfolio selection problem using a linear model.  

This algorithm is due to the fact that nonlinear problems with large volumes of data are an 

NP-Hard problem, using a linear model and aiming to reduce the data volume; then possible, 

the complexity of the problems is reduced. This algorithm also detects them if there are 

multiple answers. In addition, it uses the mean-CVaR model. The CVaR considers only 

undesirable fluctuations for risk assessment; therefore, it is superior to variance. 
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