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Abstract

The primary aim of this paper is to investigate useful generalizations of the classical concept of action
of a hyperstructure on a non-empty set. The main goal is to develop the theory of dynamical system
to the theory of n-ary dynamical hypersystem. We also give some principal properties of an n-ary
dynamical hypersystem.
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1 Introduction

He main motivation for the work in this pa-
T per is the study of the theory of n-ary dy-
namical hypersystem. Algebraic hyperstructures
were introduced by F. Marty [31] in 1934. One
of the first books, dedicated especially to hyper-
groups is “Prolegomena of Hypergroup Theory”,
written by P. Corsini in 1993 [8]. Another book
on “Hyperstructures and Their Representations”
was published one year later [31]. A recent book
on these topics is “Applications of Hyperstructure
Theory”, written by P. Corsini and V. Leoreanu
[9], see also [14, 15].

Definitions and theorems about hyperstructure
and applications that are needed along our study
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and can be found in the References. When good
references are available, we may not include the
details of all the introduction and proofs.

We use [2, 8, 9, 12, 21, 35] and summarize the
general preliminary definitions of algebraic hyper-
structures.

Definition 1.1. Let H be a non-empty set. Let
P*(H) be the set of all non-empty subsets of H,
we define the concepts of hyperoperation, semi-
hypergroup, hypergroup, H,-group and regular hy-
pergroup as following:

(i) A hyperoperation on H is defined as a map
®: HxH — P*(H). The couple (H,®) is
called a hypergroupoid. If X andY are non-
empty subsets of H, then we denote X®Y =
Usex, yey 2®y, a®X ={a}®X and X®
a=X®{a}, where a € H.

(i) A hypergroupoid (H,®) is called a semi-
hypergroup if we have (zQy)Rz = xR (yR2)
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for all x,y,z of H, which means

U URQz = U T Q.

ucr@y vEYR2Z

(iii) We say that a semi-hypergroup (H,®) is a
hypergroup if we have x @ H = H® x = H
forallx € H.

A hypergroupoid (H,®) is an H,-group, if
for all x,y,z € H, the following conditions
hold:

(1) 2@ (y@2z)N(zr®@y) ®z# 0 (weak associa-
tivity),

(2) x®@ H=H ®x = H (reproduction axiom).

() A hypergroupoid (H,®) is said to be commu-
tative (or abelian ) ifx @y =y ® x for all
z,y € H.
(v) A hypergroup (H,®) is called regular if it has
at least an identity, that is an element e of
H, such that forallx e Hx ce®@zNzr®e
and each element has at least one inverse,
that is if v € H, then there exists x' € H
such that e € v @ 2' N2’ @ x. The set of all
identities of H is denoted by FE(H)
(vi) If x € H,i(z) = {2’ : e € 2’ ®ux} is the set of
all left inverses of x in H (resp. ir(x)) and

i(x) =i(x) Nip(x).

A regular hypergroup (H,®) is called re-
versible if for all (z;y;a) € H3:

(1) y € a®x, then there exists a’ € i(a) such
that x € a’ Ny;

(2) y € x®a, then there exists a” € i(a) such
that v € y ® a”.

(vi)

(vii) Let (H,®) be an H,-group and K be a non-
empty subset of H. Then K is called an H,-
subgroup of H if (K,®) is an H,-group.

(iiz) Let (H,®) be a hypergroup, K a non-empty
subset of H. We say that K is invertible to
the left if the implication y € K @ x = x €
K ®y valid. We say K is invertible if K is

wnvertible to the right and to the left.
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Proposition 1.1. If (H,®) is a hypergroup such
that E(H) # ¢; and K is an invertible subhyper-
group of it, then E(H) C K.

Definition 1.2. Let (Hi,-), (Ha,*) be two H,-
A map f:Hy — Hy is called an H,-
homomorphism or a weak homomorphism if f(x -
y) N f(z) * f(y) #0 for all z,y € Hy.

The map f is called an inclusion homomorphism
if f(z-y) C f(z)* f(y) forall z,y € Hy.
Finally, f is called a strong homomorphism if
f@-y) = f(@)  f(y) for all z,y € H,.

If f is onto, one to one and strong homomor-
phism, then it is called an isomorphism. In this
case, we write Hi = Hy. Moreover, if the domain
and the range of f are the same H,-group, then
the isomorphism is called automorphism. We can
easily verify that the set of all automorphisms of
H, denoted by AutH, is a group.

groups.

We first present some basic notions and results
about n-hypergroups (see [9]), which are needed
in this paper.

Let H be a non-empty set and n € N,n >
2. Consider ®, : Hx H---x H — P*(H) ,

n—time
where P*(H) be the set of all non-empty subsets
of H. Then the hyperoperation ®,, is called an
n-ary hyperoperation on H and the pair (H, ®,)
is called an n-hypergroupoid. If B; fori =1,...,n
are non-empty subset of H. Then we denote

¢n(B1,-+,Bp) = (1.1)

n

J{n(br, -+ ba); (b1, -, ba) € [[ B} (1.2)

i=1
We shall denote the sequence h;, hit1,-- -, h; by
hl. For j < i, the symbol k! is the empty set.

Definition 1.3. [12/

(i) The n-hypergroupoid (H,®y) is called an n-
ary semihypergroup if for i,j € {1,2,...,n} and
h%n_l, we have

@n (hy ™, @n (R 1), TG =

i—1 n+j—1 n—
@ (W @ (WY, W2,
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(i1) We say that (H,®py) is an n-ary quasihy-
pergroup if for all hg,hy, -+, hy, € H and fized
i € {l,...,n} there exists x € H such that

ho € @u (Rt 2, h2n 1.

he (1.5)

(iii) An n-ary hypergroup is both an n-ary semi-
hypergroup and an n-ary quasihypergroup.

(iv) An n-ary hypergroup (H,®,) is commu-
tative if for all hY of H, and any permu-
tation o of {1,2,..,n}, we have ®@u(h}) =
®n(h0'(1)7 Ty ha(n))

(v) Let (H,®y) be an n-ary hypergroup and K a
non-empty subset of H. If K is closed under
the n-ary hyperoperation ®,, then we say that
K is an n-ary semi-subhypergroup. An n-ary
semi-subypergroup K is called an n-ary subhy-
pergroup of H if for all ko, k1, -, k, € K and
fized i € {1,2,...,n}, there exists x € K such that
ko € ®@n (ki 2, B, ).

Remark 1.1. Fvery n-ary operation can be con-
cetved as a hyperoperation whose value set is the
singleton {@y(z1,...,x5)} , for all z1,...,x,, €

Example 1.1. Let us consider the distributive
lattice (P*(X),U,N) of the parts of a set X, which
contains at least three elements. Define the fol-
lowing n-ary hyperoperation on P*(X): for all
X, -, X, € P*(X),

R (Xq,-+, X)) = (1.6)

{ZeP(X)|Xin---NX, CZCX1U---UX,}.

(1.7)
Therefore (P*(X),®y) is a commutative n-ary
hypergroup.

2 Main Results

In this section, we define our basic object of study.

2.1 The new approach to concepts of
universal n-ary hyperalgebra

Definition 2.1. Let n be a non-negative integer
and {H;,i = 1,....,n} be a system of (finite or
infinite) non-empty sets. We define the concepts

of n-ary hyperstructure (or n-HS), universal n-
ary hyperoperation (or n-UHO) as follows:

By an n-ary hyperstructure (or n-HS), we
mean the pair ({Hi;i =1,...,n}, ¢n), where

n n
oo [[Hi — P (U M)
i=1 i=1
maps any n-tuple (Hi,....,H,) € [, H:i to
a non-empty subsets ¢n(hi,....,hn) C Uiy Hi.
That is defined universal n-ary hyperoperation (or
n-UHO).
If A; fori = 1,....,n are non-empty subset of
Hy, then we denote

(2.8)

¢n(A1a An) = (2.9)

U{on(@1, an)i (@1, .. z0) € [[ A} (2.10)
i=1

Remark 2.1. In the special case let H; = H for
alli=1,..,n. We obtain an n-HO on H that is
an operation ¢, from H"™ to P*(H). Similarly,
we can identify the set {x} with the element x.
Therefore any n-HO is an n-UHO.

Example 2.1. Now we specialize our considera-
tions to the classical differential ring of real func-
tions f € C*(R), here J = (a,b) C R, ( not
excluding the case J = R) with the usual differ-
entiation. For any f € C*°(R), we denote by
[ f(z)dz the set of all primitive functions to f.
For any n-ary of functions ¢; € C*®(J) with
i=1,..,n. Let ¥ = (¢1,....,¢,). We define an
n-UHO x(,, gy on the ring C*°(J) by

fnay : C(T) X oo X C(J) — PH(C(J))

n—time

#n,0) (f15 0 fn) = [T (Wi (@) fi(w))dz), fi €
().

BEvidently (C*°(J),*pw) is a universal n-ary hy-
peralgebra (or n-UHA).

Example 2.2. Let {V;)}, be a family of real
vector spaces endowed with an n-ary hyperbracket
[yees ] 2 VI X o XV — P*(U Vi)

N——

n—time



168 A. Dehghan Nezhad et al., /IJIM Vol. 14, No. 2 (2022) 165-176

[V1, ..., 0] = Uiy Span{vi}, v € V.
———

n—time

Therefore, the pair ({Vi)}iq,[.,...,.]), is an n-
——

n—time

UHA.

Example 2.3. A 3-ary Lie hyperalgebra is a vec-
tor space V over R, equipped with a 3-ary linear
hyperbracket map

[, 1 VXV XYV —VCPV)

——

3—time
satisfying the properties;
(i) [X,Y,Z] = —[Y, X, Z] (anti-commutativity),
(ii) [ X1, Xo, [Y1, Yo, Y3]] = [[X1, X2, V1], Y2, V3] +
Y1, [ X1, Xo, Yo, Y3] 4 [Y1, Y2, [ X1, X, V3],
(i) [X,Y,Z] + [V,Z,X] + [Z,X,Y] =
0,vX;,Y:, Z €V (Jacobi identity).
Thus, the pair (V,].,.,.]), is an universal 3-ary
Lie hyperalgebra.

Example 2.4. Let M be a differentiable n-
manifold with differentiable structure §. The
(C*®M)-module of wvector fields on M is de-
noted by x(M). If X,Y and Z are vector
fields on M. It is well known that, given
[X,Y]:=XY —YX. he standard Jacobi identity
(JI) [[X.Y],Z] + [[Y.Z], X] + [[2, X],Y] = O
1s automatically satisfied if the product is asso-
For a Lie algebra A, expressed by the
Lie commutators [X;, X;] = C*;; X, in a certain
basis {X;}, i = 1,...,7 = dimA. The JI implies
the Jacobi condition (JC) tel'P2i3cr 8. —.

2%irigiz T j1j2 ~ pJ3

ciative.

Let n be even.
symmetric Lie multi-bracket is a Lie algebra val-

A n-ary bracket or skew-

ued n-ary linear skew-symmetric mapping

[ ] i AX o x A— AC P*(A)
—_——

~—— g
n—time n—time
(Xil, ~--;Xi") —> [Xi17 ,in] = wqu...inXUf
where the constants w{ , X, is satisfied the
1..0n
condition
Jzfanotgp P () (the generalised
1112...92p—1  J1--fn " Jn+1---J2n—1 g

Jacobi condition (GJC)).

For n = 2 it gives the ordinary (JC). Therefore,
the pair (A, |.,...,.]), is a universal n-ary Lie hy-
——
n—time

peralgebra.

Remark 2.2. A n-UHO (1) yields a map of
power-sets determined by this hyperoperation.
Thus the map

i=1 i=1
18 defined by D, (X1, ..., Xp) =
U{on(x1, ..y 2n); (21, oyzn) € [l Xs} and
conversely an n-UHO on [[;_, P*(X;) yields an
n-UHO on [[i, X; .

(2.11)

Definition 2.2. Let X¥ = ({X;i =
1,...,nt},(¢t)t€w) and yw ({yz,l =
Lyne}, (Vi)tew) be a pair of ng-UHO of the
same type w. A homomorphism F“ : X¥ — Y%
between two n:-UHO is any system of mappings
F =A{fi :+ Xi — Yi} such that the following
diagram is commutative:

n

[T, —P(J "

i=1 i=1

| |

JJ R P*(Jw)
=1

=1 e

where for any ny-tuple (z1,22, ..., xn,) € [[11, X

we have
Hfi(xl,xg,...,xm) =
i=1
(fl(xl))fQ(x2)7 "'7fnt(xnt))
and U* : P*(U X)) — P*(U Vi)
i=1 i=1
is the lifting of a mapping ¥ : \J;t, X — U2, Vi

defined by the induction. For x € X, suppose

9(z) = fi(z). Sod: Uiy Xj —> Uiy Vj is well
defined and for any x € Xi+1\U§:1 X; suppose
I(z) = fira(z) .
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By the above definition, the following lemma is
easily proved.

Lemma 2.1. Let
X"J = ({XHZ - 17 "'7nt}7 (¢t)t€w)7

V9= {Visi=1,...,n¢}, (Vt)tew)

and 2 = ({Zi1 = 1,...,me}, (M)tew) are three
ne-UHO of the same type w. If F¥ : XY —
V¥ and G¥ : Y¥ — Z“ are homomorphisms.
Then we can define a homomorphism between two
hyperalgebras X* and Z“ such that

GYoF¥ = {giofi : Xi — Zz}

In the above definition if X; = X and YV, = )
for all ¢+ = 1,...,n. Then we obtain the classical
hyperstructure theory is as follow:

Definition 2.3. XY = (X,(¢t)tew) ,» VY =
(Y, (Vt)tew) be two ng-HA of the same type w. A
map [ : XY — V¥ is called a homomorphism if
for everyt € w and all x1,...,2p, € X:

f(¢t(x17 "'7377%)) - ¢t(f(331)7 ,f(l’nt)) (2'12)

f is called a dual homomorphism if:

f(¢t($17 "'7$nt) 2 wt(f(x1)7 ,f(l'nt)) (2'13)
f is called a weak homomorphism if:
f(¢t($1, ) xnt)) N wt(f(x1>v 2 f(l'nt)) # 0
(2.14)

And finally f is called a strong homomorphism if:

f(‘bt(xl? "‘Vrnt) = 1/1t(f(951)7 "'7f(xnt))‘ (2'15)

Remark 2.3. Let f is bijection then it is called
an isomorphism, a dual isomorphism, and a
strong isomorphism, if both f and f~ are homo-
morphisms, dual homomorphisms, and strong ho-
momorphisms, respectively. In the case of strong
isomorphism, we write X* = Y. If the domain
and the range of f are the same hyperalgebras,
then the isomorphism is called automorphism. It
1s easily verified that the set of all automorphisms
of XY, denoted by Aut X%, is a group.
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Corollary 2.1. The following are equivalent for
a function f between two hyperalgebras X¥ and
Y of the same type w.

(i) The map f is an isomorphism.

(i) The map f is a dual isomorphism.

(iii) The map f is a strong isomorphism.

Proof. (i) Right-arrow (iii) suppose that f
X¥ — V¥ is an isomorphism. Thus both f and
f~! are homomorphisms. Then, since fof~! = id
is a strong homomorphism (actually a dual homo-
morphism), so for every t € w and all x4, ...,z,, €
X“ we have

(fof ) (de(w1, ooy ny))- (2.16)

The proof of (i) = (ii) is similar and the other
implications are obvious. O

Remark 2.4. In the definition of an n-UHO, if
H; = H for alli =1,....n. Then we obtain the
classical n-ary algebraic hypersystem (hyperstruc-
ture theory) [16].

2.2 Topology of Hyperalgebra

Recall that a topological group is a group G
together with a topology on G that makes
the multiplication and inversion operations
continuous; where the topology on G x G is the
corresponding product topology. The discrete
and trivial topologies are group topologies on ev-
ery group, but the question of finding interesting
hyperstructure topologies has received a great
deal of attention in the literature. We begin with
a brief overview of this literature, to motivate

our work in this paper.

Let H be aset and (H, 7) be a topological space
where for any x € H there exist at least one open
set O(z) such that = € O(z), which is called fun-
damental open set.

Example 2.5. Let H be a set, T is a topol-
ogy on H and ®, s a hyperoperation on H de-
fined by ®@n(z1,....,2n) = Ui, ((x;i) where ¢ :
H — P*(H) is a function that for any x; € H
, C(x;) = O(z;). So the hypergroupoid (H,®y,) is
a hypergroup.
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As defined topology n-groups, we had hoped
to be able to define the topology on n-ary hyper-
groups as the hyperoperation be continue. But
we cannot define a topology on the P*(H) with
the help of the topology of the hypergroup H. So
we recall first the semicontinuity and then intro-
duce an adequate definition of topological n-ary
hypergroups.

Definition 2.4. Let (H,®,,) be a hypergroupoid
and (H,T) be a topological space, the Cartesian
product H™ will be equipped with the product
topology. The hyperoperation x,, is called:

(1) upper semcontinuous, if for every open set
O € 7, the set O* = {(x1,....,x,) € H" :
®n(x1,...tp) C O} is an open in H™;

(2) lower semicontinuous, if for every open set
O € 1, the set O, = {(z1,....,x,) € H"
Rn (21, ...xn) NO # 0} is an open in H™;

(3) Similarly, the hyperoperation ®,, is semicon-
tinuous if it is upper and lower semicontinuous.

Remark 2.5. Let ®, be a hyperoperation on H™.
Then the hyperoperation ®,, is upper semicontin-
wous at (1,...,xn) € H™ if and only if for every
open set U € T, such that @, (x1,...x,) C U there
exists open sets V; , (i = 1,...,n) of (x1,...,zp)
such that for all i ,x; CV; implies

On(Y1s -y Yn) CU for all y; € V;.

Similarly, ®, is lower semicontinuous at
(x1,...,xpn) € H™ if and only if for every open
set U € T satisfying ®p(x1,...xn) NU # (0, there
exists open sets V; , (i = 1,...,n) of (x1,...,zp)

such that for all i ,x; CV; implies

Qn(Y1, - yn) NU # 0 for all y; € V.

Proposition 2.1. The hyperoperation ®, of any
n-ary semihypergroup H endowed with the topol-
09y T 1S upper Semicontinuous.

Proof. Let O be an open set of H. If (z1,...x,) €
O* then |J;~, O(z;) € O. Since Va; € H,z; €
O(x;) € O we get (1, ...x,) € O*. Conversely;
let (x1,...2,) € O*. It is easy to see that for any
the open sets O(xz;) are included in O. Therefore,

it is their union and finally (x4, ...z,,) € O*. O

Proposition 2.2. The hyperoperation ®,, of any
topological n-ary semihypergroup (H,T) is lower
semicontinuous if O(x)NO =0 = O(a) N O =
0; Va € O(x).

Proof. Let O be an open set of H. Since O(x) is a
neighbourhood of x for any x € H. To prove that
O, is open; we will prove that for any (z1,...x,) €
O, there exists a neighbourhood V' of (x1,...x,)
such that (z1,...z,) € V C O,. Let (z1,...x,) €
O, and set V = O(z1) X ... x O(xy,). This set is
an open set of H" and then a neighbourhood of
(x1,...xp). The condition (|J;O(x;))NO =0
implies that O(z) NO =0 or ... O(z,) N O = 0.
For (a1, ...,a,) € O(x1) X ... x O(zy,) and from our
condition, we can deduce that O(a;) MO = 0. So

(O(a1)U...UO0(ay))NO = 0 and (ay, ..., a,) € O.
Finally (z1,..2,) € O(z1) X ... X O(zy,) C O,.
Thus O, is an open set. O

Definition 2.5. A topological n-ary hypergroup
(H,*y) is a hypergroup endowed with a topology
T such that the hyperoperation is semicontinue.

Corollary 2.2. If (H,®,) is a hypergroup
and the topology 7 on H is such O(x1,...,xy) N
O =10 = O(a1,...an) N O = 0; Y(ai,...an) €
O(x1,...,xn) for a fundamental saturated family
{O(z);z € H}, then H is a topological hyper-
group.

Remark 2.6. It is trivial that the hyperoperation
®n as defined above is commutative.

Example 2.6. The discrete topology on (H,®y,)
defined by Qp(x1,...,Tn) = {x1,...., 20} has the
required properties. Therefore (H,®y) is a topo-
logical hypergroup.

Proposition 2.3. Any open set K of a n-ary
semihypergroup H endowed with the topology (T)
s a n-ary sub-semihypergroup of H.

Proof. 1. If x € K then z € O(z)N K which is an
open set. Consequently O(xz) C K. Thus ab C K
, for all a;b € K.

2. By the definition of our topology, any z € K
is such x € O(z) and so Va € K;x € O(a)UO(x).
Then we get K C Ka C K — K = Ka.

The other equality can be obtained similarly. H
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is a sub-semihypergroup of itself. Any other sub-
semihypergroup of H will be called a proper sub-
semihypergroup. O

2.3 Topological universal n-ary hyper-
algebra ( or topological n-UHA)

Recall first the basic terms and definitions of
topological n-ary hyperalgebra.

Definition that ({Xi;1 =
1,...,n},®,) be a wuniversal n-ary hyperalge-
bra,

2.6. Assume

where ®,, is a n-ary hyperoperation on
Xi(i = 1,...,n) , for each 11,..., 7 is a topology
on Xy, ..., X, and T be a topology on P*(\U;_, Xi)
as follow:

The family B consisting of all sets Sy = {U €
P (UL X)) | UCV,V =i vi,v €15} isa
base for a topology on P*(|JI, X;).

Let X = [}, X; and 7 = (71, ..., T0), if the uni-
versal n-ary hyperoperation ®,, is continuous, the
triple({Xi;i = 1,...,n}, ®,,7) is called a topology
of universal n-ary hyperalgebra.
of ®, means that for every (z1,...
following statement holds:

The continuity
,Tp) € X the

VOq)n(azl,..,,xn) er* H(Ozl S 71)711

(I)TL(OUUU ey Oxn) - OCL"{L

Definition 2.7. Let for n > 2, the pair (H,®;,)
be a classical n-ary algebraic hypersystem. We
say that (H, ®y) is an n-ary group ( or n-group)
if and only if is an n-semigroup and an n-
quasigroup.

Definition 2.8. Assume that (H,®P,) be an n-
groupoid, n > 2 and T

H isatopologyon H.I fthen—hyperoperation®,,
is continuous, the triple (H,®,, ) is called a
topological n-groupoid. The continuity of &,
means that for every hi, ha,...,h, € H, (or h} €
H) the following statement holds:

VO<I>n(h?) € TH, = (2.17)

(Ohi S T)Tf, (I)n(Ohla . Ohn) - Oh’f (2.18)

(equipped with ordinary product topology To X ... X
TH )

In the sequel for n-group (H,®,) suppose ~!

its inverse operation, n > 2.

Definition 2.9. Let H be equipped with a topol-
ogy . Then we say that (H,®,, ) is a topo-
logical n-group if:

1) the n-hyperoperation, ®,, is continuous in Ty
and

-1

2) the (n—1)-hyperoperation, ~* is continuous in

TH -

In other words, we say that (H,®,,7y) is a
topological n-group if:
1)V0¢n(hrlz) € TH H(Ohi € ’7')?
(I)n(Ohla ceey Ohn) - O@n(h?),
2¥O -1y €1 I(On, € )
@n(Ohl, ey Ohn,l)_l - O(:Brll—l),l,
inspired by the definition of the topological n-
group.

Proposition 2.4. Assume that ({X;i =
Lyeyni}y (P )tew) be an ng-UHA, where Oy is an
ne-HO on X;(i = 1,...,n¢) , for each t € w and
Tls ..oy Tny 1S @ topology on X4, ..., Xy, and Tt be a
topology on P*(IUi", X;) as follow:

The family B; consisting of all sets Sy = {U €
P X) | U C VLV = Uty viyos € 7} is a
base for a topology on P*(IU, X;).

We define the topological n;-UHA as follow.

Definition 2.10. Let X = [[", &; and 7 =
(T1y ey Tny ). If the ny-UHO, ®; is continuous,
then the triple({X;;i = 1,....,m}, (Pt)tew, T) is
called a topological ny-UHA . The continuity of
O, means that for every (x1,...,xy,) € X the fol-
lowing statement holds:

VO@(m,_..wnt) et E](Oxi € Ti)?t (2.19)

®(Osy, -, Os,,) € O (2.20)

Example 2.7. We define a the 3-UHO, ¢3 as

follows;

¢3:(0,1) x Nx (0,1) — P*((0,1) UNU (0, 1))
(2.21)

o3(x,n,y) = {%m <k <n},Vr,y € (0,1).
(2.22)
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Therefore ¢s(x,n,y) < (0,1) and for every
m,n € N and z,y,z € (0,1), we have,

03(d3(e,m.y).m,2) = {10 <k < (n+ m)}
(2.23)
= ¢3(xana¢3(y7m7 Z)) (224)

The trzple (((07 1)7 N, (07 1))’ ¢3, (Ta 705 T)) s a
topological 3-UHA, where T is the standard topol-
ogy on (0,1) and 79 is the discrete topology on
N.

The Cartesian product H X ... x H = H" con-
—_——
n—time
sists of all n-tuples (hq, ..., he), such that h; €
H,i = 1,...,n. The i-projection of the Carte-
sian product H" on its i-th axis is the map
Pri™ 4" — 3 such that (hy, ..., ha) 1— h;.

2.4 The n-ary dynamical hypersystem

Definition 2.11. [20] Let H be a group and X
be a set. Then H is said to act on X (on the left)
if there is a mapping ) : H x X — X satisfying
two conditions:

(i) If e is the identity element of H, then

Qe,z) =z, Vo e X (identity) and
(i) If hi,ha € H, then Q(hy,Qhe,z)) =
Q(hiha,x), Ya € X (compatibility).

When H is a topological group, X is a topologi-
cal space, and §2 is continuous, then the action is
called continuous.

Example 2.8.
(1) Let X = S' = {2z € C||Z|= 1} and H be the
group of nth roots of unity for some n. Then

H acts on St by rotations : en acts on e by
Q(eﬂTﬂ,eiQ) = H0+55),

(2) Take X = R? and H = 72 For
each pair of integers (m,n) € 72, we define
Q(m,n), (2,9) = (m + zn + ).
(Z2,R?) is a continuous group action.

The pair

This section explores the novel notion of the
n-ary hyperstructure actions, which is a natural
generalization of the usual notion of group ac-
As a first step toward the study of the
n-ary hyperstructure actions from the algebraic
viewpoint.

tions.

Definition 2.12. [17] (i) An element e € H,
where (H; @) is a hyperstructure, is called an
identity if for all x € H there holds © € ¢(z,e)
and x € ¢(e,x).

(ii) The element e of an n-ary hypergroup (H, ¢r,)
is called a neutral (identity) element if

On(e X - Xexex- - Xe)

(i—1)—time (n—i)—time

includes © for all x € H and alli € {1,2,---,n}.

Definition 2.13. An n-ary dynamical hyper-
system or n-DHS A, is a triple (X,A,,A),
where A = ({Hj;t = 1,...,n}, ¢p) (time set) is
an n-UHA, the function ¢, is a hyperoperation
on Hi(i = 1,...,n), the non-empty set X is the
state-space (a topological space with topology Tx )
and Ay, is a map A, : H x X — P*(X) (we set
H = [1i-, Hi), that satisfying two conditions:

(Z) An(El,...,En,a;) =
Ue,er, Anler,en,z) 2 {z}, Vo € X,
where E; is the identity set for H;, for all
1=1,...,n,

(ii) If hi,...,hp, € H, then Yz € X;

Ap(Pn(h1, Eay ..., En), Ap (0 (Er, ha, ..., By,
An(7An(¢n(E17 ey En—la hn)7$)7 )))
€ A(¢pn)(hiy .y hy), x)

where Ay ((dn)(hi, .oy hn), ) = {Ap(h,x) : h €
Gn(h1,...,hpn)} and E; is the identity set for H;,
foralli=1,...,n.

Example 2.9. Let H = SPD(n) be the set of nx
n symmetric, positive definite matrices. Suppose
X = GL(n,R), then the act of H on X as follows;

Ay : GL(n,R) x SPD(n) — P*(SPD(n))

for all G € GL(n,R) and all s € SPD(n),
Ao (G,S) = {S,GSGT ,GTSG}. It is easily
checked that GSGT,GTSG is in SPD(n) if S is
in SPD(n).
written as S = GGT, for some invertible matriz
G. Therefore the triple (SPD(n), A2, GL(n,R))
is a 2-DHS.

Our study
ply to finite-as well as infinite-dimensional n-
DHS whose motions may evolve along a con-
tinuum (continuous-time n-DHS), discrete-time

For every SPD matrix S, can be

is sufficiently general to ap-
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(discrete-time n-DHS). In the case of continuous-
time n-DHS, we consider motions that is con-
tinuous concerning for to time (continuous n-
DHS) and motions that allow discontinuities in
time(discontinuous n-DHS).

Let (X, Ay, A) be an n-DHS. Then a (Y, A,, A)
is called a n-ary subdynamical hypersystem of
(X,An, A), when Y is a subset of X.

Furthermore (X,A,|H', A’) is called a n-ary
dynamical subhypersystem of (X, Ay, A), when
H! C H; and H' = H{x,...,xH],.

Definition 2.14. Let A= ({H;;i=1,...,n}, ¢n)

and B = ({H[;i = 1,...,n},¢),) be two n-HA
where Ei(i = 1,..,n) is the identity set for
H; and El(i = 1,...,n) is the identity set for
H!. Two n-DHSs (X,An,H) and (X', A}, H'),
are called conjugate n-DHS if there exist
one to one and onto maps L X - X
and T : H — H', where T; H, — H]
and T* : P*(J", H;) — P*(U;-, H]) such that
T*(h) = Ti(h) that the following two azioms hold;

(1) T*(pn(hiy s hn)) =

Vh; € H;

G (Ti(h1), -, Ta(hn)),

H=H x..xH, —P(JH)
=1

-

n
M =Hj x .. x H,—P*(| | H]

(2) L(An(h,x)) = A, (T"(h), L£(z)),

Vhe H,z € X.

Proposition 2.5. Let (L£,7) be a conjugate
relation between two n-DHSs (X,A,,H) and
(X' AL HY) (or ({Hizi = 1,..,n},¢,) and
({H};i = 1,...,n},¢))) and (L', T") be a conju-
gate relation between two n-DHSs (X', Al,,H')
and (X", AV H") (or {H;i=1,..,n},¢))
({H!;i=1,...,n},¢?)). Then

and

(1) the relation (L7Y,T7Y) is a conjugate
relation between two n-DHSs (X', A, H') and

(XvAna%) (07“ ({Hz/al =
({H’Laz =1, -'-an}7¢n))z

1,..,n} @) and

(2) the relation (L'oL,T'oT) is a conjugate
relation between two n-DHSs (X,A,,H) and
(X", A H"Y (or ({Hizi = 1,...,n},¢n) and
({H5i=1,....n},¢,))-

Proof. (1) If b}, € H] for all ¢ € 1,...n. Then the
following sequence of equalities holds

(T*) =N (Rh, s b)) =
(T*) " (Ti(h), s Ta(hn))) =
(T*)_I(T*(¢n(h17 7hn)) = ¢n(h17 ;hn) =
O (T (TL(h1)); ooy T M (Ta(Bn))) =
On(Ty(hY), ., Ty ' (R,)) where h; € H;

For all ¥ € H' and 2/ € X', we conclude

that the following sequence of equalities hold

Ay (1), ') =
AL(T(T™) 7 (R), L(L7H (")) =
(A ((T™)H(R), L7H(2"))) =
T~HR), L7 ().

1
—1
! (T

(h
h; € H;.

(
(
(L
(
If

>hhl\|a

n(
2

—

Then the following sequence of equalities
holds

T/*OT*(¢n hl,..., ) =
T (¢n(Ti(h1), ..., Ta(hn))) =
¢Z(T/107-1(h1),...,7-' 0Tn(hn)).

Finally, we conclude that for every h € H
and z € X the following sequence of equalities
holds

AT oT™(h), L'oL(z)) =
L'(A(T™h), L(x) = L(L(An(h,x))) =
(L'0L)(An(h, x)). O

Example 2.10. Let {N;)}"; = N be a family of
the set of natural numbers endowed with an n-HO
%t Ny X .o X N, — P*(Ny x ... x N,,)

*n(ml, ,mn) = U?:1{(l17 ,ln)’ll + .4+l =
mi+ ... + mp,li, .l € N}, m; €N,

Therefore, the pair ({N;)}?_,, %), is an n-UHA
with an identity element (0, ...,0).
——

n—time
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We define an n-UHO A, on the ring
C®((J x ... x J)) by
n—time
Ap N X C®((J x ... x J)) —
—time
P (C*®((J x ... x J)))
—time
An((ma, ... ma), f) =

3m1+ t+mn
{U*n(ml, , ) Oz .. 8171:2;):} fG

CH( x5,

n—time

where 0 denotes the partial derivative in the
partial differential equation (PDE). Ewvidently
(C®((J x ... x J)), A, N) is a discontinuous n-
n—time

DHS.

Definition 2.15. For any * € X, the set
OM(x) = {A(h,x);h € H} is called hyperorbit
of x.

Example 2.11. Let (X, \,, H) is a dynamical
system. So we can define a 2-DHS (X, !, H)

:H x X — P*(X) by (g,2) >—>é ?,)

Proposition 2.6. Let (£,T) be a conjugate rela-
tion between ({H;;i=1,...,n}, ¢pn) and ({Hf;i =
1,eonh,d). Then £(0%(z)) = (0% (£(x)).
Proof. If ' € L(O™(x)), then there exists h € H
such that

' € L(A(h,x))

where A},

= N (¢n(h), L(x)) € O™ (L(2)).

Since conjugate relation is an equivalence rela-
tion, so the first part of the proof shows that

£7H(0% (£L(x)) € O(a).
In the same manner, we can see that
£7HOM(£(w)) 2 OF(a).
This finishes the proof. O
Proposition 2.7. Let (£, T) be a conjugate rela-

tion between ({H;;i = 1,...,n},¢,) and ({H;i =
1,..,n},¢l). If O%(z) = X, then OM'(2') = X'.
Proposition 2.8. Let (£,7T) be a conjugate rela-
tion between ({H;;i=1,...,n}, ¢pn) and ({Hf;i =

1,ean}, @), If {Hyi=1,...,n},¢,) be a topo-
logically transitive, then ({H[;i =1,...,n},¢,) is

topologically transitive.

3 Conclusions

The study of properties of n-ary dynamical
hypersystem in the context of n-ary topological
hypergroups is a new research topic of n-ary
hyperstructure theory. The existing research on
this topic deals only with n-ary hyperstructures
and for this study, the approximations in n-ary
topological hyperstructures are important. In
this paper, we introduce and characterize n-ary
dynamical hypersystem and give some examples.
Our future work on this topic will be focused
on the study of some particular classes of n-ary
dynamical hypersystem.
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