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Abstract

In this research paper, a numerical method is presented for solving second-order hybrid fuzzy dif-
ferential equations by using fuzzy Taylor expansion under generalized Hukuhara differentiability and
also with convergence theorem. Also, the method is illustrated by solving several numerical examples.
The final results showed that the solution of the second-order hybrid fuzzy differential equations.
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—————————————————————————————————–

1 Preliminaries and problem
formulation

T
he study of fuzzy differential equations
(FDEs) forms a suitable setting for the

mathematical modeling of real world problems in
which uncertainly or vagueness pervades. There
are several approaches to studying fuzzy differ-
ential equations [19]. Historically, the first ap-
proach was the use of the Hukuhara differentia-
bility for fuzzy-number-valued functions. Under
this setting, mainly the existence and uniqueness
of the solution of a fuzzy differential equation
were studied [11, 16]. The strongly generalized
differentiability was introduced in [7] and studied
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in [8, 9, 12, 17].
Particularly, the use of hybrid fuzzy differential
equations (HFDE) is a natural way to model
control systems with embedded uncertainty that
are capable of controlling complex systems which
have discrete event dynamics as well as continu-
ous time dynamics. In recent years, many works
have performed by several authors in numerical
solutions of fuzzy differential equations. Further-
more, there are some numerical techniques to
solve hybrid fuzzy differential equations [20, 21].
The paper is structured as follows; In Section
2, we list some basic definitions for fuzzy-valued
functions. In Section 3, we develop a numeri-
cal solution for 2-order fuzzy hybrid differential
equations. We define Taylor series expansion for
fuzzy-valued functions such that f is generalized
Hukuhara differentiable. According to types of
differentiability, the Taylor expansion of the fuzzy
function is investigated in different scenarios. Ad-
ditionally, in Section 3, the uniqueness and exis-
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tence of second-order fuzzy differential equations
are studied. Section 4, contains numerical exam-
ples to illustrate the method, and conclusions are
drawn in Section 5.

2 Preliminaries

In what follows, we briefly recall the basic defini-
tions and properties of the generalized Hukuhara
derivative. We denote by E, the set of fuzzy num-
bers, that is, normal, fuzzy convex, upper semi-
continuous and compactly supported fuzzy sets
which are defined over the real line.

Definition 2.1. (See [14]) A fuzzy number u
in parametric form is a pair (u, u) of functions
u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following
requirements:

1. u(r) is a bounded non-decreasing left contin-
uous function in (0, 1], and right continuous
at 0;

2. u(r) is a bounded non-increasing left contin-
uous function in (0, 1], and right continuous
at 0;

3. u(r) ≤ u(r), for all 0 ≤ r ≤ 1.

A crisp number k is simply represented by
u(r) = u(r) = k, 0 ≤ r ≤ 1.
For arbitrary u, v ∈ E and k ∈ R, the ad-
dition and scalar multiplication are defined by
[u+ v]r = [u]r + [v]r, [ku]r = k[u]r respectively.
In this paper, we follow [1] and represent an ar-
bitrary fuzzy number with compact support by

a pair of functions
(
u(r), u(r)

)
, 0 ≤ r ≤ 1.

Also, we use the Hausdorff distance between fuzzy
numbers. This fuzzy number space as shown
in [8] can be embedded into the Banach space
B = c2[0, 1] × c2[0, 1] with the usual metric de-
fined as follows: let E be the set of all upper semi-
continuous normal convex fuzzy numbers with
bounded r−level sets. Since r−cut of fuzzy num-
bers are always closed and bounded, the intervals
are written as u[r] = [u(r), u(r)], for all r. We
denoted by ω the sets of all nonempty compact
subsets of R, and by ωc the subsets of ω consisting
of nonempty convex compact sets. The Hausdorff
metric dH on ω is defined by

dH(K,S) = max{ sup
k∈K

inf
s∈S

∥K − S∥ ,

sup
s∈S

inf
k∈K

∥K − S∥}, K, S ∈ ω,

where K = (x, x′), S = (λ(x), λ(x′)).

The metric D is defined on E as

D(u, v) = sup{dH(u[r], v[r]) : 0 ≤ r ≤ 1},
u, v ∈ E.

For arbitrary (u, v) ∈ c2[0, 1] × c2[0, 1]. The fol-
lowing properties are well-known:

1. (E, D) is a complete metric space;

2. D(u⊕w, v⊕w) = D(u, v) for all u, v, w ∈ E;

3. D(ku, kv) = |k|D(u, v) for all u, v ∈ E and
k ∈ R;

4. D(u ⊕ w, v ⊕ t) ≤ D(u, v) + D(w, t), for all
u, v, w, t ∈ E;

5. D(u⊖w, v⊖t) ≤ D(u, v)+D(w, t), as long as
u⊖w and v⊖t exist , u, v, w, t ∈ E. Where, ⊖
is the Hukuhara difference (H-difference), it
means that u⊖w = v if and only if v⊕w = u.

Definition 2.2. (See [10]) The generalized
Hukuhara difference of two fuzzy numbers u, v ∈
E is defined as follows

u⊖gH v = w ⇐⇒
{

(i) u = v + w;
or (ii) v = u+ (−1)w.

In terms of r-levels we have [u ⊖gH v]r =
[min{u(r) − v(r), u(r) − v(r)},max{u(r) −
v(r), u(r)− v(r)}] and if the H-difference exists,
then u ⊖H v = u ⊖gH v; the conditions for the
existence of w = u⊖gH v ∈ E are

case(i)


w(r) = u(r)− v(r) and
w(r) = u(r)− v(r), ∀r ∈ [0, 1],
with w(r) increasing,
w(r) decreasing, w(r) ≤ w(r),

case(ii)


w(r) = u(r)− v(r) and
w(r) = u(r)− v(r), ∀r ∈ [0, 1],
with w(r) increasing,
w(r) decreasing, w(r) ≤ w(r).

It is easy to show that (i) and (ii) are both valid
if and only if w is a crisp number.
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Remark 2.1. Throughout the rest of this paper,
we assume that u⊖gH v ∈ E.

Note that a function f : [a, b] ⊆ R → E is
called fuzzy-valued function. The r−level repre-
sentation of this function is given by f(t; r) =
[f(t; r), f(t; r)], for all t ∈ [a, b] and r ∈ [0, 1].

Definition 2.3. (See [15]) A fuzzy valued func-
tion f : [a, b] → E is said to be continuous at
t0 ∈ [a, b] if for each ϵ > 0 there is δ > 0 such
that D(f(t), f(t0)) < ϵ. Whenever t ∈ [a, b] and
|t − t0|< δ . We say that f fuzzy continuous on
[a, b] if f is continuous at each t0 ∈ [a, b].

Definition 2.4. (See [23]) The generalized
Hukuhara derivative of the fuzzy-valued function
f : (a, b) → E at t0 ∈ (a, b) is defined as

f
′
gH(t0) = lim

h→0

f(t0 + h) ⊖gH f(t0)

h
, (2.1)

if f
′
gH(t0) ∈ E satisfying (2.1) exists, we say

that f is generalized Hukuhara differentiable (gH-
differentiable for short) at t0.

Definition 2.5. (See [14]) Let f : [a, b] → E and
t0 ∈ (a, b), with f(t; r) and f(t; r) both differen-
tiable at t0 for all r ∈ [0, 1]. We say that

- f is [(i)− gH]−differentiable at t0 if

f
′
i.gH(t0; r) = [(f)

′
(t0; r), (f)

′
(t0; r)], (2.2)

- f is [(ii)− gH]-differentiable at t0 if

f
′
ii.gH(t0; r) = [(f)

′
(t0; r), (f)

′
(t0; r)]. (2.3)

Definition 2.6. (See [14]) We say that a point
t0 ∈ (a, b), is a switching point for the differen-
tiability of f , if in any neighborhood V of t0 there
exist point t1 < t0 < t2 such that

type(I) at t1 (2.2) holds while (2.3) does not
hold and at t2 (2.3) holds and (2.2) does not
hold, or

type(II) at t1 (2.3) holds while (2.2) does not
hold and at t2 (2.2) holds and (2.3) does not
hold.

Definition 2.7. (See [2]) Let f : (a, b) →
E. We say that f(x) is gH-differentiable
of the 2th-order at t0 ∈ (a, b) whenever the
function f(x) is gH-differentiable of the or-

der i, i = 0, 1, at t0,
(
(f (i)(t0))gh ∈ E

)
,

moreover there isn’t any switching point on
(a, b). Then there exists f

′′
gH(t0) ∈ E such

that f
′′
gH(t0) = limh→0

f ′
gH(t0+h)⊖gH f ′

gH(t0)

h if
f ′
gH(t0 + h)⊖gH f ′

gH(t0) ∈ E.

Definition 2.8. (See [17]) Let f : [a, b] → E and
f ′
gH(x), gH-differentiable at t0 ∈ (a, b), more-
over there isn’t any switching point on (a, b) and
(f)′(t; r) and (f)′(t; r) both differentiable at t0.

We say that

1. f ′
gH(x) is [(i) − gH]-differentiable when-
ever the type of gH-differentiability of f(x)
and f ′

gH(x) is the same: f
′′
i.gH(t0; r) =

[(f)
′′
(t0; r), (f)

′′
(t0; r)], 0 ≤ r ≤ 1,

2. f ′
gH(x) is [(ii) − gH]-differentiable
if the type of gH-differentiability
of f(x) and f ′

gH(x) is different:

f
′′
i.gH(t0; r) =

[(f)
′′
(t0; r), (f)

′′
(t0; r)], 0 ≤ r ≤ 1.

Definition 2.9. (See [13]) Let f : [a, b] → E. We
say that f(t) is Fuzzy Riemann integrable ((FR)-
integrable for short) in I ∈ E if for any ε > 0,
there exists δ > 0 such that for any division P =
{[u, v]; ξ} with the norms △(P ) < δ, we have

D

( ∗∑
P

(v − u)⊙ f(ξ), I

)
< ε,

where
∑∗

P denotes the fuzzy summation. We

choose to write I :=
∫ b
a f(t)dt.

Lemma 2.1. (See [5]) Let f : [a, b] ⊆ R → E
be continuous. Then

∫ t
a f(t)dt. is a continuous

function in t ∈ [a, b].

Lemma 2.2. (See [5]) Let f ∈ CF (R,E), r ∈ N.
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Then the following integrals∫ sr−1

a
f(sr)dsr,∫ sr−2

a

(∫ sr−1

a
f(sr)dsr

)
dsr−1,

. . . ,

∫ s

a

(∫ s1

a
. . .

(∫ sr−2

a(∫ sr−1

a
f(sr)dsr

)
dsr−1

)
. . .

)
ds,

are continuous functions in sr−1, sr−2, . . . , s re-
spectively. Here sr−1, sr−2, . . . , s ≥ a and all are
real numbers.

Now, let T = [c, d] ⊂ R be a compact interval.

Definition 2.10. (See [16]) A mapping
F : T → E is strongly measurable if
for all r ∈ [0, 1] the set valued function
Fr : T → ρk(R) defined by Fr(t) = [F (t)]r is
Lebesgue measurable.

A mapping F : T → E is called integrable
bounded if there exists an integrable function k
such that ∥x∥≤ k(t) for all x ∈ F0(t).

Definition 2.11. (See [16]) Let F : T → E, then
the integral of F over T , denote by

∫
T F (t)dt or∫ d

c F (t)dt, is defined by the equation[∫
T
F (t)dt

]r
=

∫
T
Fr(t)dt; r ∈ [0, 1],

i.e., [∫
T
F (t)dt

]r
=

{∫
T
f(t)dt |f : T → R

is a measurable selection for Fr

}
.

Also, a strongly measurable and integrable
bounded mapping F : T → E is said to be in-
tegrable over T if

∫
T F (t)dt ∈ E.

Proposition 2.1. (See [6]) If F : T → E is
strongly measurable and integrable bounded, then
F is integrable.

Theorem 2.1. (See [24], [25]) Let f(x) be a
fuzzy valued-function on [a,∞[ which is repre-
sented by (f(x, r), f(x, r)). For any fixed r ∈
[0, 1], assume f(x, r), f(x, r) are Riemann inte-
grable on [a, b] for every b ≥ a, and assume there

are two positive constants M(r) and M(r) such

that
∫ b
a |f(x, r)|dx ≤ M(r) and

∫ b
a |f(x, r)|dx ≤

M(r) for every b ≥ a. Then f(x) is improper
fuzzy Riemann integrable on [a,∞[ and the im-
proper fuzzy Riemann integral is a fuzzy number.
Furthermore, we have∫ ∞

a
f(x)dx =

(∫ ∞

a
f(x, r)dx

,

∫ ∞

a
f(x, r)dx

)
.

Proposition 2.2. (See [24]) If each of f(x) and
g(x) is a fuzzy valued function and fuzzy Riemann
integrable on [a,∞[ then f(x)+g(x) is fuzzy Rie-
mann integrable on [a,∞[. Moreover, we have∫ ∞

a
(f(x) + g(x))dx =

∫ ∞

a
f(x)dx

+

∫ ∞

a
g(x)dx.

For u, v ∈ E, if there exists w ∈ E such that
u = v + w, then w is the Hukuhara difference of
u and v denoted by u⊖ v.

Theorem 2.2. (See [3]) Consider f : [a, b] → E
is gH-differentiable such that type of differentia-
bility f in [a, b] don’t change. Then for a ≤ t0 ≤
b,

(i) If f(t) is [(i) − gH]-differentiable then
f ′
i−gH(t) is (FR)-integrable over [a, b] and

f(t0) = f(a)⊕
∫ t0
a f ′

i−gH(t)dt,

(ii) If f(t) is [(ii) − gH]-differentiable then
f ′
ii−gH(t) is (FR)-integrable over [a, b] and

f(a) = f(t0)⊕ (−1)
∫ t0
a f ′

ii−gH(t)dt.

Theorem 2.3. (See [3]) Let f (i) : [a, b] → E and
f ∈ Cn

gH([0, T ],E). For all t0 ∈ [a, b]

(i) Consider f
(i)
gH , i = 1, . . . , n are [(i) − gH]-

differentiable and type of differentiability
don’t change in interval [a, b], then

f
(i−1)
i.gH (s) = f

(i−1)
i.gH (a)⊕

∫ s

a
f
(i)
i.gH(t)dt.

(ii) If f
(i)
gH , i = 1, . . . , n are [(ii) − gH]-

differentiable and type of differentiability
don’t change in interval [a, b], then

f
(i−1)
ii.gH (s) = f

(i−1)
ii.gH (a)⊕

∫ s

a
f
(i)
ii.gH(t)dt.
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(iii) Suppose that f (i), i = 2k−1, k ∈ N are [(i)−
gH]-differentiable and f(t), f (i), i = 2k, k ∈
N are [(ii)− gH]- differentiable, so

f
(i−1)
i.gH (s) = f

(i−1)
i.gH (a)

⊖(−1)

∫ s

a
f
(i)
ii.gH(t)dt.

(iv) Consider for f (i), i = 2k − 1, k ∈ N are
[(ii) − gH]-differentiable and f(t), f (i) are
[(i) − gH]-differentiable for i = 2k, k ∈ N,
then

f
(i−1)
ii.gH (s) = f

(i−1)
ii.gH (a)

⊖(−1)

∫ s

a
f
(i)
i.gH(t)dt.

3 Second-order fuzzy hybrid
differential equations

First we define a second- order fuzzy hybrid
differential equation by

x′′(t) = f(t, x(t), x′(t), λ(x), λ(x′)).

Where x(t) = (x(t, r), x(t, r)) and the fuzzy vari-
ables x′(t) and x′′(t) are the defined derivatives
of x(t, r) and x′(t, r), respectively. Given initial-
values x(t0) = α1 and x′(t0) = α2, we obtain a
fuzzy Cauchy problem of the second-order

x′′(t) = f(t, x(t), x′(t), λ(x), λ(x′)),

x(t0) = α1,

x′(t0) = α2.

(3.4)

Theorem 3.1. (See [22]) Suppose that for k =
0, 1, 2, . . . that each fk : [tk, tk+1]×E×E×E×E →
E is such that

[fk(t, x, r)] =
[
fk

(
t, x(t, r), x(t, r),

(
x

(t, r)
)′
,
(
x(t, r)

)′)
, fk

(
t, x(t, r),

x(t, r),
(
x(t, r)

)′
,
(
x(t, r)

)′)]
.

If for each k = 0, 1, 2, . . ..

There exists Lk > 0 such that

∣∣∣fk(t, x(t), y(t),(x(t))′
,
(
y(t)

)′)
−fk

(
t, x(t), y(t), (x(t))′, (y(t))′

)∣∣∣
≤ Lk max

{
|x− x|, |y − y|, |x′ − x′|,

|y′ − y′|
}
.

And

∣∣∣fk(t, x(t), y(t),(x(t))′
,(

y(t)
)′)

− fk

(
t, x(t), y(t), (x(t))′

, (y(t))′
)∣∣∣ ≤ Lk max

{
|x− x|, |y − y|,

|x′ − x′|, |y′ − y′|
}
.

For all r ∈ [0, 1] then Eq. (3.4) and the hybrid
system of ODEs



(
xk(t, r)

)′′
= fk

(
t, xk(t, r),

xk(t, r), x
′
k(t, r), x

′
k(t, r)

)
,(

xk(t, r)
)′′

= fk

(
t, xk(t, r),

xk(t, r), x
′
k(t, r), x

′
k(t, r)

)
,

xk(tk, r) = xk−1(tk, r), ifk > 0,

x0(t0, r) = x0(r),

xk(tk, r) = xk−1(tk, r), if k > 0,

x0(t0, r) = x0(r),(
xk(tk, r)

)′
=

(
xk−1(tk, r)

)′
, if

k > 0,
(
x0(t0, r)

)′
= x′

0(r),(
xk(tk, r)

)′
=

(
xk−1(tk, r)

)′
, if

k > 0,
(
x0(t0, r)

)′
= x′

0(r),

are equivalent when x(t) is [i −
gH]−differentiable. The Eq.(3.4) and the
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hybrid system of ODEs

(
xk(t, r)

)′′
= fk

(
t, xk(t, r),

xk(t, r), x
′
k(t, r), x

′
k(t, r)

)
,(

xk(t, r)
)′′

= fk(t, xk(t, r),

xk(t, r), x
′
k(t, r), x

′
k(t, r)

)
,

xk(tk, r) = xk−1(tk, r), ifk > 0,

x0(t0, r) = x0(r),

xk(tk, r) = xk−1(tk, r), if k > 0,

x0(t0, r) = x0(r),(
xk(tk, r)

)′
=

(
xk−1(tk, r)

)′
, if

k > 0,
(
x0(t0, r)

)′
= x′0(r),(

xk(tk, r)
)′

=
(
xk−1(tk, r)

)′
, if

k > 0,
(
x0(t0, r)

)′
= x′0(r),

are equivalent when x(t) is [ii −
gH]−differentiable.

Now we are going to study the uniqueness and
existence to second-order fuzzy differential equa-
tions.

Theorem 3.2. (See [4]) Let t0 ∈ [a, b] , and as-
sume that f : [a, b] × E × E × E × E → E is
continuous. A mapping x : [a, b] → E is a solu-
tion to the initial value problem (3.4) if and only
if x and x′ are continuous and satisfy one of the
following conditions:

(a)

x(t) = α2(t− t0) +

∫ t

t0

(∫ t

t0

f(s, x(s),

x′(s), λk(x), λk(x
′))ds

)
ds+ α1,

where x′ and x′′ are [(i)− gH]−differentials,
or

(b)

x(t) = ⊖(−1) +
(
α2(t− t0)⊖ (−1)∫ t

t0

(∫ t

t0

f
(
s, x(s), x′(s), λk(x),

λk(x
′)
)
ds
)
ds
)
+ α1,

where x′ and x′′ are [(ii)−gH]−differentials,
or

(c)

x(t) = ⊖(−1) +
(
α2(t− t0) +

∫ t

t0

(∫ t

t0

f
(
s, x(s), x′(s), λk(x), λk(x

′))
ds
)
ds
)
+ α1,

where x′ is the [(i)−gH]−differential and x′′

is the [(ii)− gH]−differential, or

(d)

x(t) = α2(t− t0)⊖ (−1)∫ t

t0

(∫ t

t0

f(s, x(s), x′(s), λk(x)

, λk(x
′))ds

)
ds+ α1,

where x′ is the [(ii) − gH]−differential and
x′′ is the [(i)− gH]−differential.

Lemma 3.1. (See [4]) For arbitrary (u, v) ∈
c2[0, 1]× c2[0, 1], we have

D(u⊖ w, u⊖ v) = D(w, v), ∀u, v, w ∈ E.

Theorem 3.3. (See [4]) Let: f : [t0, T ]× (E)4 →
E be continuous, and suppose that exist M1,M2 >
0 such that

d(f
(
t, x1, x2, λ(x1), λ(x2)

)
, f

(
t, y1, y2, λ(y1),

λ(y2)
)
) ≤ M1d(x1, y1) +M2d(x2, y2),

for all t ∈ [t0, T ], x1, x2, y1, y2, λ(x1), λ(x2),
λ(y1), λ(y2) ∈ E. Then the initial-value prob-
lem (3.4) has a unique solution on [t0, T ] for each
case.

Our aim now is to solve the following second-
order fuzzy hybrid differential equations, using
the Taylor expansion under strongly generalized
differentiability.
Consider the second-order hybrid fuzzy differen-
tial system equation

x′′(t) = f(t, x(t), x′(t), λk(xk), λk(x
′
k)),

x′(tk) = x′k,

x(tk) = xk.

(3.5)
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Where, 0 ≤ t0 < t1 < . . . < tk < . . ., tk → ∞,
t ∈ [tk, tk+1], f ∈ C[R+ × E × E × E × E,E],
λk ∈ [E× E,E].

Here, we assume that the existence and unique-
ness of solution of the hybrid system hold on each
[tk, tk+1] to be specific the system would look like:

x′′(t) =

x′′0(t) = f(t, x0(t), x
′
0(t), λ0(x0), λ0(x

′
0)),

x′(t0) = x′0, x(t0) = x0 , t ∈ [t0, t1],

x′′1(t) = f(t, x1(t), x
′
1(t), λ1(x1), λ1(x

′
1)),

x′(t1) = x′1, x1(t1) = x1 , t ∈ [t1, t2],
...

x′′k(t) = f(t, xk(t), x
′
k(t), λk(xk), λk(x

′
k)),

x′(tk) = x′k, xk(tk) = xk , t ∈ [tk, tk+1].
...

By the solution (3.5) we mean the following func-
tion:

x′(t) =


x′0(t), t ∈ [t0, t1],

x′1(t), t ∈ [t1, t2],
...

x′k(t), t ∈ [tk, tk+1].

We note that the solutions of (3.5) are piecewise
differentiable in each interval for t ∈ [tk, tk+1] for
a fixed xk ∈ E and k = 0, 1, 2, . . . .
We define for each t:

x′′(t; r) = f [t, x(t; r), x′(t; r), λk

(
x(t; r)

)
,

λk

(
x′(t; r)

)
],

x′(t; r) = x′k(r),

x(t; r) = xk(r),

(3.6)

for r ∈ [0, 1].

Theorem 3.4. Let T = [t0, tN ] ⊂ R, and t ∈ T .

Case 1. Let us suppose that the unique solu-
tion of problem (3.5), y(t) and y′(t) are
[(i) − gH]-differentiable and belongs to ∈
C3
gH([0, T ],E).

Such that the type of differentiability don’t
change on [0, T ]. Consider the Taylor series

expansion of the unknown fuzzy function y(t)
about tk, for each k = 0, 1, . . . , N ,

yk,n+1(t; r) = yk,n(t; r)⊕ (t− t0)⊙

f
[
t, yk,n(t; r), λk

(
yk,n(t, r)

)]
⊕ (t− t0)

2

2
⊙ f

[
t, yk,n(t; r),

y′k,n(t; r), λk

(
yk,n(t, r)

)
, λk

(
y′k,n(t, r)

)]
.

(3.7)

Case 2. Let us suppose that y′(t) is [(i) −
gH]-differentiable and y(t) is [(ii) − gH]-

differentiable and belongs to C3
gH

(
[0, T ],E)

such that the type of differentiability don’t
change on [0, T ]. We have:

yk,n+1(t; r) = yk,n(t; r)⊖ (−1)(t− t0)⊙

f
[
t, yk,n(t; r), λk

(
yk,n(t, r)

)]
⊖ (−1)

(t− t0)
2

2
⊙ f

[
t, yk,n(t; r),

y′k,n(t; r), λk

(
yk,n(t, r)

)
, λk

(
y′k,n(t, r)

)]
.

(3.8)

Case 3. Consider y′(t) is [(ii) − gH]-
differentiable and y(t) is [(i) − gH]-
differentiable and belongs to C3

gH([0, T ],E)
such that the type of differentiability don’t
change on [0, T ]. So the Taylors series
expansion is constructed by

yk,n+1(t; r) = yk,n(t; r)⊕ (t− t0)⊙

f
[
t, yk,n(t; r), λk

(
yk,n(t, r)

)]
⊖ (−1)

(t− t0)
2

2
⊙ f

[
t, yk,n(t; r), y

′
k,n(t; r),

λk

(
yk,n(t, r)

)
, λk

(
y′k,n(t, r)

)]
. (3.9)

Case 4. Finally, consider y(t) and y′(t) are
[(ii) − gH]-differentiable and belongs to ∈
C3
gH([0, T ],E). Such that the type of dif-

ferentiability don’t change on [0, T ]. Con-
sider the Taylor series expansion of the un-
known fuzzy function y(t) about tk, for each
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k = 0, 1, . . . , N .

yk,n+1(t; r) = yk,n(t; r)⊖ (−1)(t− t0)⊙

f
[
t, yk,n(t; r), λk

(
yk,n(t, r)

)]
⊖ (−1)

(t− t0)
2

2
⊙ f

[
t, yk,n(t; r), y

′
k,n(t; r),

λk

(
yk,n(t, r)

)
, λk

(
y′k,n(t, r)

)]
. (3.10)

Proof. Case 1. Let y(t) and y′(t) are [(i)− gH]-
differentiable. Since y, y′ are continuous and

y′′(t; r) = f
[
t, y(t; r), y′(t; r),

λk

(
y(t; r)

)
, λk

(
y′(t; r)

)]
,

y′(t; r) = y′k(r),

y(t; r) = yk(r).

By Theorem 2.2, we have

yk,n+1(t) = yk,n(t0)⊕
∫ t

t0

y′k,n(t1)dt1.

According to Theorem 2.3

y′k,n(t1) = y′k,n(t0)⊕
∫ t1

t0

y′′k,n(t2)dt2.

Therefore∫ t

t0

y′k,n(t1)dt1 =

∫ t

t0

y′k,n(t0)dt1⊕∫ t

t0

(∫ t1

t0

y′′k,n(t2)dt2

)
dt1

= y′k,n(t0)⊙ (t− t0)⊕
∫ t

t0(∫ t1

t0

y′′k,n(t2)dt2

)
dt1.

Now by Lemma 2.2, the last double (FR)-
integral belongs to E. So

yk,n+1(t) = yk,n(t0)⊕ y′k,n(t0)⊙

(t− t0)

∫ t

t0

(∫ t1

t0

y′′k,n(t2)dt2

)
dt1.

Similarly

y′′k,n(t2) = y′′k,n(t0)⊕
∫ t2

t0

y′′′k,n(t3)dt3.

Furthermore∫ t1

t0

y′′k,n(t2)dt2 = y′′k,n(t0)⊙ (t1 − t0).

∫ t

t0

(∫ t1

t0

y′′k,n(t2)dt2

)
dt1 = y′′k,n(t0)

⊙
∫ t

t0

(t1 − t0)dt1.

By Lemma 2.2, the last triple integral be-
longs to E. Hence

yk,n+1(t; r) = yk,n(t; r)⊕

f
[
t, yk,n(t; r), λk

(
yk,n(t, r)

)]
⊙(t− t0)⊕ f

[
t, yk,n(t; r), y

′
k,n(t; r),

λk

(
yk,n(t, r)

)
, λk

(
y′k,n(t, r)

)]
⊙(t− t0)

2

2!
.

Case 2. Let y(t) be [(ii)−gH]-differentiable and
y′(t) be [(i) − gH]-differentiable. By Theo-
rem 2.2, we have

yk,n(t0) = yk,n+1(t)⊕ (−1)

∫ t

t0

y′k,n(t1)dt1.

Hence

yk,n+1(t) = yk,n(t0)⊖ (−1)

∫ t

t0

y′k,n(t1)dt1.

According to the hypothesis type of differ-
entiability don’t change, so by Theorem 2.3
and by attention to (FR)-integrability of y, y′

on T , we obtain

y′k,n(t1) = y′k,n(t0)⊕
∫ t1

t0

y′′k,n(t2)dt2,

therefore∫ t

t0

y′k,n(t1)dt1 =

∫ t

t0

y′k,n(t0)dt1

⊕
∫ t

t0

(∫ t1

t0

y′′k,n(t2)dt2

)
dt1 = y′k,n(t0)

⊙ (t− t0)⊕
∫ t

t0

(∫ t1

t0

y′′k,n(t2)dt2

)
dt1.
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Lemma 2.2, implies that the last double in-
tegral belongs to E. So

yk,n+1(t) = yk,n(t0)⊖ (−1)y′k,n(t0)

⊙(t− t0)⊖ (−1)

∫ t

t0

(

∫ t1

t0

y′′k,n

(t2)dt2)dt1.

Similarly by Theorem 2.3, we have

y′′k,n(t2) = y′′k,n(t0)⊕
∫ t2

t0

y′′′k,n(t3)dt3.

Hence ∫ t

t0

(∫ t1

t0

y′′k,n(t2)dt2

)
dt1 = y′′k,n(t0)⊙

∫ t

t0

(t1 − t0)dt1.

According to Lemma 2.2, we obtain

yk,n+1(t; r) = yk,n(t; r)⊖ (−1)

f
[
t, yk,n(t; r), λk

(
yk,n(t, r)

)]
⊙ (t− t0)

⊖ (−1)f
[
t, yk,n(t; r), y

′
k,n(t; r),

λk

(
yk,n(t, r)

)
, λk

(
y′k,n(t, r)

)]
⊙ (t− t0)

2

2!
.

Case 3, Case 4. Similarly case 1 and case 2.

However, for a prefixed k and r ∈ [0, 1],
proof of convergence of the approximations in
(3.7)- (3.10), that is: limh0,...,hk→0 yk,Nk

(t; r) =
x(tk+1; r), is an application of theorem 1 in [18]
and lemma 3.2 below.

Lemma 3.2. Suppose that i ∈ Z+ , ϵi > 0 ,
r ∈ [0, 1] and hi < 1, are fixed and h = tk+1 − tk.

Let {zi,n(t; r)}Ni
n=0 be the Taylor approximation

with N = Ni to the fuzzy IVP:
x′′(t; r) = f

[
t, x(t; r), x′(t; r), λk

(
x(t; r)

)
,

λi

(
x′(t; r)

)]
,

x′(t; r) = x′i(r),

x(t; r) = xi(r), t ∈ [ti, ti+1].

(3.11)

If {zi,n(t; r)}Ni
n=0 denotes the result of Eqs. (3.7)-

(3.10) from some yi,0(t; r), then there exists a δi >
0 such that D(zi,0(t; r)⊖ yi,0(t; r), 0) < δi,
imply D(zi,Ni(t; r)⊖ yi,Ni(t; r), 0) < ϵi.

Proof. Since the proof procedure is similar to
each other for all four cases, we consider only case
1, without loss of generality. Fix i ∈ Z+ , ϵi > 0 ,
r ∈ [0, 1] and hi < 1. Let {zi,n(t; r)}Ni

n=0 be the
Taylor approximation with N = Ni to the fuzzy
IVP (3.11).

First consider y(t) and y′(t) are [(i) − gH]-
differentiable.

Suppose that {yi,n(t; r)}Ni
n=0 denotes the

result of Eq. (3.7) from some yi,0(t; r).
By Eq. (3.7), for each l = 0, . . . , Ni − 1,

D(zi,l+1(t; r)⊖yi,l+1(t; r), 0) = D
(
zi,l(t; r)⊕hi⊙

f
[
ti,l, zi,l(t; r),

(
zi,l(t; r)

)′
, λi

(
zi,l(t; r)

)
,

λi

(
zi,l(t; r)

)′]
⊖ yi,l(t; r) ⊖

f
[
ti,l, yi,l(t; r),

(
yi,l(t; r)

)′
,

λi

(
yi,l(t; r)

)
, λi

(
yi,l(t; r)

)′]
, 0
)

≤ D(zi,l(t; r)⊖ yi,l(t; r), 0)⊕ hi ⊙

D
(
f [ti,l, zi,l(t; r),

(
zi,l(t; r)

)′
,

λi

(
zi,l(t; r)

)
, λi

(
zi,l(t; r)

)′
]

⊖f
[
ti,l, yi,l(t; r), λi

(
yi,l(t; r)

)
,(

yi,l(t; r)
)′
, λi

(
yi,l(t; r)

)′]
, 0
)
.

(3.12)

Let αNi ≡ ϵi. Since there exists a ηNi > 0.
Such that D(zi,Ni−1(t; r) ⊖ yi,Ni−1(t; r), 0) <

ηNi .
Imply

D
(
f
[
ti,Ni−1, zi,Ni−1(t; r),

(
zi,Ni−1(t; r)

)′
,

λi

(
zi,Ni−1(t; r)

)
, λi

(
zi,Ni−1(t; r)

)′]
⊖ f

[
ti,Ni−1, yi,Ni−1(t; r),

(
yi,Ni−1(t; r)

)′
,

λi

(
yi,Ni−1(t; r)

)
, λi

(
yi,Ni−1(t; r)

)′]
,

0
)
<

ϵi
2
=

αNi

2
. (3.13)

Let αNi−1 ≡ min
{ϵi
2
,
ηNi

2

}
.
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IfD(zi,Ni−1(t; r)⊖yi,Ni−1(t; r), 0) < αNi−1 then
by Eq. (3.9) with l = Ni − 1 and Eq. (3.13) we
have

D(zi,Ni(t; r)⊖ yi,Ni(t; r), 0) ≤

D(zi,Ni−1(t; r)⊖ yi,Ni−1(t; r), 0)⊕ hi ⊙

D
(
f
[
ti,Ni−1, zi,Ni−1(t; r),

(
zi,Ni−1(t; r)

)′
,

λi

(
zi,Ni−1(t; r)

)
, λi

(
zi,Ni−1(t; r)

)′]
⊖f

[
ti,Ni−1, yi,Ni−1(t; r),

(
yi,Ni−1(t; r)

)′
,

λi

(
yi,Ni−1(t; r)

)
, λi

(
yi,Ni−1(t; r)

)′]
, 0
)

< αNi−1 ⊕ hi ⊙
ϵi
2
< ϵi. (3.14)

Continue inductively for each j = 2, . . . , Ni

as follows. Since f is continue, there exists
a ηNi−(j−1) > 0 such that D(zi,Ni−j(t; r) ⊖
yi,Ni−j(t; r), 0) < ηNi−(j−1).
Imply

D
(
f
[
ti,Ni−j , zi,Ni−j(t; r),

(
zi,Ni−j(t; r)

)′
,

λi

(
zi,Ni−j(t; r)

)
, λi

(
zi,Ni−j(t; r)

)′]

⊖ f
[
ti,Ni−j , yi,Ni−j(t; r),

(
yi,Ni−j(t; r)

)′
,

λi

(
yi,Ni−j(t; r)

)
, λi

(
yi,Ni−j(t; r)

)′]

, 0
)
<

αNi−(j−1)

2
. (3.15)

Let αNi−1 = min
{αNi−(j−1)

2
,
ηNi−(j−1)

2

}
, if

D(zi,Ni−j(t; r)⊖ yi,Ni−j(t; r), 0) < αNi−j then by
Eq. (3.12) with l = Ni − j and Eq. (3.15) we

have

D(zi,Ni−(j−1)(t; r)⊖ yi,Ni−(j−1)(t; r)

, 0) ≤ D(zi,Ni−(j−1)(t; r)⊖ yi,Ni−(j−1)

(t; r), 0)⊕ hi ⊙D
(
f
[
ti,Ni−j , zi,Ni−j

(t; r),
(
zi,Ni−j(t; r)

)′
, λi

(
zi,Ni−j

(t; r)
)
, λi

(
zi,Ni−j(t; r)

)′]
⊖ f[

ti,Ni−j , yi,Ni−j(t; r),
(
yi,Ni−j(t; r)

)′
,

λi

(
yi,Ni−j(t; r)

)
, λi

(
yi,Ni−j(t; r)

)′]
, 0
)
⊖ f

[
ti,Ni−j , yi,Ni−j(t; r),

(
yi,Ni−j ,

(t; r)
)′
λi

(
yi,Ni−j(t; r)

)
, λi

(
yi,Ni−j

(t; r)
)′]

, 0
)
<

αNi(j−1)

2
⊕ hi ⊙

αNi(j−1)

2
< αNi−(j−1). (3.16)

Then for j = Ni we see

D(zi,0(t; r)⊖ yi,0(t; r), 0) < α0

imply

D(zi,1(t; r)⊖ yi,1(t; r), 0) < α1.

For j = Ni − 1 we see

D(zi,1(t; r)⊖ yi,1(t; r), 0) < α1

imply

D(zi,2(t; r)⊖ yi,2(t; r), 0) < α2.

Continue decreasing to j = 2. To see

D(zi,Ni−2(t; r)⊖ yi,Ni−2(t; r), 0) < αNi−2

imply

D(zi,Ni−1(t; r)⊖ yi,Ni−1(t; r), 0) < αNi−1.

But it was already shown in Eq. (3.14) that

D(zi,Ni−1(t; r)⊖ yi,Ni−1(t; r), 0) < αNi−1.

Imply

D(zi,Ni(t; r)⊖ yi,Ni(t; r), 0) < ϵi

This proves the lemma with δi = α0.

Theorem 3.5. (See [21]) Consider the systems
(3.5) and Eqs. (3.7)-(3.10). For a fixed k ∈ Z+

and r ∈ [0, 1],

lim
h0,...,hk→0

yk,Nk
(t; r) = x(tk+1; r).
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4 Numerical Example

In this section, we are going to use the Taylor
expansion to solve the following examples.

Example 4.1. Consider the following fuzzy hy-
brid differential equation

y
′′
(t) = y′(t)⊕m(t)⊙ y(t)

⊙ λk(y(tk), y
′(tk)),

y′(0; r) = [0.75 + 0.25r, 1.125− 0.125r],
y(0; r) = [0.75 + 0.25r, 1.5− 0.5r].

(4.17)
Where tk ∈ [tk, tk+1], tk = k,m(t) =
|sin(πt)|, k = 0, 1, 2, . . . .

λk(µ, ν) =

{
0̂, if k = 0,
µν, if k ∈ {1, 2, . . .}. (4.18)

Case (1): By applying the Taylor method which
is discussed in detail in Theorem 3.4, we have fig.
1,

Figure 1: The approximate solution for Ex-
ample 4.1 at case (1).

Figure 2: The approximate solution for Ex-
ample 4.1 at case (2).

Figure 3: The approximate solution for Ex-
ample 4.1 at case (3).

Figure 4: The approximate solution for Ex-
ample 4.1 at case (4).

Case (2): Consider y(t) is [(ii) − gH]-
differentiable and y′(t) is [(i)−gH]-differentiable.

Case (3): Now, consider y(t) is [(i) − gH]-
differentiable and y

′′
(t) is [(ii) − gH]-

differentiable.

Case (4): Finally, if y(t) and y′(t) are [(ii)−
gH]-differentiable.

Example 4.2. Next consider the following
HFDE


y
′′
(t) = (y′(t))2 ⊕m(t)⊙ y(t)
⊙ λk(y(tk).y

′(tk)),
y′(0; r) = [0.75 + 0.25r, 1.125− 0.125r],
y(0; r) = [0.75 + 0.25r, 1.5− 0.5r].

(4.19)
Where tk ∈ [tk, tk+1], tk = k, k = 0, 1, 2, . . . .
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m(t) =


2(t(mod 1)),
if t(mod 1) ≤ 0.5.

2(1− t(mod 1)),
if t(mod 1) > 0.5,

(4.20)

λk(µ, ν) =

{
0̂, if k = 0,
µν, if k ∈ {1, 2, . . .}. (4.21)

Case (1): Consider y(t) and y′(t) are [(i)−gH]-
differentiable. Hence we have fig. 5,

Figure 5: The approximate solution for Ex-
ample 4.2 at case (1).

Figure 6: The approximate solution for Ex-
ample 4.2 at case (2).

Case (2): Consider y′(t) is [(i) − gH]-
differentiable and y(t) is [(ii)−gH]-differentiable.

Case (3): consider y′(t) is [(ii) − gH]-
differentiable and y(t) is [(i)− gH]-differentiable.

Case (4): Consider y(t) and y′(t) are [(ii) −
gH]-differentiable.

Figure 7: The approximate solution for Ex-
ample 4.2 at case (3).

Figure 8: The approximate solution for Ex-
ample 4.2 at case (4).

5 Conclusion

In this paper, a new approach was introduced in
the hybrid fuzzy second order differential equa-
tions by presenting the fuzzy Taylor expansion
based on gH−differentiability. According to the
type of gH-differentiability, the fuzzy Taylor ex-
pansion was obtained in four cases, and the con-
vergence of the proposed method is proved. The
final results showed that the solution of the sec-
ond order hybrid fuzzy differential equations.
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