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Abstract

The current study aims to establish a connection between graphs and automata theory, which appar-
ently demonstrate different mathematical structures. Through searching out some properties of one
of these structures, we try to find some new properties of the other structure as well. This will result
in obtaining some unknown properties. At first, a novel automaton called zero-forcing (Z-F) finite
automata is defined according to the notion of a zero-forcing set of a graph. It is shown that for a
given graph and for some zero forcing sets, various Z-F-finite automata will be obtained. In addition,
the language and the closure properties of Z-F-finite automata, in particular; union, connection, and
serial connection are studied. Moreover, considering some properties of graphs such as the closed
trail, connected and complete; some new features for Z-F-finite automata are presented. Further, it
is shown that there is not any finite graph such that f be a part of the language of its Z-F-finite
automata. Actually, it is proved that for every given graph, the Z-F-finite automata of it does not
show any closed trail containing all edges for every zero forcing set, but if the graph G has been a
closed trail containing all edges, then the Z-F-finite automata of it has a weak closed trail containing
all edges. Some examples are also given to clarify these new notions.
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1 Introduction

A
n automaton is a mathematical theory in in-
vestigates behavior, structure and their re-

lationship to discrete systems. Directable au-
tomata were introduced by P. H. Strake in [24]
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and J. Cerny in [10], and also definite automata
by S. C. Kleene in [16]. Today, finite automata
have many applications in plenty of areas of com-
puter science such as databases, functional lan-
guages, bisimulation, and biology, for more infor-
mation see [1, 9, 11, 14, 18, 21, 22, 23].

For more than one hundred years, the develop-
ment of graph theory was inspired and guided
mainly by the Four-Colour Conjecture. The
resolution of the conjecture by K. Appel and
W. Haken in 1976, the year in which our first
book Graph Theory with Applications appeared,
marked a turning point in its history. Since then,
the subject has experienced explosive growth, due
in large measure to its role as an essential struc-
ture underpinning modern applied mathematics.
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Graph theory is a delightful playground for the
exploration of proof techniques in discrete math-
ematics and its results have applications in many
areas of computing, social and natural science.
Computer science and combinatorial optimiza-
tion, in particular, draw upon and contribute to
the development of the theory of graphs. More-
over, in a world where communication is of prime
importance, the versatility of graphs makes them
indispensable tools in the design and analysis of
communication networks. A graph is a pair rep-
resented by G = (V,E), where V is the set of
vertices and E is the set of edges, what we call
a graph is sometimes called a simple graph. The
order of a graph G, denoted by |G|, is the number
of vertices ofG. The notion of a zero forcing set of
a simple graph was introduced in [2] to bound the
minimum rank for numerous families of graphs.
The zero forcing parameters have been considered
by some expert researchers, for additional sources
on this topic see [3, 5, 12, 15, 19]. Independently,
physicists have studied this parameter, referred
to as the graph infection number, in conjunction
with control of quantum systems [7, 8, 6, 20].
It also arises in computer science in the context
of fast-mixed searching [20]. Various models of
graph generation have been introduced in the lit-
erature and have been investigated in many di-
rections [13]. However a general theory of graph
automata (i.e., automata with a graph as input
and output) is still missing from formal graph
language theory. Historically, Arbib and Give’on
were the first who extended tree automata to op-
erate on planner ordered acyclic graphs [4].
This current study aims to establish a connection
between graphs and automata theory, which ap-
parently show different mathematical structures.
Through searching out some properties of one of
these structures, we attempt to find some new
properties of the other structures as well. Accord-
ingly, this will result in obtaining some unknown
properties. Also, the zero forcing set and zero
forcing number of a graph are defined and a novel
automaton by using the zero forcing set of a graph
is presented. This automata is called zero forcing
finite automata (Z-F-finite automata). Later for
a denoted graph we show that it is possible for
various zero forcing set, the induced Z-F-finite
automata of them could be different. In addi-

tion, the relevant behavior is further discussed
and some of the closure properties of the Z-F-
finite automata such as union, connection, and se-
rial connection are presented. Moreover, consid-
ering some properties of graphs such as the closed
trail, connected and complete; we present some
new features for Z-F-finite automata. Further,
we show that if G is a complete graph and the
vertices of G be more than three, then for every
zero forcing set Z(G), the language of Z-F-finite
automata of it is n∗f . After that, we prove that
for every graph G, Z-F-finite automata A(Z(G))
does not have a closed trail containing all edges,
for every zero forcing set Z(G). Also, we show
that for every given graph, Z-F-finite automata
of it does not have a closed trail containing all
edges for every zero forcing set, but if the graph
G has been a closed trail containing all edges, the
Z-F-finite automata of it has a weak closed trail
containing all edges. Finally, we prove that in
the language of Z-F-finite automata, f∗ does not
appear where f belongs to the set of alphabet.

2 Preliminaries

In this part, we first review some notions and
definitions which will be essential for the other
sections.

Definition 2.1. [2]

• Color-change rule: If G is a graph with each
vertex colored either white or black, u is a
black vertex of G, and exactly one neighbor
v of u is white, then change the color of v to
black.

• Given a coloring of G, the derived coloring
is resulted by the color-change rule until no
more changes are possible.

• A zero forcing set for a graph G is a subset
of vertices Z such that if initially the vertices
in Z are colored black and the remaining ver-
tices are colored white, the derived coloring of
G is all black.

• Z(G) refers to the minimum of |Z| over all
zero forcing sets Z ⊆ V (G).

In this note, we say that vertex u forces vertex v
if v got black with u.
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In this note, if black vertex u of G changes the
color of vertex v to black, then we say that vertex
u forces vertex v.

Definition 2.2. [17] Let A1 and A2 be two au-
tomata. We say that A1 and A2 are equivalent if
they have the same languages.

Definition 2.3. [25] A homomorphism from a
simple graph G = (VG, EG) to a simple graph
H = (VH , EH) is a surjection f : VG → VH such
that uv ∈ EG if and only if f(u)f(v) ∈ EG. f is
called an isomorphism if and only if f is a homo-
morphism that is one-one.

Definition 2.4. [25] The graph G is bipartite if
VG is the union of two disjoint (possibly empty)
independent sets called partite sets of G.

Definition 2.5. [25] A graph G is connected if
each pair of vertices in G belongs to a path.

Definition 2.6. [25] A walk is a list
v0, e1, v1, ..., ek, vk of vertices and edges such
that for 1 ≤ i ≤ k, the edge ei has endpoints vi−1

and vi. A trail is a walk with no repeated edge.

Definition 2.7. [25] A graph is Eulerian if it has
a closed trail containing all edges

Theorem 2.1. [25] A graph G is Eulerian if and
only if it has at most one nontrivial component
and its vertices all have even degree.

Definition 2.8. [25] The degree of vertex v in
a graph G, writhen dG(v) or d(v) is the number
of edges incident to v, except that each loop at
v counts twice. The maximum degree is △(G),
the minimum degree is δ(G) and G is regular if
△(G) = δ(G). It is k-regular if the common de-
gree is k.

Definition 2.9. [25] A complete graph is a sim-
ple graph in which every pair of distinct vertices
is connected by a unique edge.

Definition 2.10. [25] A path is a simple graph
whose vertices can be ordered such that two ver-
tices are adjacent if and only if they are consecu-
tive in the list.

3 Z-F-finite automata of graphs

At first, by definition of zero forcing set of a
graph, we present zero forcing finite automata (Z-
F-finite automata).

Definition 3.1. Let G = (V,E) be a graph.
A zero forcing finite automata (Z-F-finite au-
tomata) is a five-tuple machine denoted by A =
(Q,A,φ, I, T ), where

1. Q = V is the finite set of states,

2. A = {f, n} is the set of alphabet,

3. φ : Q×A → P (Q) is the transition function,
where if vertex u forces vertex v in G, then
define φ(u, f) = v in A and if uv ∈ E and u
and v do not force each other, then φ(u, n) =
v and φ(v, n) = u,

4. I = Z(G) is the set of initial states,

5. T is the set of final states, which u ∈ T if
and only if u does not force any vertex.

Naturally, φ can be extended to φ∗ : Q × A∗ →
P (Q).

Note that if A(Z(G)) is a Z-F-finite automata,
then A(Z(G)) recognizes a word w in A∗ if
φ∗(i, w) ∩ T ̸= ∅, for some i ∈ I.

Example 3.1. Let graph G = (V,E) be as in
Figure 1, where V = {q1, q2, q3, q4, q5}. Con-
sider the different zero forcing set Z(G) of this
graph: (i) Z1(G) = {q1, q2}. Then Z-F-finite au-

Figure 1: The graph G of Example 3.1

tomata A(Z1(G)) = (Q,A,φ, I, T ) is as in Figure
2, where I = {q1, q2}, A = {f, n}, T = {q3} and

φ(q1, n) = q2, φ(q1, f) = q5

φ(q2, n) = {q1, q4}, φ(q2, f) = q3

φ(q5, f) = q4, φ(q4, n) = q2

φ(q4, f) = q3,



480 M. Shamsizadeh et al., /IJIM Vol. 13, No. 4 (2021) 477-488

Figure 2: The Z-F-finite automata A(Z1(G))of Ex-
ample 3.1

Also,

L(A(Z1(G))) = n∗f ∪ n∗f2(n2n∗f2)∗n∗f.

(ii) Z2(G) = {q1, q5}. Then the Z-F-finite au-
tomata A(Z2(G)) is as in Figure 3, where I =
{q1, q5}, A = {f, n}, T = {q3} and

Figure 3: The Z-F-finite automata A(Z2(G)) of Ex-
ample 3.1

L(A(Z2(G))) = n∗fn∗f .
(iii) Z3(G) = {q4, q5}. Then the Z-F-finite au-

tomata A(Z3(G)) is as Figure 4, and

Figure 4: The Z-F-finite automata A(Z3(G)) of Ex-
ample 3.1

L(A(Z3(G))) = n∗f ∪ n∗f2(n2n∗f2)∗n∗f.

(iv) Z4(G) = {q2, q3}. Then the Z-F-finite
automata A(Z4(G)) is as in Figure 5, where

Figure 5: The Z-F-finite automata A(Z4(G)) of Ex-
ample 3.1

I = {q2, q3}, T = {q1, q5} also, L(A(Z4(G))) =
n∗fn∗fn∗ ∪ n∗fn∗. (v) Z5(G) = {q3, q4}. Then
the Z-F-finite automata A(Z5(G)) is as in Fig-
ure 6, where I = {q3, q4}, T = {q1, q5} and,
L(A(Z4(G))) = n∗fn∗fn∗ ∪ n∗fn∗.

Figure 6: The Z-F-finite automata A(Z5(G)) of Ex-
ample 3.1

Example 3.1 shows that for some different zero
forcing set of a given graph; the Z-F-finite au-
tomata of them are different, too. Also, we see
that for some different zero forcing set for the
given graph G, we have the same language for
Z-F-finite automata of them. For example from
the above discussion we see that L(A(Z1(G))) =
L(A(Z3(G))) and L(A(Z4(G))) = L(A(Z5(G))).
Hence, A(Z1(G)) is equivalent to A(Z3(G)) and
A(Z4(G)) is equivalent to A(Z5(G)).

Example 3.2. Let graph G be as Figure 7 and
choosing Z1(G) = {p2, p3, p4, p5} and Z2(G) =
{p2, p3, p5, p6}. Then the Z-F-finite automata of
them have the same language.

As we see in Example 3.1, it is clear that in
a given symmetric graph, for some different sym-
metric zero forcing sets like Z1(G) and Z3(G), the
Z-F-finite automata of them are equivalent. The
graph of Example 3.2 is a nonsymmetric graph.
In this example, we show that for some nonsym-
metric graphs we also can find zero forcing sets in
which the Z-F-finite automata of them have the
same language.
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Figure 7: The graph G of Example 3.2

Lemma 3.1. Let G be a symmetric graph. For
every symmetric zero forcing sets Z1(G) and
Z2(G), A(Z1(G)) and A(Z2(G)) are isomorphic.
Also, L(A(Z1(G))) = L(A(Z2(G))).

Notice that in Figure 8, if we consider Z1(G) =
{u1, v1} and Z1(G) = {v1, v2}, Z-F-finite au-
tomata of them do not have the same language.
So, symmetric is essential.

Figure 8: The graph G

Example 3.3. Consider symmetric graph G as
Figure 1. The zero forcing sets Z1(G) and
Z3(G) are symmetric, too. By Example 3.1 and
Lemma 3.1, L(A(Z1(G))) = L(A(Z3(G))). Sim-
ilarly, A(Z4(G)) = A(Z5(G)) are isomorphic and
L(A(Z4(G))) = L(A(Z5(G))).

Definition 3.2. Let A1 and A2 be two automata.
A homomorphism from A1 onto A2 is a function
g from Q1 onto Q2 such that for every q, q′ ∈ Q1

and u ∈ A, the following conditions hold:

• q ∈ I1 if and only if g(q) ∈ I2,

• φ(q, u) = q′ if and only if φ(g(q), u) = g(q′),

• q ∈ T1 implies that g(q) ∈ T2.

g is called an isomorphism if and only if g is ho-
momorphism that is one-one and q ∈ T1 if and
only if g(q) ∈ T2.

Theorem 3.1. Let G and H be two graphs and
G be isomorphic to H. If Z(G) is a zero-forcing
set for G, then g(Z(G)) = {g(u)|u ∈ Z(G)} is a
zero-forcing set for H.

Proof. Let G be a graph and Z(G) be a zero-
forcing set of it. Consider Z = {g(u)|u ∈ Z(G)}.
Now, we show that Z is a zero forcing set for
H. At first, let u ∈ Z(G) and u forces v. Then
g(u) ∈ Z. For every w′ ∈ H such that g(u)w′ ∈
EH , there exists w ∈ G, where g(w) = w′ and
uw ∈ EG. Since u forces v, then for every v ̸=
w ∈ G in which uw ∈ EG, w is black. So, g(w)
is black for every v ̸= w ∈ G. Then g(u) forces
g(v). We continue this process. Hence, u forces
v if and only if g(u) forces g(v).

Lemma 3.2. Let G and H be two graphs and G
be homomorphic to H. Then |Z(H)|≤ |Z(G)|.

Example 3.4. Let graphs G and H be as Figures
9 and 10, respectively. Consider homomorphism

Figure 9: The graph G of Example 3.4

Figure 10: The graph H of Example 3.4

g as follow: g : G → H, where

g(p1) = q1 = g(p6),

g(p2) = q2 = g(p8) = g(p5),

g(p3) = q3 = g(p7),

g(p4) = q4 = g(p9).
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Obviously, {p1, p4, p8} is a zero forcing set for
graph G and {q1, q2} is a zero forcing set for H.

Example 3.4, shows that two graphs G and H
are homomorphic and |Z(H)|< |Z(G)|.

Theorem 3.2. Let G and H be two graphs such
that G and H be isomorphic. Then there ex-
ist zero forcing sets Z(G) and Z(H) such that
A(Z(G)) and A(Z(H)) are isomorphic.

Proof. Let G and H be two graphs in which they
are isomorphic. Then there exists a bijective
g : V (G) → V (H). Let Z(G) be a zero-forcing
set of G. Then g(Z(G)) = {g(u)|u ∈ Z(G)} is
a zero-forcing set of H. So, if u forces v in G,
then g(u) forces g(v) in H. Therefore, A(Z(G))
and A(Z(H)) have the same form. Now, we show
that A(Z(G)) and A(Z(H)) are isomorphic. Let
φ(u, f) = v. Then φ(g(u), f) = g(v). Clearly,
φ(u, n) = v if and only φ(g(u), n) = g(v). Now,
let u ∈ TA(Z(G)) and g(u) /∈ TA(Z(H)). Since
g(u) /∈ TA(Z(H)), then there exists v ∈ V (H)
such that φ(g(u), f) = v. So, g(u)v ∈ EH .
The function g is onto, then there is v′ ∈ G
such that g(v′) = v. So, uv′ ∈ EG, it implies
that u forces v′. Then it is contradiction with
u ∈ TA(Z(G)). Similarly, if g(u) ∈ TA(Z(H)), then
u ∈ TA(Z(G)). Hence, A(Z(G)) and A(Z(H)) are
isomorphic.

Theorem 3.3. Let G be a complete X − Y bi-
partite graph and |X|≥ 2, |Y |≥ 2. Then for every
zero forcing sets Z(G), L(A(Z(G))) = n∗fn∗.

Proof. Let G be a complete X − Y bipartite
graph. We have |Z(G)|= |X|+|Y |−2. Consider
Z(G) = {u1, u2, ..., u|x|−1} ∪ {v1, v2, ..., v|Y |−1}
such that ui ∈ X and vi ∈ Y . Clearly,
u1, u2, ..., u|x|−1 force v|Y | and v1, v2, ..., v|Y |−1

force u|X|. By considering Definition 3.1, uk
does not force vl, for k = 1, 2, ..., |X|−1 and
l = 1, ..., |Y |−1. Similarly, vl does not force uk,
where l = 1, ..., |Y |−1 and k = 1, ..., |X|−1. Also,
u|X| does not force v|Y |. Hence, L(A(Z(G))) =
n∗fn∗.

Example 3.5. Let the complete X − Y bipar-
tite G be as Figure 11. By considering Z(G) =
{p1, p2, p5, p6}, Z-F-finite automata A(Z(G)) is
as Figure 12. By Figure 12 and Theorem 3.3, it
is obvious that L(A(Z(G))) = n∗fn∗

Figure 11: The graph G of Example 3.5

Figure 12: The Z-F-finite automata A(Z(G)) of Ex-
ample 3.5

Figure 13: The graph G of Example 3.6

Example 3.6. Let graph G be as Figure 13. By
Z(G) = {p4, p5}, A(Z(G)) is as Figure 13. Also,
the language of Z-F-finite automata A(Z(G)) is
n∗fn∗ ∪ fn∗fn∗.

Figure 14: The Z-F-finite automata A(Z(G)) of Ex-
ample 3.6

Example 3.6 shows that Theorem 3.3 does not
hold for every X − Y bipartite graphs.

Theorem 3.4. Let G be a connected graph. Then
for every Z(G), A(Z(G)) is accessible.
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Proof. By considering Definitions 2.1 and 3.1, the
proof is clear.

Example 3.7. Let graph G be as in Example 3.6.
It is a connected graph. Clearly, the Z-F-finite
automata A(Z(G)), as in Example 3.6, is acces-
sible.

Theorem 3.5. For every L = n∗f ln∗, where l ≥
1, there exists a graph G such that the language
Z-F-finite automata of it is L.

Proof. Let L = n∗f ln∗, where l ≥ 1. We con-
struct the graph G as follows: at first, consider
two adjacent vertices u1 and v1 such that u1 is
adjacent u2 and v1 is adjacent v2. We continue
this way until ul is adjacent ul+1 and vl ia ad-
jacent vl+1. Finally, let ul+1 and vl+1 are adja-
cent. By considering Z(G) = {u1, v1} obviously,
L(A(Z(G))) = n∗f ln∗.

Example 3.8. Let L = n∗f2n∗ and Graph G1

be as in Figure 15. By considering Z(G1) =

Figure 15: The graph G1 of Example 3.8

{u1, v1}, A(Z(G1)) is as in Figure 16. By

Figure 16: The Z-F-finite automata A(Z(G1)) of
Example 3.8

A(Z(G1)) as in Figure 16, L(A(Z(G1))) =
n∗f2n∗.

Theorem 3.6. Let G be a connected 2-regular
graph. If |G|= 2m + 1, m is an integer, then
L(A(Z(G))) = n∗fm and if |G|= 2m + 2, then
L(A(Z(G))) = n∗fmn∗.

Proof. Since G is a 2-regular graph, then for ev-
ery q ∈ VG, degree of q is 2. Let q1, q

′
1 ∈ Z(G),

VG = {q1, q′1, ..., qm, q′m, qm+1, q
′
m+1}, q1 forces q2

and q′1 forces q′2. We continue this manner un-
til qm−1 forces qm and q′m−1 forces q′m. Now, we
have two cases. The first one, let |G|= 2m + 1
and qm+1 = q′m+1. Then q′m and qm force qm+1.
So, clearly L(A(Z(G))) = n∗fm. The last one, if
|G|= 2m+ 2, then qm forces qm+1 and q′m forces
q′m+1. Since qm+1 and q′m+1 are adjacent and they
do not force anything, then qm+1, q

′
m+1 ∈ T and

φ(qm+1, n) = q′m+1 and φ(q′m+1, n) = qm+1. Ob-
viously, L(A(Z(G))) = n∗fn∗.

Corollary 3.1. For every connected 2-regular
graph G1 and G2 such that |G1|= |G2|= 2m+ 1,
the Z-F-finite automata of them are equivalent.

Corollary 3.2. Let G1 and G2 be two connected
2-regular graph and |G1|= |G(2)|= 2m+2. Then
the Z-F-finite automata of them are equivalent.

Example 3.9. Let G1 be as in Figure 17.
By Z(G1) = {p1, p2}, the Z-F-finite au-
tomata A(Z(G1)) is as Figure 18. Clearly,

Figure 17: The graph G1 of Example 5.3

L(A(Z(G2))) = n∗f . Now, let graph G2 be as
in Figure 19. Considering Z(G2) = {p1, p2} the
Z-F-finite automata A(Z(G2)) is as in Figure 20.
Clearly, L(A(Z(G2))) = n∗fn∗.
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Figure 18: The Z-F-finite automata A(Z(G1)) of
Example 5.3

Figure 19: The graph G2 of Example 3.9

Figure 20: The Z-F-finite automata A(Z(G2)) of
Example 3.9

4 Closure Properties of zero-
forcing finite automata

In this section, we define the notions of union,
connection, and the serial connection for zero
forcing finite automata.

Definition 4.1. (Connection) Given L1 and L2

the subsets of A∗, we define their product L1.L2

such that L1 = n∗f ln∗,L2 = n∗f l′n∗ in an obvi-
ous way, L1.L2 = n∗f ln∗f l′n∗.

Theorem 4.1. Let L1 = n∗f ln∗ and L2 =
n∗f l′n∗. Then there exist a graph G and a zero
forcing set Z(G) for it such that L(A(Z(G))) =
n∗f ln∗f l′n∗.

Proof. By considering the proof of Theorem 3.5,
there exist two graphs G1, G2 and zero forcing
sets Z(G1) and Z(G2) such that L(A(Z(G1))) =
L1 and L(A(Z(G2))) = L2. In graph G1, let u1

and v1 be adjacent and uiui+1, vivi+1 ∈ EG1 , 1 ≤
i ≤ l and also vl+1ul+1 ∈ EG1 . Similarly, in graph
G2 suppose that u′1v

′
1 ∈ EG2 and u′iu

′
i+1, v

′
iv

′
i+1 ∈

EG2 , where 1 ≤ i ≤ l′ and u′l′+1v
′
l′+1 ∈ EG2 . Now,

for construction the graph G follow this way:
VG = {u1, ..., ul+1, v1, ..., vl+1, u

′
1, ..., u

′
l′+1, v

′
1, ...,

v′l′+1}. At first, consider graph G1 and let u′1 =
ul+1 and v′1 = vl+1. Also, zz′ ∈ EG if and only if
zz′ ∈ EG1 or zz′ ∈ EG2 , where z, z′ ∈ V (G).
Let Z(G) = {u1, v1}. Clearly, L(A(Z(G)) =
n∗f ln∗f l′n∗.

Example 4.1. Let L1 = n∗f2n∗, L2 = n∗fn∗

and two graphs G1 and G2, like Figures 15 and
21. By considering zero forcing sets Z(G1) =

Figure 21: The graph G2 of Example 4.1

{u1, v1} and Z(G2) = {u′1, v′1}, L(A(Z(G1))) =
n∗f2n∗ and L(A(Z(G1))) = n∗fn∗. Now, by the
proof of Theorem 4.1, we construct graph G as in
Figure 8. Now, let Z(G) = {u1, v1}. Then the
Z-F-finite automata A(Z(G)) is as in Figure 22.
Clearly, L(A(Z(G))) = n∗f2n∗fn∗

Figure 22: The Z-F-finite automata A(Z(G)) of
Example 4.1
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Corollary 4.1. (Serial Connection) Let A =
{L|L = n∗f ln∗, l ≥ 1}. Then

Lm = L.L. . . .L︸ ︷︷ ︸
m

is a recognizable Z-F-finite automata.

Definition 4.2. (Union) Let G1 = (VG1 , EG1)
and G2 = (VG2 , EG2) be two graphs such that
VG1 ∩ VG2 = ∅. The direct sum of graphs G1

and G2, writhen G1∪G2, is the graph with vertex
set VG1 ∪ VG2 and edge set EG1 ∪ EG2.

Definition 4.3. The set L ⊆ A∗ is called Z-F-
recognizable if there exists a graph like G such that
L(A(Z(G))) = L, for some Z(G).

Theorem 4.2. Let L1 and L2 be two Z-F-
recognizable. Then L1 ∪ L2 is Z-F-recognizable.

Proof. Since L1 and L2 are Z-F-recognizable,
then there exist G1 = (VG1 , EG1),
G2 = (VG2 , EG2), Z(G1) and Z(G2) such
that L(A(Z(G1))) = L1 and L(A(Z(G2))) = L2.
Without loss of generality, suppose that
VG1 ∩ VG2 = ∅. Consider G = (VG, EG) such
that VG = VG1 ∪ VG2 and EG = EG1 ∪ EG2 .
Since VG1 ∩ VG2 = ∅, then Z(G1) ∪ Z(G2)
is a zero forcing set for G. Clearly,
L(A(Z(G1) ∪ Z(G2))) = L1 ∪ L2.

5 Properties of languages of Z-
F-finite automata

In this section, we present definitions of the closed
trail, connected and complete for Z-F-finite au-
tomata. Further, we discuss the language of Z-F-
finite automata.

Theorem 5.1. There is not any finite graph such
that f∗ be a part of the language of its Z-F-finite
automata.

Proof. By considering the definitions of zero-
forcing set and Z-F-finite automata, two vertices
can not force each other. So, we can obtain f∗

if the Z-F-finite automata have been the infinity
states. Then it is contraction.

Theorem 5.2. Let L be a recognizable Z-F-finite
automata. Then L = n∗f ln∗(n∗fn∗)∗ or L = f l

or L = f ln∗.

Proof. Let w ∈ L and G be a graph such
that L(A(Z(G))) = L, for some Z(G). Then
φ∗(i, w) ∈ T . Let w = a1a2...an. Then the path
is as follows:

i
a1−→ q1

a2−→ q2 → ...
an−→ qn ∈ T,

where i, q1, q2, ..., qn ∈ Q. There exist two cases
for two adjacent vertices i and q1 in graph G:
in the first case, let vertex i forces q1, then we
have a1 = f . In the last case, let vertices i and
q1 do not force each other, then a1 = n. Also,
by considering Definition 3.1, φ(q1, n) = i and
φ(i, n) = q1. So, with two vertices i and q1 we
can make n∗. Similarly, for two vertices q1 and
q2 we have φ(q1, f) = q2 or φ(q1, n) = q2. Hence,
the claim holds.

Theorem 5.3. Let G be a complete graph and
|G|≥ 3. Then for every Z(G), L(A(Z(G))) =
n∗f .

Proof. Since G is complete, then δ(G) = l − 1,
where |G|= l. By considering |Z(G)|≥ δ(G), we
have |Z(G)|= l−1. Since |G|≥ 3 and |Z(G)|= l−
1, then the all members of Z(G) are adjacent and
they make n∗, also the all members of Z(G) force
the last vertex. Hence, L(A(Z(G))) = n∗f .

Example 5.1. Let G be as Figure 23. By

Figure 23: The graph G of Example 5.1

Z(G) = {p1, p2, p3}, Z-F-finite automata
A(Z(G)) is as Figure 24. Clearly, L(A(Z(G))) =
n∗f .

Definition 5.1. A path in a Z-F-finite au-
tomata is a list p0, a1, p1, ..., ak, pk, such that
φ(pi−1, ai) = pi, for 1 ≤ i ≤ k. A trail in Z-
F-finite automata is a path with no repeats edges.

Theorem 5.4. Let G be a path and |G|= l. Then
L(A(Z(G))) = f l−1, for every Z(G).

Proof. Since G is a path, then |Z(G)|= 1. So,
every vertex forces the next vertex in the list
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Figure 24: The Z-F-finite automata A(Z(G)) of Ex-
ample 5.1

and the last vertex is the only terminal member.
Therefore, L(A(Z(G))) = f l−1, where l−1 is the
number of edges in graph G.

Example 5.2. Let graph G be as in Figure
25. Consider Z(G) = {p1}, Z-F-finite automata

Figure 25: The graph G of Example 5.2

A(Z(G)) is as Figure 26. Also, L(A(Z(G))) =

Figure 26: The Z-F-finite automata A(Z(G)) of Ex-
ample 5.2

f3.

Theorem 5.5. For every graph G, A(Z(G)) does
not have a closed trail containing all edges, for
every zero forcing set Z(G).

Proof. Let G be a graph and Z(G) be a zero forc-
ing set of it. If G does not have a closed trail con-
taining all edges, then clearly A(Z(G)) does not
have these trail. Now, suppose G has a closed
trail containing all edges. Then G is an Eule-
rian graph. By Theorem 1.2.26, in [25], G has
at most one nontrivial component and all its ver-
tices have even degree. So, |Z(G)|≥ 2, then for
two adjacent vertices u and v belong to Z(G),
we have two cases. The first one, u and v force
w. The other one, u forces u′ and v forces v′.
Obviously A(Z(G)) has not a closed trail con-
taining all edges for both cases. Hence, the claim
holds.

Example 5.3. Let graph G1 be as Figure 17.
Clearly, graph G1 has a closed trail, but A(Z(G1))
has not a closed trail containing all edges, for ev-
ery zero forcing set for G1. By choosing Z(G1) =
{p1, p2}. Z-F-finite automata A(Z(G1)) is as
Figure 18.

Clearly, there is not any closed trail containing
all edges in the Z-F-finite automata.

Definition 5.2. A weak path in a Z-F-finite
automata is a list p0, a1, p1, ..., ak, pk in which
φ(pi−1, ai) = pi or φ(pi, ai) = pi−1, where 1 ≤
i ≤ k. A weak trail in Z-F-finite automata is a
weak path with no repeat edges.

Theorem 5.6. Let G be a graph and has been a
closed trail containing all edges. Then A(Z(G))
has a closed weak trail containing all edges, for
every Z(G).

Theorem 5.5 shows that for every given graph,
Z-F-finite automata of it does not have a closed
trail containing all edge, for every zero forcing
set, but Theorem 5.6 says that if the graph G
has been a closed trail containing all edges, the
Z-F-finite automata of it has a weak closed trail
containing all edges.

Theorem 5.7. Let G be a graph. Then for every
p ∈ QA(Z(G)), p is accessible ad coaccessible, for
every Z(G). In the other words, A(Z(G)) is trim,
for every Z(G).

Proof. By Definitions 2.1 and 3.1, the proof is
obvious.

Theorem 5.8. Let G be a connected graph and
has no cycle. Then A(Z(G)) is accessible and has
no cycle with length at least 3, for every Z(G).

Proof. By Theorem 3.4, since G is connected,
then A(Z(G)) is accessible and by Definitions 2.1
and 3.1 the proof is obvious.

Corollary 5.1. Let G be a connected tree. Then
A(Z(G)) is accessible and has no cycle with
length at least 3, for every Z(G).

Notice that trees have not cycle, but it does
not hold for Z-F-finite automata of it. Some Z-F-
finite automata of a tree have a cycle with length
2.
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Corollary 5.2. Let G be an n-vertex graph with
n− 1 edges.

1. Then A(Z(G)) is accessible and has no cycle
with length at least 3, for every Z(G).

2. If G is an n-vertex tree, then A(Z(G)) is ac-
cessible and has no cycle with length at least
3, for every Z(G).

6 Conclusion

In the current study, we presented the notion of
zero forcing finite automata by using the notion
of zero forcing set. After that, we proved that
two Z-F-finite automata are isomorphic when the
graphs of them are isomorphic. Afterwards, we
discussed the behavior of Z-F-finite automata. In
addition, the notions of union, connection, and
serial connection for Z-F-finite automata were
given. Moreover, by considering some properties
of graphs such as the closed trail, connected and
complete, we demonstrated some novel features
for Z-F-finite automata.

Now, a question is raised here: If nodes and
edges of a graph have different labels, how can
we obtain the graph automata?
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