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Abstract

In this paper, we study the uniqueness and multiplicity of the solutions of a strongly nonlinear
mathematical model arising from chemical reactor theory. The analysis is based on the reproducing
kernel Hilbert space method. The main aim of this work is to find how much information can
be predicted using numerical computations. The dependence of the number of solutions on the
parameters of the model is also studied. Furthermore, the analytical approximations of all branches
of solutions can be calculated by the proposed method. The convergence of the proposed method is
proved. Some numerical simulations are presented.

Keywords : Multiple solutions; Reproducing kernel Hilbert space; Strongly nonlinear problem; Adia-
batic tubular chemical reactor; Iterative technique; Convergence.

—————————————————————————————————–

1 Introduction

B
oundary value problems arising in adiabatic
tubular chemical reactors, have attracted

the attention of many researchers [17, 21]. Ap-
proximate the solutions of the nonlinear prob-
lems are challenging even when we know the
number of solutions. There is considerable lit-
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erature that discusses the multiplicity of solu-
tions of the boundary value problems, such as
[23, 1, 2, 3, 18, 19, 4, 20, 6]. Here, we in-
vestigate the multiplicity of the solutions and
their dependence on the various parameter of
the model, numerically. Besides, the method is
capable of calculating analytical approximations
for all branches of solutions. The prediction of
the number of branches of solutions and approx-
imate them accurately is very important in the
numerical method for nonlinear boundary value
problems. The main aim of this work is to find
how much information can be predicted using nu-
merical computations. We approximate the so-
lutions of a nonlinear boundary value problem
via the shooting reproducing kernel Hilbert space
(SRKHS) method. We will consider the depen-

411

http://ijim.srbiau.ac.ir/


412 M. S. Barikbin et al., /IJIM Vol. 13, No. 4 (2021) 411-418

dence of the number of solutions to each param-
eter of the model separately. In the following,
we consider a strongly nonlinear boundary value
problem, which describes the steady-states of an
adiabatic tubular chemical reactor,

βu′′ − u′ + b(c− u) exp

(
−k
1 + u

)
= 0, (1.1)

for x ∈ [0, 1] under the following two-point
boundary conditions,

u′(0)− αu(0) = 0, u′(1) = 0, (1.2)

where u is the dimensionless temperature in the
reactor, and β, α, c and k are some given constant.
The nonlinear term is the Arrhenius reaction rate
given by

f(u) = b(c− u) exp

(
−k
1 + u

)
, (1.3)

where c > 0, k > 0, which represents the rate
of heat generation. It has been known from ex-
perimental and theoretical data that reactions
modeled by (1.1)-(1.2) exhibit unique or multi-
ple steady states, depending on the constants β, b
and k. Reproducing kernel theory has impor-
tant applications in numerical analysis and com-
putational methods for differential equations. Re-
cently, the numerical methods based on the repro-
ducing kernel Hilbert spaces have been success-
fully applied to the various nonlinear problems,
such as the nonlinear system of boundary value
and initial value problems, boundary value prob-
lems with nonlinear and multi–point boundary
conditions, fractional integro-differential equa-
tions and singularly perturbed turning point
problems [13, 15, 5, 7, 8, 9, 14, 16, 10, 11, 22]. In
this paper, we use the reproducing kernel Hilbert
space method combined with the shooting tech-
nique. The shooting technique is well-known for
transforming the boundary value problems into
initial value problems. In this way, we derive an
efficient and accurate iterative method to handle
strongly nonlinear boundary value problem (1.1)-
(1.2). Furthermore, we prove the convergence of
the proposed iterative method. The main contri-
bution of the current work is to investigate the
effect of the parameters of the model on the mul-
tiplicity of solutions. Furthermore, we calculate

the approximate solutions for all branches of so-
lutions. The advantages of the utilized approach
lie in the following; firstly, it can produce good
globally smooth numerical solutions, and with
the ability to solve many problems with com-
plex constraints conditions, which are difficult to
solve; secondly, the numerical solutions and their
derivatives converge uniformly to the exact solu-
tions and their derivatives, respectively; thirdly,
the numerical solutions and all their derivatives
are applicable for each arbitrary point in the
given domain. We illustrate some numerical ex-
periments to demonstrate the validity of the pro-
cedure.

For the nonlinear boundary value problems
such as (1.1)-(1.2) the shooting reproducing ker-
nel Hilbert space method is as follows. The
boundary value problem (1.1)-(1.2) is replaced by
the following initial value problem,

{
βu′′ − u′ + f(u) = 0, x ∈ [0, 1]
u(0) = s, u′(0) = αs,

(1.4)

where f is defined in (1.3) and s is unknown and
should be determined such that u(x) satisfies
the condition u′(1) = 0. Here, we assume that
the initial value problem (1.4) has a unique
solution that is continuously dependent on its
initial conditions. The existence and uniqueness
of solutions of the initial value problems have
been thoroughly investigated in the literature,
for example, see [12] and the references therein.
The solution of (1.4) is denoted by u(x; s) where
the parameter s is the initial value u(0) = s.
Now, we obtain an accurate approximation for
the initial value problem (1.4). Then s should
be determined such that u(x, s) satisfies the
condition u′(1, s) = 0. Since the solution of
the nonlinear problem (1.4) cannot be easily
obtained, the reproducing kernel Hilbert space
(RKHS) method is applied. To avoid the time
consuming parametric computations a sequence
sn → s∗ is used instead of the parameter s in
a manner that u′(1; s∗) = 0 as n → ∞. In
the following, we describe how to obtain the
approximate solution of (1.4) for a determined
s. Let Lu ≡ βu′′ − u′, after homogenization, the
problem (1.4) can be converted into the following
form:
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{
Lv = F (v; s), x ∈ [0, 1],
v(0) = 0, v′(0) = 0,

(1.5)

where u(x) = v(x) + s+ αsx and F (v; s) = αs−
f(v(x)+s+αsx). The reproducing kernel Hilbert
spacesWm

2 [0, 1], (m ≥ 3) andW 1
2 [0, 1] are defined

in the following, for more details and proofs, we
refer to [13].

Definition 1.1. The inner product space
Wm

2 [0, 1] is defined as Wm
2 [0, 1] = {u(x)|u(m−1)

is absolutely continuous real valued functions,
u(m) ∈ L2[0, 1], u(0) = 0, u′(0) = 0}. The inner
product in Wm

2 [0, 1] is given by

(u(.), v(.))Wm
2

=
∑m−1

i=0 u(i)(0)v(i)(0)+∫ 1
0 u

(m)(x)v(m)(x)dx,
(1.6)

and the norm ∥u∥Wm
2

is denoted by ∥u∥Wm
2
=√

(u, u)Wm
2
,where u, v ∈Wm

2 [0, 1].

Definition 1.2. The inner product space
W 1

2 [0, 1] is defined as W 1
2 [0, 1] = {u(x)|u is ab-

solutely continuous real valued functions, u, u′ ∈
L2[0, 1]}. The inner product in W 1

2 [0, 1] is given
by

(u(.), v(.))W 1
2
= u(0)v(0) +

∫ 1

0
u′(x)v′(x)dx,

(1.7)
and the norm ∥u∥W 1

2
is denoted by ∥u∥W 1

2
=√

(u, u)W 1
2
,where u, v ∈W 1

2 [0, 1].

The inner product spaces W 1
2 [0, 1] and

Wm
2 [0, 1] are reproducing kernel Hilbert spaces

[13]. The reproducing kernel Rx(.) ∈ Wm
2 [0, 1]

can be denoted by

Rx(y) =

{ ∑2m
i=1 ci(y)x

i−1 , x ≤ y,∑2m
i=1 di(y)x

i−1 , x > y.
(1.8)

For the method of obtaining reproducing kernel
Rx(y), refer to [13, 15]. For any fixed xi ∈ [0, 1],
let φi(.) = rxi(.), where rx(.) is the reproducing
kernel of the Hilbert space W 1

2 [0, 1]. Now assume
that ψi(.) = (L∗φi)(.), Where L∗ is the adjoint
operator of L :Wm

2 [0, 1] →W 1
2 [0, 1].

Theorem 1.1. Let {xi}∞i=1 is dense on [0, 1],
then {ψi(x)}∞i=1 is the complete system of
Wm

2 [0, 1] and ψi(x) = LyRx(y)|y=xi.

Proof. Let

ψi(x) = (L∗φi)(x) = ((L∗φi)(y), Rx(y))Wm
2

= (φi(y), LyRx(y))W 1
2
= LyRx(y)|y=xi .

Clearly ψi ∈Wm
2 [0, 1], then for any u ∈Wm

2 [0, 1]
let

(u(.), ψi(.))Wm
2

= 0, i = 1, 2, ... .

So

(u(x), ψi(x))Wm
2

= (u(x), LyK(x, y)|t=xi)Wm
2

= Ly(u(x),K(x, y))Wm
2
|y=xi= (Lu)(xi) = 0.

Since {xi}∞i=1 is dense on [0, 1] we have (Lu)(x) =
0. It is easy to see that the problem{

Ly = 0; x ∈ [a, b],
y(0) = 0, y′(0) = 0,

has only the trivial solution u = 0. The proof is
complete.

The orthonormal system {ψi(x)}∞i=1 of
Wm

2 [0, 1] can be derived from Gram-Schmidt
orthogonalization process of {ψi(x)}∞i=1,

ψi(x) =

i∑
k=1

βikψk(x) (βii > 0, i = 1, 2, ....).

(1.9)
In the following an iterative reproducing kernel
Hilbert space method is used to approximate the
solution of (1.5) for any determined s,

v0(x) = 0,

Bi =
∑i

k=1 βikF (vk−1(xk); s),

vn(x; s) =
∑n

i=1Biψi(x).

(1.10)

Theorem 1.2. Suppose that the problem (1.5)
has a unique solution and also suppose that
∥vn∥Wm

2
in (1.10) is bounded. If {xi}∞i=1 is a

dense set on the interval [0, 1], then vn(.; s) de-
rived from (1.10) converges to the exact solution
v(.; s) of the homogeneous initial value problem
(1.5) and v(x; s) =

∑∞
i=1Biψi(x), where Bi is

derived by (1.10).

Proof. For any fixed s, from (1.10) we can see
that vn+1(x; s) = vn(x; s) + Bn+1ψn+1(x) and
from the orthogonality of {ψi}∞i=1 we can see that
∥vn+1∥2= ∥vn∥2+(Bn+1)

2 which concludes that
∥vn+1∥2≥ ∥vn∥2. Since ∥vn∥ is bounded, so ∥vn∥
is convergent. It is easy to see that vn(.; s) is a
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Cauchy sequence in Wm
2 [0, 1] and then the com-

pleteness ofWm
2 [0, 1] shows that vn(.; s) → v̄(.; s)

in the sense of ∥.∥W 3
2
. Then we will prove that

v̄(.; s) is the solution of the problem (1.5). Tak-
ing limit in (1.10), we get v̄(x; s) =

∑∞
i=1Biψi(x).

Since ψi ∈ Wm
2 [0, 1], clearly v̄(.; s) satisfies the

initial condition of the problem (1.5). Then we
have

Bn = (v̄, ψn) = (v̄,
∑n

j=1 βnjψj)

=
∑n

j=1 βnj(v̄, ψj)

=
∑n

j=1 βnj(v̄, L
∗φj)

=
∑n

j=1 βnj(Lv̄, φj)

=
∑n

j=1 βnj(Lv̄)(xj ; s).

(1.11)

From the definition of Bn in (1.10) and (1.11), it
is easy to see that

(Lv̄)(xj ; s) = F (xj , vj−1(xj ; s); s),
(j = 1, 2, ...).

(1.12)

Since {xj}∞i=1 is dense in [0, 1] for any x̄ ∈ [0, 1],
there exists a subsequence {xnj}∞i=1 such that
xnj → x̄. From (1.12) and continuity of F (v; s)
and v(.; s), we have (Lv̄)(x̄; s) = F (x̄, v̄(x̄; s); s).
It means that v̄(x; s) is the solution of the initial
value problem (1.5) and then from the uniqueness
of solution of (1.5) we conclude that v(x; s) =∑∞

i=1Biψi(x).

If we let u(x; s) = v(x; s) + s + sαx, then the
shooting method for the problem (1.1)-(1.2) is
coincide to the method of finding the root of
the G(s) = u′(1; s). In fact, for any root of
G(s) = u′(1; s) such as s = s∗ the u(x) ≡ u(x; s∗)
is a solution of problem (1.1)-(1.2) and also for
any solution u(x) of (1.1)-(1.2) the s = u(0) is a
root ofG(s). Thus the problem is reduced to find-
ing the roots of G(s). It follows from the strong
maximum principle that every solution to (1.1)-
(1.3) satisfies 0 ≤ u(x) ≤ c for 0 ≤ x ≤ 1. So
we can let 0 ≤ u(0) = s ≤ c. To avoid of the
time consuming parametric computation the suc-
cessive bisection method is utilized for calculating
sn the root of Gn(s) = u′n(1; s) = 0 and we will
show that sn → s∗ such that Gn(sn) → G(s∗) =
u′(1; s∗) = 0 as n→ ∞.

Theorem 1.3. [13] Let Wm
2 [0, 1] is a reproduc-

ing kernel Hilbert space and fn, f ∈Wm
2 [0, 1](n =

1, 2, ...). If fn converges to f in the sense of

∥.∥Wm
2
, then for 0 ≤ k ≤ m− 1, f

(k)
n converges to

f (k) uniformly.

Theorem 1.4. If G(s) = u′(1; s) has a first or-
der root in interval I, then un(x; s) converges
to a exact solution u(x) of nonlinear boundary
value problem (1.1)-(1.2) such that for this solu-
tion u′(0) = s ∈ I.

Proof. Suppose that for two determined values
µ1 and µ2 we have u′(1;µ1)u

′(1;µ2) < 0 such
that u′(1;µ1) < 0 and u′(1;µ2) > 0, then from
theorem (1.3), there exist a positive integer N
such that for any n > N we have u′n(1;µ1) <
0 and u′n(1;µ2) > 0. Then we use bisection
method for u′n(1; s) = 0 to find sn ∈ [µ1, µ2]
such that u′n(1; sn) = 0. If we can show that
u′k(1; sn)u

′(1; sn) > 0 for any k > n then we can
detect that the root of G(s) = 0 is belongs to
[µ1, sn] or [sn, µ2]. From theorem (1.3) and for
any k > n for enough large n we have

|u′(1; sn)− u′k(1; sn)|≤ |u′(1; sn)− u′n(1; sn)|,

and then since u′n(1; sn) = 0, we can see

|u′(1; sn)− u′k(1; sn)|≤ |u′(1; sn)|. (1.13)

Suppose that u′k(1; sn)u
′(1; sn) > 0 is not true,

i.e. u′(1; sn) > 0 and u′k(1; sn) < 0. the opposite
case can be treated in a similar way. So we have

|u′(1; sn)− u′k(1; sn)|
≤ u′(1; sn)
⇒ −u′(1; sn) ≤ u′(1; sn)− u′k(1; sn)
≤ u′(1; sn)
⇒ −u′(1; sn) + u′k(1; sn)
≤ u′(1; sn) ≤ u′(1; sn) + u′k(1; sn),

(1.14)

the right-hand side inequality is in contradiction
to the assumption obviously. Considering the
method of obtaining {sn}, it has subsequences
{γn} and {βn} such that

µ1 < γ1 < γ2 < ... < γn < ... < s∗

< ... < βn < ... < β2 < β1 < µ2,
(1.15)

which they are bounded monotone sequences, and
so either of them are convergent to a root of
u′(1; s) = 0. So if u′(1; s) = 0 has a simple
root in [µ1, µ2] then both sequences {γn} and
{βn} and then {αn} are convergent to the root
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Figure 1: Graph of β versus s based on u′8(1; s) = 0,

where α = 0.2 and f(u) = 2(107)(0.4− u) exp
(

−20
1+u

)
.

of u′(1; s) = 0 in [µ1, µ2] and since the solution
of the initial value problem (1.4) is continuously
dependent on its initial conditions, un(x; sn) con-
verges to a solution u(x) of nonlinear boundary
value problem (1.1)-(1.2) such that for this solu-
tion u′(0) = s ∈ [µ1, µ2].

2 Results and discussion

In this section, we apply the proposed method
to the boundary value problem (1.1)-(1.2). Define
the residual error of the approximate solution v
at a point x ∈ [0, 1] as

Res(x, v) = βv′′ − v′ + f(v).

Then the square root of integral of residual is de-
fined as follows

E(v) =

√∫ 1

0
(Res(x, v))2dx. (2.16)

We apply the proposed method in W 4
2 [0, 1] and

the following results are obtained. The Fig. 1 is
the graph of β versus s based on u′n(1; s) = 0,
where n = 8, α = 0.2 and

f(u) = 2(107)(0.4− u) exp

(
−20

1 + u

)
,

which indicate that for some value of β we have
unique solutions and for some value of β we have
three solutions. The Fig. 2 is the graph of k
versus s based on u′n(1; s) = 0, where n = 8, β =

Figure 2: Graph of k versus s based on u′8(1; s) =
0, where β = 5, α = 0.2 and f(u) = 2(107)(0.4 −
u) exp

(
−k
1+u

)
.

Figure 3: Graph of b versus s based on u′8(1; s) = 0,

where α = 0.2 and f(u) = b(0.4− u) exp
(

−20
1+u

)
.

5, α = 0.2 and

f(u) = 2(107)(0.4− u) exp

(
−k
1 + u

)
,

which shows the multiplicity of solutions for some
value of k. The Fig. 3 is the graph of b versus s
based on u′n(1; s) = 0, where n = 8, β = 5, α =
0.2 and

f(u) = b(0.4− u) exp

(
−20

1 + u

)
,

which shows the multiplicity of solutions for some
value of b.

Example 2.1. Consider problem (1.1)-(1.2) with
β = 5, α = 0.2 and

f(u) = 2(107)(0.4− u) exp

(
−20

1 + u

)
.
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Table 1: Square root of integral of the squared residual error for example (2.1)

.

Number of iteration n = 10 n = 25 n = 50 n = 100

First solution 8.10583× 10−6 8.28762× 10−7 1.15327× 10−7 7.82974× 10−9

Second solution 1.99622× 10−4 1.83693× 10−5 2.56265× 10−6 2.14811× 10−7

Third solution 1.9028× 10−4 1.44628× 10−5 2.19408× 10−6 4.12512× 10−7

Table 2: Square root of integral of the squared residual error for example (2.2)

.

Number of iteration n = 10 n = 25 n = 50 n = 100

E(un) 1.86366× 10−3 1.63077× 10−4 2.45307× 10−5 3.10783× 10−6

Figure 4: Graph of u′10(1; s) for example (2.1) which
shows the problem has three solutions.

From Fig. 4 we see that there exists three so-
lutions for example (2.1). The approximations of
these three branches of solutions have been shown
in Fig. 5. Table 1 shows the square root of inte-
gral of the squared residual error of all three ap-
proximate branches of SRKHS solutions for ex-
ample (2.1).

Example 2.2. Consider problem (1.1)-(1.2) with
β = 2, α = 0.2 and

f(u) = 2(107)(0.4− u) exp

(
−20

1 + u

)
.

From Fig. 6 we see that there exists a unique
solution for example (2.2) and the approximation
of this solution has been shown. Table 2 shows
the square root of integral of the squared resid-
ual error of the approximate SRKHS solution for
example (2.1).

3 Conclusions

In this manuscript, we considered a nonlinear
boundary value problem, which arises in adia-
batic tubular reactors. The shooting reproducing

Figure 5: Graph of three approximate solutions
u50(x) for example (2.1).
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Figure 6: Graph of u′10(1; s) for example (2.2), which
shows the uniqueness of solution and it’s approxima-
tion u50(x).

kernel Hilbert space (SRKHS) method is used to
study the existence and uniqueness or multiplic-
ity of the solutions of nonlinear boundary value
problem (1.1)-(1.3). We showed the dependence
of the number of solutions to the values of vari-
ous parameters of the problem. In addition, the
analytical approximations of all branches of so-
lutions are calculated by the proposed method.
We proved the convergence of the method. The
implementation of the presented method is easy.
Some numerical simulations have been given to
show the high applicably of the SRKHS method.
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