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Abstract

The cross-efficiency ranking method is a well-known method in DEA which is frequently used under
the constant returns to scale assumption; while various applications exist based on the variable returns
to scale (VRS). This is due to the presence of negative input-oriented VRS cross-efficiencies. In this
paper, each cross-efficiency is replaced by an equivalent distance measure as inefficiency measure.
Then, the cross-inefficiency method is developed under the VRS assumption.
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1 Introduction

D
ata envelopment analysis (DEA) is a tech-
nique to measure the relative efficiency of

the homogenous decision making units (DMUs).
Since this technique was introduced by Charnes
et al. [5], extensive researches were conducted in
DEA and many concepts have been introduced.
One of these concepts being considered as an im-
portant factor in efficiency evaluation from the
beginning is the returns to scale (RTS). This con-
cept was discussed for the first time by Banker
[3] and also Banker et al. [2] in DEA. By delet-
ing the “Ray Unboundedness” postulate from the
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postulates of constructing the production possi-
bility set (PPS), instead of the CCR model [5]
which deals with the constant returns to scale
(CRS), they achieved the BCC model [3] which
assumes variable returns to scale (VRS). An im-
portant point about these classical models is that
both of them divide the DMUs into two efficient
and inefficient groups, while, there is often a need
to fully rank them. For this reason, many rank-
ing methods have been proposed based on various
concepts. An important one of these concepts is
cross-efficiency which was first developed by sex-
ton et al. [19].

The classical DEA models evaluate the effi-
ciency of each DMU in its best situation. For
this purpose, each DMU is allowed to use its
most favorable weights that are generally differ-
ent from the best weights of the other DMUs.
This is while all of the DMUs are experiencing
similar circumstances. To deal with this issue,
cross-efficiency ranking method uses the cross-
evaluation efficiency scores to rank the DMUs.

345

http://ijim.srbiau.ac.ir/


346 B. Asadi et al., /IJIM Vol. 12, No. 4 (2020) 345-355

One of the advantages of this method is rank-
ing the DMUs in a unique order; moreover, the
unrealistic weight schemes are eliminated with-
out predetermining any weight restrictions (Wu
et al. [22]). This ranking method has been
used in a variety of applications. For example,
Ganji et al. [12] proposed a double frontier cross-
efficiency method for measuring road safety per-
formance. Liu et al. [16] presented an application
of state key laboratories in China using the cross-
efficiency prospect method. Huang et al. [13]
proposed a coastal urban disaster vulnerability
assessment method based on the cross-efficiency
models. Chen et al. [8] used a cross efficiency
model considering the game relationship of DMUs
to evaluate and analyze the provincial electric en-
ergy efficiency of China. Yang and Wei [24] ap-
plied game cross-efficiency DEA to analyze the
urban total factor energy efficiency of 26 Chinese
prefectural-level cities from 2005 to 2015 under
environmental constraints.

Despite the many advantages of cross-efficiency
ranking method, there is an important point
about this method that undermines its validity.
That is the presence of negative cross-efficiencies
in the conventional input-oriented cross-efficiency
method under the VRS assumption. While, in
the DEA literature, all the efficiency scores of
DMUs must have non-negative values. This issue
can be considered as the main reason to use the
cross-efficiency method almost exclusively with
CCR model, while, VRS is one of the most com-
mon assumptions in efficiency evaluation done by
DEA. There are no many studies to address this
issue. For instance, when this issue occurred in
the Soares de Mello et al. [11], the DMUs that
generated the negative efficiencies in the cross-
evaluation matrix were not taken into account for
the ranking. While, it must be discussed that
why did these negative efficiencies appear and
how should this issue were interpreted? Angulo-
Meza et al. [1] and Wu et al. [23] to avoid
the negative efficiencies, without further analyses,
added a set of constraints in the BCC multipliers
model. However, their small intuitive change in
the BCC multipliers model changes the original
frontier of the production possibility set under
the variable returns to scale assumption (Tv). In
the following, Soares de Mello et al. [10] showed

why the aforementioned constraints were added
and they compared the modified BCC multipli-
ers model with Non-Decreasing Returns to Scale
(NDRS) model, proposed by Charnes et al. [6]
and Cooper et al. [9], which avoids negative effi-
ciencies, too. They also graphically analyzed the
addition of those constraints through the concept
of non-observed DMUs which have been used pre-
viously by Thanassoulis et al. [21], Jahanshahloo
and Soleimani- Damaneh [14], among others.

A remarkable point about the aforementioned
methods is that all of them change the efficiency
frontier of Tv (i.e., production possibility set un-
der the VRS assumption) to avoid the negative
efficiencies. Therefore, it is reasonable that the
created change may reduce the validity of their
ranking results.

In the following, Lim and Zhu [15] showed that
negative VRS cross-efficiency is related to free
production of outputs. In fact, they concluded
that cross-efficiency evaluation under the VRS as-
sumption is not proper in its conventional model
regardless of whether the problem of negative
cross-efficiency actually arises or not. Therefore,
they developed some change in the framework of
cross-efficiency evaluation based on a geometric
view of the relationship between the VRS and
CRS models. They proposed that VRS cross-
efficiency evaluation should be done via a series
of CRS models under translated Cartesian coor-
dinate systems. In the better words, each DMU,
via solving the VRS model, seeks an optimal bun-
dle of weights with which its CRS-efficiency score,
measured under a translated Cartesian coordi-
nate system, is maximized. This approach also
clearly changes the Tv frontier and it is logical
that it cannot be considered as a ranking method
under the VRS assumption.

In the current paper, similar to Lim and Zhu
[15], we use a geometric interpretation of the
cross-efficiency and try to address the negative
cross-efficiency problem. However, our interpre-
tation is from a totally different viewpoint which
does not make any changes in production possibil-
ity set TV . Indeed, this paper replaces the cross-
efficiencies by the equivalent geometric quantities
which include a particular distance measure from
the supporting hyper-planes of TV . This distance
measure can be considered as an inefficiency mea-
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sure. Therefore, based on the proposed distance
measure, the cross-efficiency method is devel-
oped and transformed into the cross-inefficiency
method.

The rest of the paper is organized as fol-
lows: Section 2 presents the conventional cross-
efficiency method under the VRS assumption and
shows that negative efficiencies may appear only
in the input orientation of this method. More-
over, in this Section, the approach of Lim and
Zhu [15] is briefly reviewed and discussed. In Sec-
tion 3, a new development of the cross-efficiency
method under the VRS assumption is proposed
to avoid the negative efficiencies. The developed
method is illustrated using a numerical example
in Section 4. Finally, conclusions are provided in
Section 5.

2 Cross-efficiency method with
variable returns to scale

In this section, necessary preliminaries are re-
viewed and discussed including conventional
cross-efficiency method under the VRS assump-
tion along with Lim and Zhu’s [15] approach to
avoid the negative cross-efficiency.

2.1 Conventional VRS cross-efficiency

Consider n DMUs where each DMUj uses the
input vector xj = (x1j , x2j , ..., xmj)

t to produce
the output vector yj = (y1j , y2j , ..., ysj)

t. The
input-oriented linear fractional model to evaluate
the DMUo, considering the variable returns to
scale, is the model (2.1):

Max
utyo + w

vtxo

s.t.
utyj + w

vtxj
≤ 1, j = 1, . . . , n,

u ≥ 0, v ≥ 0. (2.1)

The value of
utyo + w

vtxo
, which belongs to the in-

terval [0, 1], is considered as efficiency measure of
DMUo. In fact, model (2.1) obtains the possible
maximum efficiency of DMUo while the efficiency
of the other DMUs cannot be greater than 1. Ac-
cording to DEA literature, model (2.1) can be

linearized as the model (2.2):

Max utyo + w

s.t. vtxo = 1,

utyj − vtxj + w ≤ 0, j = 1, . . . , n,

u ≥ 0, v ≥ 0. (2.2)

Model (2.2) is called the input-oriented multipli-
ers BCC model. After obtaining the efficiency
of DMUo, cross-efficiency method uses the op-
timal solution of the model (2.2) to obtain the
efficiencies of other DMUs. This means that if
(u∗o, v

∗
o , w

∗
o) (o ∈ {1, ..., n}) is an optimal set of

weights for DMUo evaluated by the model (2.2),
then efficiency score of the DMUs corresponding
to this set of weights denoted by θoj , is calculated
by the relation (2.3) as follows:

θoj =
ut∗o yj + w∗

o

vt∗o xj
j = 1, . . . , n (2.3)

At the end, by solving the model (2.2) for all
DMUi (i ∈ {1, ..., n}), the efficiency index θj =

1
n

n∑
i=1

θij (j = 1, . . . , n) corresponding to DMUj

can be obtained. As can be seen, there is no
guarantee that the efficiency score of DMUj is
non-negative when it is evaluated by DMUo, but
this is meaningless. This may occur when the
unrestricted variable “w” is negative enough. To
avoid the negative efficiencies, one can consider
the “w” as a positive variable in the model (2.2).
In this way, model (2.2) is converted to NDRS
model (Charnes et al. [6]; Cooper et al. [9]). An-
other way is adding the constraints utyj + w ≥
0 (j = 1, ..., n) to the model (2.2) (see [10]). How-
ever, as has been shown in Soares de Mello et
al. [10], both ways probably change the efficiency
frontier of TV and this does not seem desirable.

The output oriented linear fractional model to
evaluate the DMUo considering variable returns
to scale is considered as the model (2.4):

Min
vtxo − w

utyo

s.t.
vtxj − w

utyj
≥ 1, j = 1, . . . , n,

u ≥ 0, v ≥ 0. (2.4)

In this orientation, the efficiency score of DMUj

corresponding to DMUo is defined as ϕoj =
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ut∗
o yj

vt∗o xj−w∗
o
, where (u∗o, v

∗
o , w

∗
o) is an optimal solution

of the model (2.4). According to the constraints
of the model (2.4), it can be seen that none of the
efficiency scores can be negative.

Remark 2.1 Since the negative efficiency issue
may only appear in the input orientation under
the VRS assumption, the current paper discusses
this orientation.

2.2 Lim and Zhu’s [15] approach to
avoid the negative cross-efficiency

Lim and Zhu [15] claimed that the negative effi-
ciency issue is caused by situations where weights
chosen by some DMUs are invalid for cross-
evaluating other DMUs. In better words, the
optimal weights chosen by a VRS-efficient DMU
exhibiting IRS or DRS are not valid for cross-
evaluating other DMUs. In fact, they believe
that it is related to free production of outputs
and some kind of adjustment is required for those
invalid weights to be properly used for cross-
efficiency evaluation. Here, we briefly review
their approach to deal with the free production
of outputs and overcome the negative efficiency
problem. Moreover, some notation about this ap-
proach are presented at the end.

To better understand, similar to Lim and Zhu
[15], a one-input one-output simple graphical ex-
ample is used. Consider 5 DMUs under the VRS
assumption along with their corresponding Tv as
shown in Fig. 1.

Figure 1: 5 DMUs with single input and single out-
put.

According to the DEA literature, each of the

optimal set of weights related to the DMU un-
der evaluation corresponds to a supporting hyper-
plane of Tv. The supporting hyperplane Hc as-
sociated with an optimal set of weights chosen
by DMU C is described through dashed line in
Fig. 1. Now, cross-efficiencies of other DMUs
evaluated by DMU C can be determined with
reference to the hyperplane Hc. For example,
a cross-efficiency of DMU E is E0E1

E0E
. There is

no problem in calculating the cross-efficiency of
DMUs, except for DMU A. In fact, model (2.2)
forces the cross-efficiency of DMU A to be deter-
mined in reference to the negative-input segment
of hyperplane Hc. In better words, the negative
sign of DMU cross-efficiency A i.e. A0A1

A0A
is due to

the position of A1. Lim and Zhu [15] claimed that
the optimal set of weights chosen by DMU C is
not valid for determining cross-efficiency of DMU
A, because, the efficient frontier associated with
the optimal weights chosen by DMU C extends
to induce the unacceptable point O′, which rep-
resents a free production of outputs in the under-
lying technology. According to Podinovski and
Bouzdine-Chameeva [18], when a technology al-
lows producing positive outputs with zero inputs,
it is said to allow the free production of outputs.
However, Lim and Zhu [15] extended this defini-
tion to include the case of negative outputs with
zero inputs. Therefore, they named ‘positive out-
puts with zero inputs’ and ‘negative outputs with
zero inputs’ as ‘type I’ and ‘type II’ of free pro-
duction of outputs, respectively. Type II of free
production of outputs arises when the support-
ing hyperplane associated with an optimal set of
weights chosen by the DMU under evaluation col-
lides with the output-axis below the input-axis.
This can be seen in related to DMU B in Fig. 2.
Here, O′′ is a point that represents the type II of
free production of outputs.

Although the negative cross-efficiency problem
does not occur in type II free production of out-
puts, Lim and Zhu [15] believed their claim made
in type I is still applied (to provide a more general
framework).

According to the above observations and con-
sidering that any supporting hyperplane of the ef-
ficient frontier in the CRS model does not extend
to induce the free production of outputs along
with its perpetual validity for cross-efficiency
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Figure 2: Type II of free production of outputs.

evaluation, Lim and Zhu [15] proposed to do the
VRS cross-efficiency evaluation using a series of
CRS models under translated Cartesian coordi-
nate systems. For example, related to Fig. 1 and
2, it is sufficient that the origin point in Fig. 1
and Fig. 2 are transferred to the point O

′′
and O

′
,

respectively and the new production possibility
sets are considered under the CRS assumption.
The scientific basis that creates a link between
the VRS and CRS models is provided in Theo-
rem 2.1.

Theorem 2.1 Given any optimal solu-
tion (u∗o, v

∗
o , w

∗
o) from the model (2.2) cho-

sen by a VRS-efficient DMUo, a CRS-
efficiency score of DMUo, measured under
the translated Cartesian coordinate system
defined by an adjusted originO∗ = (β1w∗

o
v∗o1

, ...,
βmw∗

o
v∗om

, −βm+1w∗
o

u∗
o1

, ..., −βm+sw∗
o

u∗
os

), is unity, for

any βk ∈ R+(k = 1, ....,m + s) such that∑m+s
k=1 βk = 1. [15]

Corollaries 2.1 and 2.2 result from Theorem 2.1
(their proofs are available in [15]).

Corollary 2.1 The supporting hyperplane of the
efficient frontier associated with an optimal set of
weights in model (2.2) chosen by a VRS-efficient
DMU exhibiting DRS extends to induce type I free
production of outputs in the underlying technol-
ogy.

Corollary 2.2 The supporting hyperplane of the
efficient frontier associated with an optimal set

of weights in the model (2.2) chosen by a VRS-
efficient DMU exhibiting IRS extends to induce
type II free production of outputs in the underly-
ing technology.

According to Theorem 2.1 and its corollaries,
the optimal weights chosen by a VRS- efficient
DMU exhibiting IRS or DRS are not valid for
cross-evaluating other DMUs. Moreover, it is
concluded that the VRS model for any DMU
can be casted as the CRS model for the same
DMU under a translated Cartesian coordinate
system. To this end, it is sufficient when
DMUo cross-evaluates DMUj using its opti-
mal solution (u∗o, v

∗
o , w

∗
o) from the model (2.2)

, the translation of the coordinate system is
considered defined by an adjusted origin O∗ =
(β1w

∗
o/v

∗
o1, ..., βmw∗

o/v
∗
om, 0, ..., 0) where 0 repeats

s times for the output associated coordinates,∑m
k=1 βk = 1 and βk ∈ R+(k = 1, ....,m). With

this translation, a CRS cross-efficiency θ′oj of
DMUj is determined as the relation (2.5):

θ′oj =
ut∗o yj

vt∗o xj − w∗
o

j = 1, . . . , n (2.5)

It can easily be proved that the cross-efficiencies
θ′ij (i, j = 1, ..., n) obtained from the relation
(2.5), are positive and less than or equal to unity.
Note that the relation (2.5) is used for a VRS
cross-efficiency of DMUj (evaluated by DMUo)
under the original coordinate system. It means
that (u∗o, v

∗
o , w

∗
o) in the relation (2.5) is an opti-

mal set of weights obtained from the conventional
VRS model (2.2).

At the end, the attention to some points re-
lated to Lim and Zhu’s [15] approach seems to
be necessary. Firstly, it should be noted that
this approach changes the VRS production pos-
sibility set (Tv) with the CRS one (Tc), while,
the evaluation is considered on the VRS assump-
tion. On the other hand, by translating the co-
ordinate system, the original size of the DMUs
will be changed. In this regard, the authors be-
lieve that this change likely has the same effect
on all the DMUs and does not make a change in
the ranking of DMUs. However, as they them-
selves have pointed out, this is when the shape of
the PPS is not changed. Actually, this transla-
tion in the VRS frontiers shape seems to be able
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to cause ambiguity in calculating the efficiency of
the DMUs. This issue is visible in Fig. (3).

Figure 3: DMUs with unusual production technol-
ogy.

Based on Fig. 3, the cross-efficiency of DMU F
and DMU E (evaluated by DMU D) according to
the original coordinate system are F0F1

F0F
= 0.6 and

E0E1
E0E

= 0.5, respectively. These cross-efficiencies
according to the translated coordinate system
(with the origin point O

′
) change to F2F1

F2F
= 0.8

and E2E1
E2E

= 0.78, respectively. In other words,
according to original coordinate system, DMU F
and DMU E to reach their project on the hyper-
plane HD had to move as much as F1F

F0F
= 0.4

and E1E
E0E

= 0.5 of their input vectors, respec-
tively; while according to translated coordinate
system, these amounts change to F1F

F2F
= 0.2 and

E1E
E2E

= 0.22, respectively. Here, it is well seen that
the translation has a same effect on both DMU
F and DMU E.Indeed, the size of the route for
both DMUs has almost halved. However, that is
not true about the DMU A. According to origi-
nal coordinate system, DMU A had to move as
much as 5 (= A1A

A0A
) times that of its input vector;

while this amount according to translated system
is A1A

A2A
= 0.83. The DMUs like DMU A often

earn large negative cross-efficiencies in the con-
ventional VRS cross-evaluation. Inspired by the
work of Sexton et al. [19], we call such DMUs as
a “DMUs with unusual production technology”.
Now, by considering the possibility of existence
of the DMUs with unusual production technol-
ogy, the question arises: which coordinate sys-
tems should be used to calculate the efficiency?
In this paper, we would prefer to use the origi-
nal coordinate system. Because, in this situation,
each DMU is evaluated based on its original size.

According to the mentioned points, in the next
section, a development of the conventional VRS

cross-efficiency, is proposed to change neither the
Tv nor the coordinate system, and lead to the
similar results with Lim and Zhu’s [15] approach.
Of course, as noted, it is clear that the results
obtained from an approach may have significant
differences with the results obtained from another
one for some units (such as DMU A with unusual
production technology in Fig. 3).

3 Cross-inefficiency method un-
der the VRS assumption

The concept of the cross-efficiency was first in-
troduced by Sexton et al. [19] as a way to iden-
tify the DMUs which have an unusual produc-
tion technology in the production possibility set
under the CRS assumption (Tc). Accordingly,
since the ratio formulation of the DEA model
places weights directly on the individual inputs
and outputs, they used that version (the mul-
tiplier CCR model). Since then, many papers
have been published in which concept of the cross-
efficiency is used for the other purposes, such as
ranking DMUs, target setting, project selection,
etc (e.g. Oral et al. [17]; Chen and Wang [7],
Zhou et al. [25]).

Use of the cross-efficiency concept for ranking
the DMUs has no problem while the production
technology is considered with CRS assumption.
The problem (i.e. negative cross-efficiency) ap-
pears when the concept is used with VRS as-
sumption. Here, an interesting question to ask
is that: why should θoj presented in the relation
(2.3) be considered as an efficiency measure for
DMUj? In the following, to answer this ques-
tion, we show that each of the cross-efficiencies
is equal to a geometric quantity which includes
a distance measure according to the supporting
hyper-planes of Tv. Then, this distance measure
which can be considered as an inefficiency mea-
sure, is used as basis to develop the conventional
input-oriented cross-efficiency method under the
VRS assumption.

Again, we use a graphical example including 5
DMUs (plotted by black points) under the VRS
assumption with single input and single output
as shown in Fig. 4.

Assume (u∗o, v
∗
o , w

∗
o) is an optimal set of weights

chosen by DMUo from the model (2.2). There-
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Figure 4: 5 DMUs with single input and single out-
put.

fore, Ho = {(x, y)| ut∗oy − vt
∗
ox + w∗

o = 0} is a
supporting hyper-plane of Tv such that DMUo is
projected onto it. This hyper-plane is described
with dashed line in Fig. 4.

Now, consider the distance measure doo as de-
fined in relation (3.6) to quantify the distance
between the DMUo and its project on the hyper-
plane Ho, with its related equation ut

∗
oy− vt

∗
ox+

w∗
o = 0:

(x′o, y
′
o) = (xo, yo) + doo(−xo, 0) (3.6)

where (x′o, y
′
o) is the project of DMUo on the

hyper-plane Ho. More precisely, by moving in
the direction of (−xo, 0) as much as doo, DMUo is
projected onto the (x′o, y

′
o) on the hyper-planeHo.

According to this definition, doo can be consid-
ered as inefficiency measure of DMUo such that
the larger its value, the more inefficiency is ex-
pected for DMUo. From Fig. 4, it is obvious
that 0 ≤ doo ≤ 1. The more doo value is closer to
0, the more efficient the DMUo and conversely,
the more doo value is closer to 1, the more ineffi-
cient the DMUo. The exact relationship between
the cross-efficiency θoj and the distance measure
doj (for all j = 1, ..., n) is expressed in Theorem
3.1.

Theorem 3.1 Suppose θoj is a cross-efficiency
of DMUj (j = 1, ..., n) evaluated by DMUo, ac-
cording to the optimal set of weights (u∗o, v

∗
o , w

∗
o).

Moreover, let doj be the distance measure that sat-
isfies the equality (x′j , y

′
j) = (xj , yj)+doj(−xj , 0);

where,(x′j , y
′
j) is the project of the DMUj on the

hyper-plane Ho = {(x, y)|ut∗oy − vt
∗
ox + w∗

o = 0}.
Then, θoj = 1− doj for all j = 1, ..., n.

Proof. Since (x′j , y
′
j) = (xj − dojxj , yj) is a pro-

jection on the hyper-plane Ho then the relation
(3.7) should be satisfied as follows:

ut
∗
oyj − vt

∗
o(xj − dojxj) + w∗

o = 0 (3.7)

or equivalently as the relation (3.8):

ut
∗
oyj − vt

∗
oxj(1− doj) + w∗

o = 0 (3.8)

now, relation (3.9) is concluded from the relation
(3.8) as follows:

ut
∗
oyj + w∗

o

vt∗oxj
= 1− doj (3.9)

The left side of the relation (3.9) is the same
cross-efficiency θoj and the proof is complete. □

Here, the reason of the existence of the neg-
ative cross-efficiency is determined. In the bet-
ter words, although doj is non-negative for all
j = 1, ..., n, it is not necessarily less than 1 for
all of them. Thus, θoj may be negative for some
j ∈ {1, ..., n}. For example, in the Fig. 4, the
distance measure dop corresponding to DMUp is
greater than 1, thus θop must be negative.

So far, providing Theorem (3.1), it is shown
that the cross-efficiency of a DMU is actually
based on the particular distance measure. Be-
cause this distance measure can be considered
as an inefficiency index, it is logical that this
measure itself is directly used as a ranking mea-
sure. Accordingly, we name the doj as a “cross-
inefficiency of the DMUj evaluated by DMUo”
and based on that develop the conventional VRS
cross-efficiency method1 to the cross-inefficiency
method as follows:

VRS cross-inefficiency method:

Step 0. Solve the linear programming model
(3.10) for all i = 1, ..., n:

Max utyi + w

s.t. vtxi = 1,

utyj − vtxj + w ≤ 0, j = 1, ..., n,

u ≥ 0, v ≥ 0. (3.10)

1Here, we develop the VRS cross-efficiency method in
the input orientation but all of the mentioned statements
and relations can be generalized to the output orientation.
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Suppose that (u∗i , v
∗
i , w

∗
i ) is an optimal set of

weights corresponding to DMUi. Then, go
to step 1.

Step 1. Obtain the cross-inefficiency θ̂ij
from the relation (3.11) as follows:

θij =
ut

∗
i yj + w∗

i

vt∗ixj
=⇒ θ̂ij = 1− θij (3.11)

Step 2. Calculate the cross-inefficiency

score θ̂j =
1

n

∑n
i=1 θ̂ij of DMUj for all j =

1, ..., n.

Step 3. Rank the DMUs using the ineffi-
ciency indices θ̂js (j = 1, ..., n) such that the

more larger θ̂j , the worse rank DMUj has.

■

Remark 3.1 In the cases of non-uniqueness of
the optimal set of weights in model (3.10), a set
of secondary goals can be added to this model (as
the existing secondary goal models like the neutral
models [20] and [4]).

Remark 3.2 The proposed VRS cross-
inefficiency method ranks all of the DMUs
without applying any changes in the Tv. How-
ever, a major objection raised against the
developed method may be that the ranking index
θ̂j represents the distance between DMUj and
its project on a supporting hyper-plane of Tv,
not necessary on the efficiency frontier of Tv. In
other words, when the project of DMUj is most
probably outside of the Tv, this index cannot be
appropriate as a ranking criterion. 2 In response
to the aforementioned objection, according to
Lim and Zhu [15], it can be stated that “in
the circumstance of benchmarking, the efficient
DMUs as defined by DEA may not necessarily
form a production frontier, but rather lead to
a best-practice frontier”. Moreover, since the
general concept of cross-efficiency is to look

2That is the same issue which also exists in all versions
of the cross-efficiency method under the both VRS and
CRS assumptions. Perhaps for this reason, Sexton et al.
[19] uses the concept of cross-efficiency just to identify the
DMUs which have an unusual production technology, not
for ranking DMUs (contrary to what has been known in
the DEA literature).

at the performance of a DMU by using other
DMUs weights or facets, it is reasonable to apply
the facets to all DMUs and to generate VRS
cross-efficiency [15].

4 Numerical example

In this section, similar to Lim and Zhu [15], the
proposed cross-inefficiency method is applied to
the set of 37 project proposals relating to the
Turkish iron and steel industry studied in Oral
et al. [17]. The related data are listed in Ta-
ble 1. Direct economic contribution, indirect eco-
nomic contribution, technological contribution,
scientific contribution, and social contribution are
the outputs of each project, along with the bud-
get as its single input. The purpose is to select
the projects by the decreasing order of their cross-
efficiency scores until the allowance of considered
budget for the program (given 1000).

Table 1: Data set of 37 project proposals with 5
outputs and single input.

Project Direct eco. Indirect eco. Technological Scientific Social Budgete
contribution contribution contribution contribution contribution

1 67.53 70.82 62.64 44.91 46.28 84.2
2 58.94 62.86 57.47 42.84 45.64 90
3 22.27 9.68 6.73 10.99 5.92 50.2
4 47.32 47.05 21.75 20.82 19.64 67.5
5 48.96 48.48 34.9 32.73 26.21 75.4
6 58.88 77.16 35.42 29.11 26.08 90
7 50.1 58.2 36.12 32.46 18.9 87.4
8 47.46 49.54 46.89 24.54 36.35 88.8
9 55.26 61.09 38.93 47.71 29.47 95.9
10 52.4 55.09 53.45 19.52 46.57 77.5
11 55.13 55.54 55.13 23.36 46.31 76.5
12 32.09 34.04 33.57 10.6 29.36 47.5
13 27.49 39 34.51 21.25 25.74 58.5
14 77.17 83.35 60.01 41.37 51.91 95
15 72 68.32 25.84 36.64 25.84 83.8
16 39.74 34.54 38.01 15.79 33.06 35.4
17 38.5 28.65 51.18 59.59 48.82 32.1
18 41.23 47.18 40.01 10.18 38.86 46.7
19 53.02 51.34 42.48 17.42 46.3 78.6
20 19.91 18.98 25.49 8.66 27.04 54.1
21 50.96 53.56 55.47 30.23 54.72 74.4
22 53.36 46.47 49.72 36.53 50.44 82.1
23 61.6 66.59 64.54 39.1 51.12 75.6
24 52.56 55.11 57.58 39.69 56.49 92.3
25 31.22 29.84 33.08 13.27 36.75 68.5
26 54.64 58.05 60.03 31.16 46.71 69.3
27 50.4 53.58 53.06 26.68 48.85 57.1
28 30.76 32.45 36.63 25.45 34.79 80
29 48.97 54.97 51.52 23.02 45.75 72
30 59.68 63.78 54.8 15.94 44.04 82.9
31 48.28 55.58 53.3 7.61 36.74 44.6
32 39.78 51.69 35.1 5.3 29.57 54.5
33 24.93 29.72 28.72 8.38 23.45 52.7
34 22.32 33.12 18.94 4.03 9.58 28
35 48.83 53.41 40.82 10.45 33.72 36
36 61.45 70.22 58.26 19.53 49.33 64.1
37 57.78 72.1 43.83 16.14 31.32 66.4

Since some of the conventional cross-efficiencies
will be negative, they are not valid to be used
in ranking and selecting the project. To solve
the problem, it is sufficient to calculate the cross-
inefficiencies of the projects and then obtain the
cross-inefficiency scores based on the relation
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(3.11). These scores can be seen in the second
column of Table 2 in increasing order. The cor-
responding cross-efficiency scores obtained from
Lim and Zhu’s [15] approach along with their rel-
evant ranks are listed in columns 3 and 4. For
comparison between the existing methods, the
same results related to the NDRS cross-efficiency
method [6, 9] and Soares de Mello et al.’s ap-
proach [10] are listed in columns 5 to 8. In addi-
tion, the cross- and simple VRS efficiency scores
can be seen in columns 9 and 10, respectively. At
the end, the project selection results based on the
cross-inefficiency scores and the cross-efficiency
scores obtained from Lim and Zhu’s [15] approach
are shown in columns 11 and 12, respectively. As

Table 2: Project selection results in increasing order
with respect to the cross-inefficiency scores.

Projects Cross- Lim and Zhu’s [15] Ranks NDRS [6, 9] Ranks Soares et al.’s approach [10] Ranks Conventional Simple VRS Selection Selection with Budget
inefficiency cross-efficiency cross-efficiency cross-efficiency cross-efficiency efficiency with cross- Lim and Zhu’s [15]

scores scores scores scores scores scores inefficiency approach
17 0.13084 0.942 1 0.98848 1 0.99161 1 0.9237 1 Yes Yes 32.1
36 0.14751 0.7699 3 0.68919 6 0.75497 4 0.8297 1 Yes Yes 64.1
23 0.22557 0.7178 5 0.59871 10 0.66433 7 0.7533 1 Yes Yes 75.6
14 0.24301 0.7066 7 0.54665 14 0.64262 10 0.7303 1 Yes Yes 95
27 0.27869 0.711 6 0.6672 8 0.69797 6 0.7214 0.8935 Yes Yes 57.1
1 0.28759 0.6892 8 0.5588 13 0.6378 11 0.6895 1 Yes Yes 84.2
31 0.29031 0.7635 4 0.80412 3 0.80874 3 0.7018 1 Yes Yes 44.6
35 0.29863 0.8411 2 0.95321 2 0.96746 2 0.7161 1 Yes Yes 36
26 0.32913 0.6715 12 0.58529 11 0.62732 12 0.6588 0.8955 Yes Yes 69.3
21 0.37931 0.6335 14 0.52615 16 0.55529 14 0.6199 1 Yes Yes 74.4
37 0.41981 0.6719 11 0.62406 9 0.65997 8 0.5708 1 Yes Yes 66.4
2 0.43736 0.5991 17 0.47935 22 0.52675 19 0.5525 0.7629 Yes - 90
11 0.44594 0.5996 15 0.50744 18 0.54717 15 0.547 0.71 Yes Yes 76.5
30 0.44788 0.5974 18 0.49442 20 0.54036 16 0.5389 0.7232 Yes - 82.9
24 0.4518 0.5807 19 0.4427 29 0.47363 25 0.5459 1 - - 92.3
29 0.46377 0.5995 16 0.52353 17 0.53807 17 0.5372 0.6809 - Yes 72
10 0.47911 0.58 20 0.49035 21 0.51743 20 0.5171 0.6452 - - 77.5
22 0.51842 0.551 24 0.44947 27 0.491 22 0.4861 0.7091 - - 82.1
18 0.52247 0.652 13 0.68578 7 0.65436 9 0.5046 0.7781 - Yes 46.7
19 0.56001 0.5399 25 0.45717 25 0.48872 23 0.4465 0.6412 - - 78.6
6 0.58227 0.5612 23 0.47869 23 0.50768 21 0.4158 0.8866 - - 90
15 0.585 0.5706 21 0.49602 19 0.58651 13 0.4154 1 - - 83.8
9 0.65064 0.5013 26 0.41521 31 0.4453 29 0.3538 0.7169 - - 95.9
16 0.67264 0.6831 10 0.78385 4 0.74929 5 0.3767 0.9238 - Yes 35.4
8 0.68223 0.4676 29 0.39183 33 0.39943 31 0.323 0.4468 - - 88.8
32 0.69882 0.5614 22 0.58123 12 0.53443 18 0.3264 0.6481 - - 54.5
5 0.74401 0.4815 28 0.44424 28 0.45967 27 0.2713 0.5667 - - 75.4
7 0.76135 0.4628 30 0.41195 32 0.42069 30 0.246 0.6368 - - 87.4
4 0.87892 0.4487 32 0.45023 26 0.45453 28 0.1504 0.5384 - - 67.5
28 0.87996 0.3784 35 0.33812 36 0.29108 35 0.1518 0.3895 - - 80
25 0.90249 0.3915 33 0.36836 34 0.31466 33 0.1375 0.4502 - - 68.5
12 0.90462 0.4927 27 0.54222 15 0.46024 26 0.1458 0.6489 - - 47.5
13 0.90799 0.4508 31 0.46879 24 0.37406 32 0.1351 0.5453 - - 58.5
33 1.10449 0.3858 34 0.42958 30 0.31253 34 -0.0452 0.5588 - - 52.7
20 1.21684 0.3157 36 0.35015 35 0.21955 36 -0.1435 0.5513 - - 54.1
34 1.5933 0.6851 9 0.75384 5 0.4801 24 -0.4647 1 - Yes 28
3 1.68723 0.1739 37 0.26332 37 0.13952 37 0.5870 0.568 - - 50.2

Budget sum 948.2 957.4

can be seen in Table 2, there are some differences
in ranking orders between the two methods and
thus they choose different set of projects. Ac-
tually, the cross-inefficiency method leads to se-
lect a smaller number of the projects (just two
projects). However, the selection of both meth-
ods are largely identical.

It should be noted that among the projects,
there is also a project that its rank obtained by
cross-inefficiency method is very different from its
rank obtained by Lim and Zhu’s [15] approach.
That is Project 37 which is ranked 9th by Lim and
Zhu’s [15] approach; while it is ranked 36th by
the cross-inefficiency method. In fact, according
to the negativity of its simple cross-efficiency, this
project may be from the same DMUs which have
unusual production technologies.

5 Conclusions

This paper tried to address one of the main
disadvantages of the conventional cross-efficiency
method, namely the existence of negative effi-
ciency. To this end, it was shown that the
cross-efficiency was based on the particular dis-
tance measure with respect to the input vector
of each DMU. Then, this distance measure was
used to construct the new ranking index. In
this way, a new development of the conventional
cross-efficiency method under the VRS assump-
tion was proposed as cross-inefficiency method. It
should be mentioned that when there is no DMU
with unusual production technology, there is no
difference between the ranks obtained from the
conventional cross-efficiency method and cross-
inefficiency method. Moreover, it should be noted
that the development idea (i.e. using the distance
measure) has been presented in the input orien-
tation, but it can be generalized to the output
orientation.

As a main result of this paper, from the DEA
point of view, we believe that when a num-
ber of DMUs with unusual production technol-
ogy exist, it seems better not to use the VRS
cross-evaluation (neither cross-efficiency or cross-
inefficiency); even when they do not exist, not
because of inducing free production of outputs
(as pointed out by Lim and Zhu [15]) but be-
cause of comparing some DMUs with the projects
which are not in the production possibility set (as
pointed out in Remark 3.2). Unless, that is used
from the other points of view such as benchmark-
ing in operations management.
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