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Abstract

The numerical solution of linear integral equations of third kind is discussed in various studies, but in
the previous researches on this kind of equations only the analytical solution was investigated. Due
to some limitations for this kind of solutions, in this paper we propose a new method for numerical
solution of linear integral equations of third kind. The proposed method is based on the approximation
of the unknown function with Krall-Laguerre polynomials. This method has a simple computation
with a quite acceptable approximate solution. Moreover, we obtain an estimate of the error bound for
suggested method. Two examples are also presented to show the efficiency of the proposed method.

Keywords : Third-Kind Integral Equations; Krall-Hahn Orthogonal Polynomials; Krall-Laguerre Poly-
nomials, Approximation; Analytical solution.
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1 Introduction

O
ver recent years, researchers have completed

extensive scientific studies on integral equa-

tions, which can significantly contribute to mod-

eling and analyzing a wide variety of problems in

mechanics, engineering, chemistry, physics, biol-

ogy, astronomy, potential theory, economics, as

well as electrostatics [1, 2, 3]. Some modeling

problems have been also converted into third-kind

integral equations. For example, the following in-
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tegral equation:

xβf(x) =g(x) +

∫ x

0
(x− t)−αk(x, t)f(t)d(t),

x ∈ [0, T ] (1.1)

wherein, , α ∈ [0, 1), β ∈ R, β > 0, α + β > 0,

g(x) represent continuous functions on I. More-

over, k(x, t) is continuous on ∆ = {(x, t) : 0 ≤
t ≤ x ≤ T} and it is in the form of k(x, t) =

xα+βk1(x, t) in which k1 ∈ c(∆) This class of

equations as expressed in (1.1) can be corre-

spondingly found in concepts about singular in-

tegral equations with boundary value problems

for mixed-kind partial differential ones. Besides,

such equations have been widely applied to some

major problems in the domains of neutron trans-

port, elasticity, and scattering theory of particles

[4, 5, 6]. Therefore, research studies in this area
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have recently received much more attention. As

far as this, solutions have been investigated for

existence and uniqueness of the systems of the

third-kind integral equations [7, 8, 9, 10] and re-

searchers have provided necessary conditions to

convert (1.1) into earlier cordial Volterra integral

equations (VIEs) [11, 12]. However, the case of

α + β > 1 has been particularly interesting be-

cause integral operators related to (1.1) would

not be compact and ensuring equation-solving via

classical numerical methods would not be feasi-

ble if (k1(0, 0) ̸= 0. Notably, researchers [13]

have presented a modified graded mesh to deal

with the problem of solvability. Moreover, Gab-

basov [14, 15, 16] had examined these equations

through a novel direct technique and a specific

correlation one. Shulaia [17, 18] had additionally

studied equations on the basis of the notions of

the spectral expansion solution method.

All these research studies had been thus con-

ducted to find an analytical solution method for

third-kind integral equations and no numerical

one had been proposed. Therefore, the present

study proposed a new method for numerical so-

lution of the linear integral equations of the third

kind. It should be noted that the given method

was on the basis of approximating unknown func-

tions using Krall-Laguerre polynomials. This

method has no special restrictions except for that

the interval must be in the form of 0 or 1.

The study was organized as follows. Section 2

deals with Krall orthogonal polynomials. Section

3 implements Krall-Laguerre polynomials on inte-

gral equations of the third kind and Section 4 dis-

cusses the estimation of error bound. In Section

5, the implementation of this method is shown on

polynomials and a comparison is made between

outputs obtained from this method as well as the

exact solutions of these equations. At the end,

the study is concluded.

2 Krall Orthogonal Polynomi-
als

It should be noted that Krall orthogonal poly-

nomials are known as subsets of polynomials

with linear functional u connectivity, obtained

from quasi-definite functions (see [19, 20]), so

u = H → N (H signifies the complex polynomial

space with a complex coefficient) the Dirac delta

function is added and û refers to linear function.

û = u+

N∑
p=1

Apδ(xp) (2.2)

where, Ap ∈ R, x1, . . . , xp ∈ R and δ(xp) repre-

sents Dirac delta function at point xp. For the

first time in 1938, such functions were delineated

by Krall [21, 22], who stated that such forms of

the polynomials had emerged as essential eigen-

functions of fourth-order linear differential oper-

ators with polynomial coefficients, although they

were not dependent on polynomial degrees. His

studies further led to Bochners research works on

development of classical orthogonal polynomials

[23]. Krall also confirmed that, regardless of the

classical polynomials of Hermite, Laguerre, and

Jacobi, there were three additional families of

orthogonal polynomials that could convince this

fourth-order differential equation which were or-

thogonal as for measure and would not be cer-

tainly continuous according to the Lebesgue mea-

sure. For example, the Jacobi-type polynomials

are orthogonal based on the weight function.

h(x) = (1− x)α +Nδ(x), N > 0, a > −1

supported on [0, 1], Legendre-type polynomials

are also orthogonal on [−1, 1] according to the

h(x) = α
2 + δ(x−1)

2 + δ(x+1)
2 , α > 0 and Laguerre-

type polynomials, which are orthogonal with

regard to h(x) = e−x + Nδ(x), N > 0 on

[0,∞0). Such a condition resulted in further

studies into orthogonal polynomials in accor-

dance with weight functions [24, 25] in which

more examples of higher-order differential equa-

tions were provided [26]. Examination of such

polynomials has gained much interest in the past

few years and has also led to its development

[27, 28], in particular, if the starting functional

u is considered as one of the classical continuous

linear functionals (which expanded Krall-Jacobi,

Krall-Hermite, Krall-Laguerre, and Krall-Bessel

polynomials) or a classical discrete one (which

developed Krall- Hahn, Krall-Meixner, Krall-

Kravchuk, and Krall-Charlier polynomials). The
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steps and how to transform Laguerre polynomials

into Krall-Laguerre ones have been described in

[29]. The present study used Krall-Laguerre poly-

nomials for approximating unknown functions.

2.1 Krall-Laguerre Polynomials

Krall-Laguerre polynomial Km(x) of the degree

m is provided by [27]:

Km(x) =

m∑
i=0

(−1)i

(i+ 1)!

(
m

i

)
[i(α+m+ 1) + α]xi

(2.3)

A family of polynomials {Km(x)}∞m=0 is also or-

thogonal with relation to the measure ω taken by

dω = w(x)d(x), so weight function is:

w(x) =
1

α
δ(x) + e−xH(x),

that,H9x) is the Heaviside step function and the

measure ω refers to the Laguerre weight e−x on

(0,∞).
The first six of these polynomials are listed as

follows:

K0(x) = 1,

K1(x) = 2− 3x,

K2(x) = 2− 7x+ 2x2,

K3(x) = 2− 12x+ 7x2 − 5x3

6
,

K4(x) = 2− 18x+ 16x2 − 23x3

6
+

x4

4
,

K5(x) = 2− 25x+ 30x2 − 65x3

6
+

17x4

12
− 7x5

120
.

The Krall-Laguerre polynomials are also de-

picted in Figure 1, for different m-values.

2.2 Basic Relations

In the present study, Krall-Laguerre approxima-

tion Km(f) defined to a function f : [0, 1] → R
refers to the polynomial:

Km(f)(x) =
m∑
i=0

pm,i(x) (2.4)

Figure 1: Plots of Krall-Laguerre polynomials

Figure 2: Error Function for Example 6.1 with
m = 6

wherein, pm,i(x) denotes polynomial of degree m

:

pm,i(x) =
(−1)i

(i+ 1)!

(
m

i

)
[i(α+m+ 1) + α]xi,

i = 1, . . . ,m. (2.5)

It should be noted that the error bound of the

Krall-Laguerre polynomial is examined in the

next section.
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Figure 3: Results for Example 6.1 with m = 24

Figure 4: Error Function for Example 6.1 with
m = 3

3 Implementation of Krall-
Laguerre Method for Third-
Kind Integral Equation

Here, the third-kind integral equation would be

presented as follows:

xβf(x) =g(x) +

∫ x

0
(x− t)−αk(x, t)f(t)dt,

x ∈ [0, T ] (3.6)

To numerically solve these kinds of integral equa-

tions, the unknown f is approximated by relation

(2.4). Accordingly, this equation would be pro-

vided:

m∑
i=0

f(
i

m
)

(
(−1)i

(i+ 1)!
[i(α+m+ 1) + α]

(
m

i

)
(
(xβ+i)−

∫ x

0
(x− t)−αk(x, t)tidt

))
= g(x)

To find f( i
m), i = 0, . . . ,m the equation would

be converted into a linear system of equations

through replacing x with xj = j/m + ε, j =

0, . . .m and xm = 1 − ε, so ε would be arbi-

trary little. It should be noted that each distinct

value in [0, 1] would be chosen as xj , j = 0, . . . ,m

except for the singular values of in the integral

equation in this study. Therefore, the singularity

could not be skipped. After that, the equation

could be written as:

BX = Y (3.7)

where,

B =

[
(−1)i

(i+ 1)!
[i(α+m+ 1) + α]

(
m

i

)
(
(xβ+i

j )−
∫ x

0
(xj − t)−αk(xj , t)t

idt

)]
,

i, j = 0, 1, . . . ,m

X =

[
f(

i

m
)

]t
, i = 0, . . . ,m, (3.8)

Y = [g(xj)]
t , i = 0, . . . ,m,

thus, the integral would be computed, which is

found in the B’s formula numerically. Here,

f( i
m), i = 0, . . . ,m by fm( i

m), i = 0, . . . ,m could

be shown, which are here considered as solutions

in the nodes. Replacing them in Equation (2.4),

km(fm)(xi), i = 0, . . . ,m is obtained that is the

solution for integral Equation (3.6).

4 Error Analysis

To get started, the following definition is con-

sidered:

The space W p
r is the weighted Sobolev space of

order p.

W p
r = {f ∈ L2

r

∣∣∣∣∥f∥WS
p < +∞}



P. Jami et al., /IJIM Vol. 14, No. 1 (2022) 81-89 85

That norm is described by:

∥f∥WS
p =

(∫
R+

f2(x)w(x)dx

) 1
2

Theorem 4.1. [28] Assume f(x) ∈ W p
S , 1 <

p < +∞ and fm(x) =
∑m

i=0 aiki(x) is the best

approximation polynomial of f(x) in L2− norm,

then, for each 0 ≤ s:

∥f − fm∥W p
r
≤ C

logm

mS
∥f∥WP

S
,

p ≥ 1. (4.9)

For purpose of convenience in calculations,

Equation (1.1) would be transformed into Fred-

holm integral equation of the second type, so:

F (x) = xβf(x),

Then,

F (x) =g(x) +

∫ x

0
(x− t)−αk(x, t)f(t)dt,

x ∈ [0, T )

Now, the unknowns are approximated by Krall-

Laguerre polynomials.

Km(F (x)) = ĝ(x)+

∫ x

0
(x−t)−αk(x, t)Km(f(t))dt

In general:

g(x) = F (x)−
∫ x

0
(x− t)−αk(x, t)f(t)dt,

so,

ĝ(x) = Km(F (x))−
∫ x

0
(x−t)−αk(x, t)Km(f(t))dt

In Equation (3.7), if x is replaced with its ap-

proximation using Krall-Laguerre polynomial as

shown by xn, then:

BXn = Ŷ

If B is invertible, thenceforth:

∥X −Xn∥≥ B−1∥Y − Ŷ ∥

in which, Xn is the solution obtained from the

system.

So, there is a need to compute the error bound of

∥Y − Ŷ ∥

sup|Y − Ŷ |=sup|g(xi)− ĝ(xi)|
=sup |(F (xi)−Km(F (xi))

−
∫ x

0
(xi − t)−αk(xi, t)((f(t)

−Km(f(t))dt|
≤ sup|F (xi)−Km(F (xi))|

+ sup|
∫ x

0
(xi − t)−αk(xi, t)

(f(t)−Km(f(t))dt|
≤ sup(F (xi)−Km(F (xi))|

+ sup|(xi − t)−αk(xi, t)((f(t)

−Km(f(t))|

Assume that xi ∈ [0, 1] and µ = sup|(x −
t)−αk(x, t)|. Using Theorem 4.1, then:

≤ C
logm

mS
∥f∥W p

r
+Cµ

logm

mS
∥f∥W p

r

(1 + µ)C
logm

mS
∥f∥W p

r

∥X −Xn∥ ≤ ∥B−1∥(1 + µ)C
logm

mS
∥f∥W p

r

It should be noted that the extra condition was

used in the lemma below. Thus, a bound for

∥B−1∥ and a condition number of B are shown.

Lemma 4.1. It is assumed that ∥B−I∥= C0 < 1,

∥.∥ refers to the highest norm of the rows and I

represents identity matrix of order n+ 1. There-

fore, ∥B−1∥≤ 1
1−C0

and:

cond(B) ≤ 1 + C1

1− C0
,

where,

C1 = max
i

(

∫ xi

0
|(xi − t)−αk(x, t)dt|).

Proof. A bound is determined for ∥B∥ . Matrix
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B would be known from the relation, thus:

∥B∥=max
j

m∑
i=0

∣∣∣∣∣ (−1)i

(i+ 1)!
[i(α+m+ 1) + α]

(
m

i

)(
(xβ+i

j )−
∫ xj

0

(xj − t)−αk(xj , t)t
idt

) ∣∣∣∣∣
=max

j

∣∣∣∣∣1−
∫ xj

0

(xj − t)−αk(xj , t)t
idt

∣∣∣∣∣
≤(1 + C1)

Accordingly, a bound is required for ∥B−1∥.

∥D|= ∥B − I∥= C0 < 1.

Then,

∥B−1∥= ∥(I +D)−1∥≤ 1

1− ∥D∥
,

As a result,

cond(B) = ∥B∥
∥∥∥B−1

∥∥∥ ≤ 1 + C1

1− C0
,

and then the proof is completed.

5 Illustrative Examples

Now, two different instances are shown,denoting

that the given method can be accurate, appli-

cable, and effective. According to [29], present-

ing both examples before, the efficiency of the

method proposed in this study was evaluated. So,

it is assumed that T = 1 and h = 1
m is expressed.

To reflect on method error, notations would be

introduced:

em = max
1≤i≤n

|f(ti)− fm(ti)|

pm = log2

(
em
e2m

)
Wherever ti = ih, f(t) is the accurate solu-

tion, fm(t) is the approximate solution to the

suggested method.Therefore, calculations were-

fulfilled on a personal computer with a Core-i7

processor, 2.40 GHz frequency, and 8 GB Mem-

ory, and then the codeswereexpressed in Mathe-

matica.The CPU time (in seconds) for each prob-

lem is given in tables. The results are also com-

pared by graphical representation of exact and

approximate solutions (2,3).

6 Example of Third-Kind Inte-
gral Equation

Example 6.1. [11] With regard to the first ex-

ample, Equation 1.1 would be considered with

α = 2
3 , β = 2

3 , k(t, x) =

√
3

3π
x

1
3 that can provide

an equation of Abel type:

x
2
3 f(x) = g(x) +

∫ x

0

√
3

3π
t
1
3 (x− 2)−

2
3 f(t) dt,

t ∈ [0, 1]

where,

g(x) = x
47
12

(
1−

Γ
(
1
3

)
Γ
(
55
12

)
π
√
3Γ
(
59
12

) )

Put differently, the exact solution of the equation

would be f(x) = x
13
4 First, the above equation

was solved viavarious m-values. Then,numerical

outputswere listed in Table 1 reporting the high-

est error, order of convergence, and outputs of the

collocation method [11]. Notably, numerical out-

putsdemonstrated that the proposed method had a

convergence of 3.06. Whereas, in the collocation

method described in [11], these examples had an

order of convergence by 2.96. Fig 2 shows the

exact and approximate solution for m = 24.

Example 6.2. [11] Consider now Equation

(1.1) with β = 1, α = 0, k(t, x) = 1
2 , that would

be applied for modeling a number of heat conduc-

tion problems with the mixed-kind boundary con-

ditions:

xf(x) =
6

7
x3

√
x+

∫ x

0

1

2
f(t)d(t), t ∈ [0, 1]

The above equation would have the accurate solu-

tion of f(x) = x
5
2 .

The present method with its various m-values was

utilized in this equation. Table 2 also reports

the outputs. The highest error and the order of

convergence have been correspondingly indicated.

Then, a comparison has been made and outputs

attained from the collocation method [11] are out-

lined in Table 2. Accordingly, the order conver-

gence for the proposed method has been estimated

to be 4.49 with regard to the one provided in [11].
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Table 1: The local truncation error for second interval of example (6.1)

Methods m em Pm CPU time (in seconds)

Present method (i.e. Krall-Laguerre method) 3 4.12× 10−4 — 1.313

6 1.02× 10−4 3.01 1.423
12 1.22× 10−5 3.06 3.828
24 1.32× 10−6 3.21 15.937
48 1.37× 10−7 3.24 41.937
96 1.45× 10−8 3.27 110.547

Method developed in [11]
N-Points (m = 3) 256 4.58× 10−7 2.96 —
Radau II (m = 3) 256 5.13× 10−9 3.28 —

It should be noted that the order of convergence

for the above-mentioned example would be 1.99.

Fig. 5 shows the exact and approximate solution

for m = 12.

Figure 5: Results for Example 6.2 with m = 12.

Figure 6: Error Function for Example 6.2 with
m = 3.

7 Conclusion and Further Re-
search

The present study proposed a numerical

method on the basis of Krall-Laguerre polyno-

mials for solving third-kind VIEs. This method

was developed for reducing the problem to the

systems of algebraic equations that are not read-

ily solvable. Therefore, two numerical examples

were provided to confirm the applicability and

Figure 7: Error Function for Example 6.2 with
m = 24.

precision of the method. Thus, the numerical

outputs showed that the order of convergence of

this method was appropriate. There are a few

methods for solving integral equations of the third

kind; therefore, they can be solved by other nu-

merical methods in future work and their results

can be compared with the ones in the present

study.
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