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Abstract

In this paper, it is shown that the solution vector obtained by the classic Crout decomposition method
is not an algebraic solution of a fuzzy complex linear system. Here, we propose a limited version of
the mentioned method to obtain an algebraic solution of a fuzzy complex linear system (if it exists).
Two numerical examples are presented to show ability and reliability of our method.
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1 Introduction

F
uzzy complex system of linear equations are
recently gaining more attention in the liter-

ature. These systems, plays a vital role in real
life problems such as optimisation, current flow,
economics and engineering [4]. However, few re-
searchers have developed methods to solve fuzzy
complex linear systems.

The concept of fuzzy complex number was first
introduced by Buckley [6]. Qiu et al. [14, 15] in-
vestigated the sequence and series of fuzzy com-
plex numbers and their convergence. Solution of
fuzzy complex linear systems was described by
Rahgooy et al. [16] and applied to circuit anal-
ysis problem. Jahantigh et al. [10] proposed a
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numerical method for solving fuzzy complex lin-
ear systems. In 2012, Behera and Chakraverty
[3] proposed a new and simple centre and width
based method for solving fuzzy real and complex
system of linear equations. Also, in 2013, Majum-
dar [12] solved fuzzy complex linear systems by
direct and iteration methods. Recently, Behera
and Chakraverty [4, 5] introduced a new and sim-
ple method for solving general fuzzy complex lin-
ear systems where the elements of unknown vari-
able vector and right hand side vector are con-
sidered as fuzzy complex number. Unfortunately,
In 2017, the author [9] showed that there are two
basic shortcomings in the method proposed in [4]
and he presents the modified version of Behera
and Chakraverty’s method to avoid these short-
comings for solving a fuzzy complex linear sys-
tem.

In this paper, we present a simple and in-
teresting approach for algebraic solving a fuzzy
complex linear system. Based on the proposed
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method, we first solve the fuzzy complex lin-
ear system by the classic Crout decomposition
method and obtain the Crout’s solution. It is
shown that the Crout’s solution does not satisfy
all equations of the system and therefore it is not
an algebraic solution. In the next step of our
method, we obtain the algebraic solution of the
fuzzy complex linear system (if it exists) by limit-
ing of the Crout’s solution. In fact, in this paper,
we present a limited version of the classic Crout
decomposition method so that the result is always
an algebraic solution.

The outline of the paper is as follows. In Sec-
tion 2 we present some basic definitions, remarks
and lemmas. In Section 3, we define fuzzy com-
plex linear system, algebraic solution and the
Crout’s solution. A limited version of the classic
Crout decomposition method is presented in Sec-
tion 4. The proposed method is applied to solve
two numerical examples in Section 5. Conclusion
is drawn in Section 6.

2 Preliminaries

Definition 2.1 A fuzzy subset x̃ of the real line
R, with membership function µx̃, is a fuzzy real
number (or briefly fuzzy number) if

(i) x̃ is normal, i.e.∃t0 ∈ R with µx̃(t0) = 1,

(ii) x̃ is a convex fuzzy set, i.e.,

µx̃ (λs+ (1− λ)t) ⩾ min{µx̃(s), µx̃(t)},

for s, t ∈ R and λ ∈ [0, 1],

(iii) µx̃ is upper semi-continuous on R,

(iv) {t ∈ R : µx̃(t) > 0} is compact, where A de-
notes the closure of A.

In this paper, we denote the set of all fuzzy num-
bers by FR. Obviously, R ⊂ FR, because we can
define R = {χ{t} : t is an usual real number}
[2]. For 0 < α ⩽ 1, we define α-levels of fuzzy
number x̃ as [x̃]α = {t ∈ R : µx̃(t) ⩾ α} and
[x̃]0 = {t ∈ R : µx̃(t) > 0}. Also, we define the
support of fuzzy number x̃ as

supp (x̃) = [x̃]0 = {t ∈ R : µx̃(t) > 0}.

Then, from (i)-(iv) it follows that [x̃]α is a
bounded closed interval for each α ∈ [0, 1] [17]. In

this paper, we denote the α-levels of fuzzy num-
ber x̃ as [x̃]α = [x(α), x(α)], for each α ∈ [0, 1].
Sometimes it is important to know whether the
given intervals [x(α), x(α)], 0 ⩽ α ⩽ 1, are the α-
levels of some fuzzy number in FR. The following
answer is presented in [11].

Lemma 2.1 Let

{[x(α), x(α)] : 0 ⩽ α ⩽ 1} ,

be a given family of non-empty sets in R. If

(i) [x(α), x(α)] is a bounded closed interval, for
each α ∈ [0, 1],

(ii) [x(α1), x(α1)] ⊇ [x(α2), x(α2)] for all 0 ⩽
α1 ⩽ α2 ⩽ 1,

(iii) [limk→∞ x(αk), limk→∞ x(αk)] =
[x(α), x(α)], whenever {αk} is a non-
decreasing sequence in [0, 1] converging to
α,

then the family [x(α), x(α)] represents the α-
levels of a fuzzy number x̃ in FR.
Conversely, if [x(α), x(α)], 0 ⩽ α ⩽ 1, are the
α-levels of a fuzzy number x̃ ∈ FR, then the con-
ditions (i)-(iii) are satisfied.

Remark 2.1 [1, 8, 13] From Lemma 2.1 we con-
clude that if the family

{[x(α), x(α)] : 0 ⩽ α ⩽ 1} ,

are the α-levels of a fuzzy number, then:

1) The condition (i) implies the functions x and
x are bounded over [0, 1] and x(α) ⩽ x(α)
for each α ∈ [0, 1].

2) The condition (ii) implies the functions x and
x are non-decreasing and non-increasing over
[0, 1], respectively.

3) The condition (iii) implies the functions x and
x are left-continuous over [0, 1].

For x̃, ỹ ∈ FR, and λ ∈ R, α-levels of the sum
x̃+ ỹ and the product λ · x̃ are defined based on
interval arithmetic as

[x̃+ ỹ]α = [x̃]α + [ỹ]α

= {s+ t : s ∈ [x̃]α, t ∈ [ỹ]α}
= [x(α) + y(α), x(α) + y(α)],



M. Ghanbari, /IJIM Vol. 12, No. 3 (2020) 225-237 227

[λ · x̃]α = λ · [x̃]α
= {λt : t ∈ [x̃]α}

=

{
[λx(α), λx(α)], λ ⩾ 0,
[λx(α), λx(α)], λ < 0.

Now, we define a fuzzy complex number that can
be found in [3, 4].

Definition 2.2 An arbitrary fuzzy complex
number z̃ may be represented as z̃ = p̃+ iq̃, where
p̃ and q̃ are fuzzy real numbers, i.e. p̃, q̃ ∈ FR.
Also, the set of all fuzzy complex numbers is
denoted by FC .

The following definition can be obtained from [3,
4].

Definition 2.3 We define α-levels of fuzzy com-
lex number z̃ as

[z̃]α = [p̃]α + i[q̃]α

= [p(α), p(α)] + i[q(α), q(α)]

:= [p(α) + i q(α), p(α) + i q(α)],

thus, we contract that [z̃]α = [z(α), z(α)], where
z(α) = p(α) + i q(α) and z(α) = p(α) + i q(α).

From Definition 2.3, we can present the following
definition.

Definition 2.4 For any two arbitrary fuzzy com-
plex numbers z̃1 = p̃1 + iq̃1 and z̃2 = p̃2 + q̃2 and
crisp complex number (a+ib), α-levels of the sum
z̃1 + z̃2 and the product (a + ib) · z̃1 are defined
based on interval arithmetic as follows,

[z̃1 + z̃2]α = ([p̃1]α + [p̃2]α) + i([q̃1]α + [q̃2]α)

= [p1(α) + p2(α), p1(α) + p2(α)]

+i[q1(α) + q2(α), q1(α) + q2(α)]

:= [(p1 + p2) + i(q1 + q2)

, (p1 + p2) + i(q1 + q2)],

and

[(a+ ib) · z̃1]α=(a+ ib) · ([p̃1]α + i[q̃1]α)

=(a[p̃1]α − b[q̃1]α)

+i(a[q̃1]α + b[p̃1]α).

Definition 2.5 We define α-center of the fuzzy
complex number z̃ = [z(α), z(α)] as follows:

[z̃]cα =
z(α) + z(α)

2
, α ∈ [0, 1].

Definition 2.6 We define α-radius of the fuzzy
complex number z̃ = [z(α), z(α)] as follows:

[z̃]rα =
z(α)− z(α)

2
, α ∈ [0, 1].

Obviously, the α-center and α-radius of a fuzzy
complex number is a crisp complex number in any
level of α ∈ [0, 1]. In the next section, we define
a fuzzy complex system of linear equations.

3 Fuzzy complex linear systems

Definition 3.1 [4] The n× n linear system
c11 z̃1 + c12 z̃2 + · · ·+ c1n z̃n = w̃1,
c21 z̃1 + c22 z̃2 + · · ·+ c2n z̃n = w̃2,

...
cn1 z̃1 + cn2 z̃2 + · · ·+ cnn z̃n = w̃n,

(3.1)

where the coefficient matrix C = (ckj)n×n is a
crisp-valued complex n × n matrix and w̃i, i =
1, 2, · · · , n, are fuzzy complex numbers, is called a
fuzzy complex linear system.

We present the matrix form of the fuzzy com-
plex linear system (3.1) as follows

C · Z̃ = W̃ , (3.2)

where Z̃ = (z̃1, z̃2, . . . , z̃n)
T and W̃ =

(w̃1, w̃2, . . . , w̃n)
T are two column vectors of fuzzy

complex numbers.
Also, if we write the elements of Z̃ and W̃ re-

spectively as

z̃j = p̃j + i q̃j , w̃j = ũj + i ṽj ,

for j = 1, 2, ..., n, then we have

Z̃ = P̃ + i Q̃, W̃ = Ũ + i Ṽ ,

where P̃ = (p̃1, p̃2, . . . , p̃n)
T , Q̃ =

(q̃1, q̃2, . . . , q̃n)
T , Ũ = (ũ1, ũ2, . . . , ũn)

T and
Ṽ = (ṽ1, ṽ2, . . . , ṽn)

T are column vectors of fuzzy
real numbers. Also, we conclude that

[Z̃]α = [Z(α), Z(α)],
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[W̃ ]α = [W (α),W (α)],

where

Z(α) = P (α) + iQ(α),

Z(α) = P (α) + iQ(α),

W (α) = U(α) + i V (α),

W (α) = U(α) + i V (α).

In continuation, we define the algebraic solu-
tion of system (3.1).

Definition 3.2 The fuzzy complex number vec-
tor Z̃A = (z̃1A , z̃2A , . . . , z̃nA)

T is called an “Alge-
braic solution” of the fuzzy complex linear system
(3.1) if it satisfies all equations of Eq. (3.1) based
on the arithmetic operations presented in Defini-
tion 2.4, or in other words

n∑
k=1

ckj · z̃kA = w̃j , j = 1, 2, . . . , n.

By the concept of α-levels of a fuzzy complex
number, we can convert the fuzzy complex lin-
ear system (3.1) to a parametric interval complex
linear system, as follows:

c11 [z̃1]α + · · ·+ c1n [z̃n]α = [w̃1]α,
c21 [z̃1]α + · · ·+ c2n [z̃n]α = [w̃2]α,

...
cn1 [z̃1]α + · · ·+ cnn [z̃n]α = [w̃n]α,

(3.3)

or

c11 [z1(α), z1(α)] + c12 [z2(α), z2(α)] + · · ·
+c1n [zn(α), zn(α)] = [w1(α), w1(α)],

c21 [z1(α), z1(α)] + c22 [z2(α), z2(α)] + · · ·
+c2n [zn(α), zn(α)] = [w2(α), w2(α)],

...
cn1 [z1(α), z1(α)] + cn2 [z2(α), z2(α)] + · · ·

+cnn [zn(α), zn(α)] = [wn(α), wn(α)],
(3.4)

where α ∈ [0, 1]. Therefore it is clear that the
vector Z̃A = (z̃1A , z̃2A , . . . , z̃nA)

T is an algebraic
solution of the equivalent systems (3.1)-(3.4) if
for any α ∈ [0, 1] we have

n∑
k=1

ckj · [zkA(α), zkA(α)] = [wj(α), wj(α)],

for j = 1, 2, . . . , n.
Unfortunately, there are few numerical proce-

dures for obtaining the algebraic solution of a
fuzzy complex linear system. In the continua-
tion, we focus on the classic Crout decomposition
method and show that the obtained solution via
this method is not an algebraic solution of sys-
tem (3.1). To this end, please consider the fuzzy
complex linear system (3.2). Based on the classic
Crout decomposition method, the coefficient ma-
trix C = (ckj)n×n is decomposed into the product
of the lower-triangular matrix L = (lkj)n×n and
the upper-triangular matrix U = (ukj)n×n, such
that ukj = 1 for k = j, i.e.

C = L ·U, (3.5)

where

L =


l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn

 ,

U =


1 u12 · · · u1n
0 1 · · · u2n
...

...
. . .

...
0 0 · · · 1

 .

It should be noted that the matrices L and U are
complex crisp-valued. From Eqs. (3.2) and (3.5),
we conclude

L ·U · Z̃ = W̃ . (3.6)

Therefore, by assuming that Ỹ = U · Z̃, we will
have L · Ỹ = W̃ .

In the first step, we obtain Ỹ by forward sub-
stitution, since L is a lower-triangular matrix,

ỹ1 = w̃1, (3.7)

ỹk = w̃k −
k−1∑
j=1

lkj · ỹj , k = 2, 3, . . . , n. (3.8)

In the next step, we find Crout’s solution Z̃ from
U · Z̃ = Ỹ by backward substitution, since U is
a upper-triangular matrix,

z̃n =
1

unn
ỹn, (3.9)

z̃k =
1

ukk

ỹk −
n∑

j=k+1

ukj · z̃j

 , (3.10)
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where k = n− 1, n− 2, . . . , 1.
In this paper, the obtained solution via the

above process is denoted by

Z̃C = (z̃1C , z̃2C , . . . , z̃nC )
T ,

where z̃jC = p̃jC + iq̃jC , j = 1, 2, . . . , n. Also,
it should be noted that the arithmetic operations
used in the Eqs. (3.7)-(3.10) are presented in Def-
inition 2.4.

Theorem 3.1 If for the system (3.1), the alge-
braic solution Z̃A and Crout’s solution Z̃C both
are available, then we have

Z̃A ⊆ Z̃C .

It is sufficient to show

[z̃kA ]α ⊆ [z̃kC ]α, α ∈ [0, 1],

where k = 1, 2, . . . , n. Now suppose that α ∈ [0, 1]
be arbitrary and fixed and also xk ∈ [z̃kA ]α for
all k = 1, 2, . . . , n. Therefore, we conclude X =
(x1, x2, . . . , xn)

T ∈ [Z̃A]α. On the other hand,

since Z̃A is an algebraic solution, thenC·Z̃A = W̃
and consequently C·[Z̃A]α = [W̃ ]α. Then we have

∃W = (w1, w2, . . . , wn)
T ∈ [W̃ ]α;C ·X = W,

where C is a complex crisp matrix and X and W
are two complex crisp vectors. By Eq. (3.5) and
setting U ·X = Y ′, we will have L ·Y ′ = W. Now,
since L is a lower-triangular matrix, we obtain

y′1 = w1, (3.11)

y′k = wk −
k−1∑
j=1

lkj · y′j , k = 2, 3, . . . , n. (3.12)

Since W = (w1, w2, . . . , wn)
T ∈ [W̃ ]α, then Y ′ =

(y′1, y
′
2, . . . , y

′
n)

T ∈ [Ỹ ]α, where Ỹ is defined based
on the Eqs. (3.7) and (3.8).

On the other hand, since U is a upper-
triangular matrix, we have

xn =
1

unn
y′n, (3.13)

xk =
1

ukk

y′k −
n∑

j=k+1

ukj · xj

 , (3.14)

where k = n − 1, n − 2, . . . , 1. Now, since
Y ′ = (y′1, y

′
2, . . . , y

′
n)

T ∈ [Ỹ ]α, then X =

(x1, x2, . . . , xn)
T ∈ [Z̃C ]α, where Z̃C is obtained

by the Eqs. (3.9) and (3.10). Consequently
Z̃A ⊆ Z̃C .

In the following theorem, we present another
relation between the algebraic solution Z̃A and
Crout’s solution Z̃C .

Theorem 3.2 Suppose that for the fuzzy com-
plex linear system (3.1), the solutions Z̃A and Z̃C

both are available and also the coefficient matrix
C be nonsingular. Then, based on Definition 2.5,
we have

[Z̃A]
c
α = [Z̃C ]

c
α, ∀α ∈ [0, 1].

At first, since Z̃A is the algebraic solution, then
C · Z̃A = W̃ , that means

n∑
k=1

ckj · [zkA(α), zkA(α)] = [wj(α), wj(α)],

and consequently

n∑
k=1

ckj

(
zkA(α) + zkA(α)

)
=
(
wj(α) + wj(α)

)
,

where j = 1, 2, . . . , n, and α ∈ [0, 1]. This re-

sults C · [Z̃A]
c
α = [W̃ ]cα and since the α-center of a

fuzzy complex number is a crisp complex number,
therefore we conclude

[Z̃A]
c
α = C−1 · [W̃ ]cα (3.15)

On the other hand, by Eqs. (3.7) and (3.8), for
any α ∈ [0, 1] we have

[ỹ1]
c
α = [w̃1]

c
α,

[ỹk]
c
α = [w̃k]

c
α −

k−1∑
j=1

lkj · [ỹj ]cα,

where k = 2, 3, . . . , n.
Since the α-center of a fuzzy complex number

is a crisp complex number, therefore we can write
the above equations as follows

[Ỹ ]cα = L−1 · [W̃ ]cα. (3.16)

Similarly, by Eqs. (3.9) and (3.10), we have

[z̃nC ]
c
α =

1

unn
[ỹn]

c
α,
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[z̃kC ]
c
α =

1

ukk

[ỹk]
c
α −

n∑
j=k+1

ukj · [z̃jC ]
c
α

 ,

where k = n− 1, n− 2, . . . , 1. Then

[Z̃C ]
c
α = U−1 · [Ỹ ]cα. (3.17)

From Eqs. (3.16) and (3.17) we conclude

[Z̃C ]
c
α = U−1 · L−1 · [W̃ ]cα. (3.18)

and since C = L ·U, consequently

[Z̃C ]
c
α = C−1 · [W̃ ]cα (3.19)

From Eqs. (3.15) and (3.19), the proof is com-
pleted.

In the continuation, we represent a numerical
example to illustrate two above theorems. All
numerical computations are obtained by using of
MATLAB software.

Example 3.1 Consider the following 3×3 fuzzy
complex linear system

(1 + 3i)z̃1 + (2− i)z̃2 + (1 + i)z̃3 = w̃1,
(−1 + i)z̃1 + (2− 3i)z̃2 + (2 + i)z̃3 = w̃2,
(1− i)z̃1 + (2− 2i)z̃2 + (1− 3i)z̃3 = w̃3,

where the fuzzy complex numbers w̃1, w̃2 and w̃3

are specified by their α-levels as follows:

[w̃1]α = [−28 + 11α, 32− 12α]

+i [−29 + 9α, 26− 18α],

[w̃2]α = [−21 + 14α, 35− 13α]

+i [−34 + 10α, 28− 17α],

[w̃3]α = [−27 + 12α, 39− 14α]

+i [−33 + 12α, 19− 14α].

The α-levels of unique algebraic solution of the
above system is as

[Z̃A]α=

 [z̃1A ]α
[z̃2A ]α
[z̃3A ]α


=

[−4 + α, 2− 3α] + i [−4 + α, 5− α]
[−1 + 2α, 4− α] + i [−3 + α, 3− 2α]
[1 + α, 3− α] + i [−4 + α, 5− α]

 .

Also, using the classic Crout decomposition
method and Eqs. (3.7)-(3.10), the α-levels of the
Crout’s solution is obtained as

[Z̃C ]α=

 [z̃1C ]α
[z̃2C ]α
[z̃3C ]α

 =



[−64.271 + 27.605α, 62.271− 29.605α]
+i [64.488 + 28.205α, 65.488− 28.205α]

[−39.431 + 18.415α, 42.431− 17.415α]
+i [−39.515 + 17.415α, 39.515− 18.415α]

[−31.169 + 15.122α, 35.168− 15.122α]
+i [−34.501 + 15.122α, 35.501− 15.122α]


.

Obviously, the Crout’s solution is not an algebraic
solution and

[z̃jA ]α ⊆ [Z̃jC ]α,

for j = 1, 2, 3 and α ∈ [0, 1]. This means that

Z̃A ⊆ Z̃C .

Also, it can be easily investigated that

[Z̃A]
c
α = [Z̃C ]

c
α

= C−1[W̃ ]cα

=

 (−1− α) + i(0.5)
(1.5 + 0.5α)− i(0.5α)
(2) + i(0.5α)

 .

Therefore, in this example, the results of Theo-
rems 3.1 and 3.2 are illustrated.

4 A limited version of Crout
method

According to the Example 3.1, it is clear that the
obtained solution by classic Crout decomposition
method may not be an algebraic solution of the
fuzzy complex linear system (3.1). In this sec-
tion, we present a limited version of classic Crout
method such that the obtained solution will be
always an unique algebraic solution of system
(3.1), if it exists. The proposed method is dis-
played based on Theorems 3.1 and 3.2. In the
proposed method, as before, we convert a fuzzy
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complex linear system to an interval complex lin-
ear system by the concept of the α-levels of a
fuzzy complex number. Then, we use the clas-
sic Crout method to obtain the Crout’s solution
[Z̃C ]α = ([z̃1C ]α, [z̃2C ]α, . . . , [z̃nC ]α)

T for the sys-
tem (3.3). In the next step, we limit the Crout’s
solution [Z̃C ]α by some parameters such that the
obtained new solution satisfies all equations of
(3.3). Finally, if the obtained solution constructs
the α-levels of a fuzzy number complex vector,
then it is an unique algebraic solution of the fuzzy
complex linear system (3.1). Otherwise, the sys-
tem (3.1) does not has unique algebraic solution.
In the proposed method, we define

[Z̃A]α=


[z̃1A ]α
[z̃2A ]α

...
[z̃nA ]α



=


[z1C (α) + θ1(α) , z1C (α)− θ1(α)]

[z2C (α) + θ2(α) , z2C (α)− θ2(α)]
...

[znC (α) + θn(α) , znC (α)− θn(α)]

 ,

(4.20)
where θj(α), j = 1, 2, . . . , n are crisp complex
functions in respect to α and satisfy the following
conditions

0 ⩽ Real(θj(α)) ⩽ Real ([z̃jC ]
r) , (4.21)

0 ⩽ Imag(θj(α)) ⩽ Imag ([zjD]
r) . (4.22)

According to the Eq. (4.20), it is clear that
the algebraic solution is obtained by limiting of
the solution’s Crout. By this reason, we call the
functions θj , limiting functions. Also, it should
be noted that the conditions (4.21) and (4.22)
guarantee that the Eq. (4.20) be a complex in-
terval vector, but they don’t guarantee that the
Eq. (4.20) constructs the α-levels of a fuzzy com-
plex number. In fact, in the proposed method, we
investigate that Eq. (4.20) constructs the α-levels
of a fuzzy complex number in the final step.

If we set θj(α) = βj(α) + i γj(α) and [z̃jC ]α =
[p̃jC ]α + i[q̃jC ]α for j = 1, 2, . . . , n, then zjC (α) =

pjC (α) + i qjC (α), zjC (α) = pjC (α) + i qjC (α) and

the Eqs. (4.20)-(4.22) can be rewritten as

[Z̃A]α=



[p1C (α) + β1(α), p1C (α)− β1(α)]

+i[q1C (α) + γ1(α), q1C (α)− γ1(α)]

[p2C (α) + β2(α), p2C (α)− β2(α)]

+i[q2C (α) + γ2(α), q2C (α)− γ2(α)]
...

[pnC (α) + βn(α), pnC (α)− βn(α)]

+i[qnC (α) + γn(α), qnC (α)− γn(α)]


,

(4.23)
also, the conditions (4.21) and (4.22) can be re-
placed, for j = 1, 2, . . . , n, by

0 ⩽ βj(α) ⩽ [p̃jC ]
r
α, (4.24)

0 ⩽ γj(α) ⩽ [q̃jC ]
r
α. (4.25)

After obtaining the solution’s Crout, we deter-
mine βj(α) and γj(α), for j = 1, 2, . . . , n, such
that the vector (4.23) be an algebraic solution for
the system (3.3) or (3.4). In other words

n∑
j=1

ckj

(
[pjC (α) + βj(α), pjC (α)− βj(α)]

+i [qjC (α) + γj(α), qjC (α)− γj(α)]
)

= [w̃k]α,

for k = 1, 2, . . . , n. By assuming that [w̃k]α =
[uk(α), uk(α)] + i [vk(α), vk(α)] and ckj = akj +
i bkj , we conclude

uk(α) =
∑
akj⩾0

akj

(
pjC (α) + βj(α)

)
+

∑
akj<0

akj (pjC (α)− βj(α))

−
∑
bkj<0

bkj

(
qjC (α) + γj(α)

)
−

∑
bkj⩾0

bkj (qjC (α)− γj(α)) ,

uk(α) =
∑
akj⩾0

akj (pjC (α)− βj(α))

+
∑
akj<0

akj

(
pjC (α) + βj(α)

)
−

∑
bkj<0

bkj (qjC (α)− γj(α))

−
∑
bkj⩾0

bkj

(
qjC (α) + γj(α)

)
,
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vk(α) =
∑
akj⩾0

akj

(
qjC (α) + γj(α)

)
+

∑
akj<0

akj (qjC (α)− γj(α))

+
∑
bkj⩾0

bkj

(
pjC (α) + βj(α)

)
+

∑
bkj<0

bkj (pjC (α)− βj(α)) ,

vk(α) =
∑
akj⩾0

akj (qjC (α)− γj(α))

+
∑
akj<0

akj

(
qjC (α) + γj(α)

)
+

∑
bkj⩾0

bkj (pjC (α)− βj(α))

+
∑
bkj<0

bkj

(
pjC (α) + βj(α)

)
.

By the above equations, we obtain

uk(α)− uk(α) =

n∑
j=1

|akj |(pjC (α)− βj(α))

−
n∑

j=1

|akj |
(
pjC (α) + βj(α)

)
+

n∑
j=1

|bkj |(qjC (α)− γj(α))

−
n∑

j=1

|bkj |
(
qjC (α) + γj(α)

)
,

vk(α)− vk(α) =

n∑
j=1

|akj |(qjC (α)− γj(α))

−
n∑

j=1

|akj |
(
qjC (α) + γj(α)

)
+

n∑
j=1

|bkj |(pjC (α)− βj(α))

−
n∑

j=1

|bkj |
(
pjC (α) + βj(α)

)
.

The above equations can be rewritten as follows

[ũk]
r
α =

n∑
j=1

|akj |·[p̃jC ]
r
α −

n∑
j=1

|akj |βj(α)

+

n∑
j=1

|bkj |·[q̃jC ]
r
α −

n∑
j=1

|bkj | γj(α),

[ṽk]
r
α =

n∑
j=1

|akj |·[q̃jC ]
r
α −

n∑
j=1

|akj | γj(α)

+

n∑
j=1

|bkj |·[p̃jC ]
r
α −

n∑
j=1

|bkj |βj(α),

for k = 1, 2, . . . , n. Hence, in the matrix form, we
have

[Ũ ]rα = |A|·[P̃C ]
r
α − |A|·fi(α)

+|B|·[Q̃C ]
r
α − |B|·fl(α),

[Ṽ ]rα = |A|·[Q̃C ]
r
α − |A|·fl(α)

+|B|·[P̃C ]
r
α − |B|·fi(α),

(4.26)

where

[Ũ ]rα = ([ũ1]
r
α, [ũ2]

r
α, . . . , [ũn]

r
α)

T ,

[Ṽ ]rα = ([ṽ1]
r
α, [ṽ2]

r
α, . . . , [ṽn]

r
α)

T ,

[P̃C ]
r
α = ([p̃1C ]

r
α, [p̃2C ]

r
α, . . . , [p̃nC ]

r
α)

T ,

[Q̃]rα = ([q̃1C ]
r
α, [q̃2C ]

r
α, . . . , [q̃nC ]

r
α)

T ,

|A|= (|akj |)n×n, |B|= (|bkj |)n×n,

β(α) = (β1(α), β2(α), . . . , βn(α))
T ,

γ(α) = (γ1(α), γ2(α), . . . , γn(α))
T .

By Eq. (4.26) we conclude

|A|·fi(α) + |B|·fl(α) = |A|·[P̃C ]
r
α

+|B|·[Q̃C ]
r
α

−[Ũ ]rα,

|B|·fi(α) + |A|·fl(α) = |A|·[Q̃C ]
r
α

+|B|·[P̃C ]
r
α

−[Ṽ ]rα,

(4.27)

Also, if we set

K =

(
K1

K2

)
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=

(
|A|·[P̃C ]

r
α + |B|·[Q̃C ]

r
α − [Ũ ]rα

|A|·[Q̃C ]
r
α + |B|·[P̃C ]

r
α − [Ṽ ]rα

)
, (4.28)

then we have(
|A| |B|
|B| |A|

)(
β(α)
γ(α)

)
=

(
K1

K2

)
, (4.29)

The values of vectors β(α) and γ(α) can be found
by solving the parametric 2n× 2n real linear sys-
tem (4.29). If the obtained vectors β(α) and γ(α)
satisfy the conditions (4.24) and (4.25) and also
the Eq. (4.23) construct the α-levels of a fuzzy
complex number vector, then Eq.(4.23) is an al-
gebraic solution for the fuzzy complex linear sys-
tem (3.1) in the α-levels form. Otherwise, the
fuzzy complex linear system (3.1) does not has
any algebraic solution. On the other hand, the
parametric real linear system (4.29) has unique
solution if and only if its coefficient matrix be
nonsingular.

Theorem 4.1 The coefficient matrix of the
parametric real linear system (4.29) is nonsin-
gular if and only if the matrices |A|+|B| and
|A|−|B| are both nonsingular.

The proof is the same as the proof of Theorem 1
in [7].

Based on the steps of our method, the following
theorem is presented.

Theorem 4.2 The fuzzy complex linear system
(3.1) has unique algebraic solution if and only if
all of the following conditions hold:

1. The matrices C, |A|+|B| and |A|−|B| be
nonsingular,

2. The vectors β(α) and γ(α) satisfy the condi-
tions (4.24) and (4.25),

3. The Eq. (4.23) construct the α-levels of a
fuzzy complex number vector.

5 Numerical examples

In this section, we present two numerical exam-
ple to illustrate the effectiveness of the proposed
method.

Example 5.1 Consider the following 4×4 fuzzy
complex linear system



(3− i)z̃1 + (1 + 2i)z̃2 + (3 + i)z̃3
+(2 + i)z̃4 = w̃1,

(1− 2i)z̃1 + (−2 + i)z̃2 + (1− 3i)z̃3
+(1− 3i)z̃4 = w̃2,

(3− 3i)z̃1 + (2 + 4i)z̃2 + (−1 + i)z̃3
+(3− 2i)z̃4 = w̃3,

(1− 3i)z̃1 + (2 + 2i)z̃2 + (3− 2i)z̃3
+(1 + 2i)z̃4 = w̃4,

(5.30)
where the α-levels of fuzzy complex numbers
w̃1, w̃2, w̃3 and w̃4 are as follows:

[w̃1]α = [−28 + 18α, 18− 26α]

+i [−14 + 28α, 43− 22α],

[w̃2]α = [−22 + 24α, 36− 26α]

+i [−28 + 26α, 17− 17α],

[w̃3]α = [−61 + 26α, 7− 34α]

+i [−22 + 40α, 56− 29α],

[w̃4]α = [−19 + 26α, 37− 25α]

+i [−29 + 34α, 36− 25α].

In the above system, we have

det(C) = 106 + 51i, det(|A|+|B|) = 39,

det(|A|−|B|) = 17,

where C is the complex coefficient matrix of sys-
tem and A and B are the real and imaginary
parts of the matrix C, respectively. Therefore,
the systems (3.3) and (4.29) have unique solu-
tions.

Now, based on the proposed method, we first
solve the parametric interval complex linear sys-
tem (3.3) by the classic Crout method. For this,
by Eqs. (3.7)-(3.10) we obtain the α-levels of
Crout’s solution as follows:
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[Z̃C ]=


[z̃1C ]α
[z̃2C ]α
[z̃3C ]α
[z̃4C ]α



=



[−412.52 + 372.56α, 410.52− 374.56α]
+ i[−411.46 + 374.50α, 415.46− 374.50α]

[−183.41 + 165.58α, 181.41− 164.58α]
+ i[−177.79 + 164.72α, 184.79− 164.72α]

[−114.91 + 107.36α, 121.91− 107.36α]
+ i[−117.25 + 108.47α, 121.25− 107.47α]

[−93.61 + 82.12α, 88.62− 83.12α]
+ i[−90.08 + 81.34α, 89.08− 81.34α]



.

In the next step, we obtain the parametric vec-
tor K by Eq. (4.28) as follows:

K =

(
K1

K2

)
=



2916.27− 2644.34α
2591.56− 2350.34α
4221.05− 3829.09α
3215.29− 2914.47α
2915.94− 2643.49α
2596.36− 2353.89α
4216.78− 3824.02α
3209.27− 2910.49α


,

Now, by solving the parametric real linear sys-
tem (4.29), we obtain the vectors functions β(α)
and γ(α) as follows:

β(α) =


β1(α)
β2(α)
β3(α)
β4(α)

=


409.52− 371.56α
178.41− 161.58α
117.91− 106.36α
89.61− 81.12α

 ,

and

γ(α) =


γ1(α)
γ2(α)
γ3(α)
γ4(α)

=


412.46− 373.50α
179.79− 163.72α
116.25− 105.47α
88.08− 80.34α

 .

Regarding to the results obtained in the above
process, it can be easily investigated that the vec-
tor functions β(α) and γ(α) satisfy the conditions
(4.24) and (4.25), respectively. Finally, by substi-
tuting the obtained values [Z̃C ]α, β(α) and γ(α)

in Eq. (4.23), we obtain the α-levels of unique
algebraic solution of the fuzzy complex linear sys-
tem (5.30) as follows:

[Z̃A]=


[z̃1A ]α
[z̃2A ]α
[z̃3A ]α
[z̃4A ]α



=



[−3 + α, 1− 3α]
+i [1 + α, 3− α]

[−5 + 4α, 3− 3α]
+i [2 + α, 5− α]

[3 + α, 4− α]
+i [−1 + 3α, 5− 2α]

[−4 + α,−1− 2α]
+i [−2 + α, 1− α]



.

Obviously, it can be showed that the obtained
solution represents α-levels of a fuzzy complex
number vector. Therefore, this algebraic solution
is acceptable.

Example 5.2 Consider the 5 × 5 fuzzy complex
linear system

(2 + 2i)z̃1 + (1 + 3i)z̃2 + (3− 2i)z̃3
+(4 + i)z̃4 + (1− 3i)z̃5 = w̃1,

(−2 + i)z̃1 + (−1− i)z̃2 + (3 + i)z̃3
+(−1 + 2i)z̃4 + (2− 4i)z̃5 = w̃2,

(4− i)z̃1 + (4− 3i)z̃2 + (1 + i)z̃3
+(2− i)z̃4 + (−2 + i)z̃5 = w̃3,

(3− 2i)z̃1 + (1 + 2i)z̃2 + (2− 2i)z̃3
+(1 + i)z̃4 + (3− 3i)z̃5 = w̃4,

(4− i)z̃1 + (4− 2i)z̃2 + (3− 4i)z̃3
+(1 + 2i)z̃4 + (1− i)z̃5 = w̃5,

(5.31)
where the α-levels of fuzzy complex numbers
w̃1, w̃2, w̃3, w̃4 and w̃5 are as follows:

[w̃1]α = [−56 + 40α, 64− 39α]

+i [−30 + 40α, 81− 36α],

[w̃2]α = [−63 + 31α, 41− 28α]
+i [−43 + 29α, 44− 32α],
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[w̃3]α = [−33 + 47α, 78− 31α]
+i [−47 + 28α, 60− 36α],

[w̃4]α = [−46 + 38α, 63− 31α]
+i [−29 + 33α, 74− 33α],

[w̃5]α = [−46 + 53α, 78− 37α]
+i [−21 + 34α, 85− 41α].

In this example, we have

det(C) = 799− 3276i, det(|A|+|B|) = −615,

det(|A|−|B|) = −87.

Consequently, the systems (3.3) and (4.29) have
unique solutions.

As before, we first obtain the α-levels of Crout’s
solution by Eqs. (3.7)-(3.10) as follows:

[Z̃C ]=


[z̃1C ]α
[z̃2C ]α
[z̃3C ]α
[z̃4C ]α
[z̃5C ]α

 =



[−15296.0 + 10080.3α, 15298.0− 10078.3α]
+i[−15293.6 + 10079.0α, 15298.6− 10079.0α]

[−6276.1 + 4136.5α, 6279.1− 4134.5α]
+i[−6273.9 + 4136.7α, 6277.9− 4135.7α]

[−1751.0 + 1152.2α, 1747.0− 1152.2α]
+i[−1748.4 + 1152.2α, 1749.4− 1153.2α]

[−1187.6 + 784.1α, 1194.6− 785.1α]
+i[−1190.5 + 784.0α, 1191.5− 785.0α]

[−564.6 + 372.1α, 564.6− 372.1α]
+i[−563.8 + 372.8α, 565.8− 371.8α]



.

In the next step, we obtain the parametric vec-
tor K by Eq. (4.28) as follows:

K=

(
K1

K2

)
=



103190.6− 67994.6α
072348.9− 47675.8α
129131.8− 85082.5α
108024.1− 71181.0α
131029.2− 86330.5α
103197.7− 67994.7α
072356.1− 47675.2α
129129.6− 85089.5α
108028.0− 71181.6α
131032.6− 86338.1α


,

Now, by solving the parametric real linear sys-
tem (4.29), we obtain the vectors functions β(α)
and γ(α) as follows:

β(α) =


β1(α)
β2(α)
β3(α)
β4(α)
β5(α)



=


15293.0− 10076.3α
06275.1− 04133.5α
01748.0− 01151.2α
01188.6− 00782.1α
00563.6− 00371.1α

 ,

and

γ(α) =


γ1(α)
γ2(α)
γ3(α)
γ4(α)
γ5(α)



=


15294.6− 10078.0α
06272.9− 04134.7α
01746.4− 01150.2α
01187.5− 00783.0α
00559.7− 00370.8α

 .

It can be easily showed that the vector func-
tions β(α) and γ(α) satisfy the conditions (4.24)
and (4.25), respectively. Finally, by substituting
the obtained values [Z̃C ]α, β(α) and γ(α) in Eq.
(4.23), we obtain the α-levels of unique algebraic
solution of the fuzzy complex linear system (5.30)
as follows:

[Z̃A]=


[z̃1A ]α
[z̃2A ]α
[z̃3A ]α
[z̃4A ]α
[z̃5A ]α



=


[−3 + 4α, 5− 2α] + i [1 + α, 4− α]
[−1 + 3α, 4− α] + i [−1 + 2α, 5− α]
[−3 + α,−1− α] + i [−2 + 2α, 3− 3α]
[1 + 2α, 6− 3α] + i [−3 + α, 4− 2α]
[−1 + α, 1− α] + i [−4 + 2α, 6− α]

 .

Obviously, it can be showed that the obtained
solution represents α-levels of a fuzzy complex
number vector. Therefore, this algebraic solution
is acceptable.
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6 Conclusions

In this paper, we presented a limited version
of the classic Crout decomposition method for
algebraic solving of fuzzy complex linear sys-
tems. It is shown that unlike the original method,
based on the limited version of method, we can
obtain the algebraic solution of a fuzzy com-
plex linear system, if it exists. It should be
noted that the approach proposed in this pa-
per, can be extended to other direct methods, for
example Gaussian elimination method, Cramer
method, LU (Cholesky and Doolittle) decomposi-
tion method, QR decomposition method and etc.
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