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Abstract

Integro-differential equations play a fundamental role in various fields of applied mathematics. The
solutions of many engineering problems in general and mechanics and physics in particular, lead to
this kind of equations. This paper focuses on the fuzzy Volterra integro-differential equation of n−th
order of the second-kind with nonlinear fuzzy kernel and initial values. This equation is transformed
to a nonlinear fuzzy Volterra integral equation in multi-integrals by application of a certain analytic
solution adapted on fuzzy n−th order derivation under generalized Hakuhara derivative. The derived
integral equations are solvable, the solutions of which are unique under certain conditions. The
existence and uniqueness of the solutions are investigated in a theorem and an upper boundary is
found for solutions. An easily-followed algorithm is provided to illustrate the process. The application
of the proposed method helps solving the equation on the basis of the Adomian decomposition method
under generalized H-derivation. Comparison of the exact and approximated solutions shows the least
error.

Keywords : General n−th order derivative; H-derivative; Fuzzy n−th Order Integro-differential Equa-
tion; Existence and Uniqueness theorem; Upper boundary of solution.

—————————————————————————————————–

1 Introduction

S
eikalla [25] introduced the H-derivative of the
fuzzy number valued function that subse-

quently amplified the fuzziness by [8]. The
strongly-generalized derivative was introduced in
[7] that became the subject for discussion among
mathematical researchers. This concept makes it
possible to solve the problems of the H-derivative.
The latter are crucial in solving fuzzy differen-
tial equations and fuzzy integro-differential equa-
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tions.
The first-order equations under generalized H-
derivation were initially studied by Bede et al.
[7, 8]. Four case derivatives for fuzzy first-order
derivative were introduced for this purpose. Two
cases of which are always very important and
the others are crucial to acquire switching point.
These four case derivatives were presented to
solve fuzzy differential equations. Chalco, applied
the first two cases derivation, because the deriva-
tion in the other cases was constant [9].
Stefanini expanded the generalized Hakuhar dif-
ference and division of interval-valued functions
in [26, 27]. Allahviranloo and Hooshangian have
delved in depth and breadth with the fuzzy
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derivations of n-th order based on generalized
Hakuhara derivatives. They have also elaborated
for example, on fuzzy n-th order derivatives and
their characteristics, properties and relationships
[3].
Park et al. [19] studied the existence of solutions
of fuzzy integro-differential in Banach spaces as
follows:

dX(t)

dt
= f(t,X(t),

∫ t

t0

k(t, s,X(s))ds)

Park et al. [20] studied the conditions of existence
and uniqueness of solutions of fuzzy Volterra-
Fredholm integral equations. focused their in-
vestigation on the condition of existence of the
solution of fuzzy integro-differential and fuzzy
delay integro-differential under local condition.
The existence and uniqueness of solutions of
second-order fuzzy differential equations was cov-
ered by Allahviranloo et al. [2]. The exis-
tence and uniqueness of solution of fuzzy Volterra
integro-differential equations of the second kind
using strongly-generalized differentiability were
discussed by Hajighasemi et al. [11]. Rahimi
et al. proved some fixed point theorems for ap-
proximating the fuzzy solution of nonlinear fuzzy
Volterra integro-differential equation and error
bound was derived at [22]. Khezerloo and Ha-
jighasemi proved the existence and uniqueness of
solution of fuzzy Volterra equations of the sec-
ond kind [15]. Zeinali et al. have critically in-
vestigated the existence and uniqueness results
for the fuzzy integro-differential equations of first
order [28]. Abu Arqub et al. on the other
hand have surveyed the existence, uniqueness and
other properties of solutions of a certain nonlinear
fuzzy Volterra integro-differential equation under
strongly-generalized differ- entiability [4]. Mosleh
and Otadi have also focused their research on the
existence of solution of fuzzy Fredholm integro-
differential equations [17].
Researchers used the numerical solutions to solve
fuzzy Fredholm or Fuzzy Volterra integro- dif-
ferential equation such as Euler method, dif-
ferential transform method, Laplace transform
method, Adomian decomposition method, Vari-
ational iteration method and Homotopy pertur-
bation method [5, 13, 16, 18, 23, 24].
Some relevant preliminaries have been reviewed

briefly in section 2, followed by section 3 that pro-
vide some detailed explanation on the solution of
fuzzy integro-differential equations of higher or-
der. An example is solved for this purpose by
the application of the Adomian decomposition
method [1]. Some figures are presented to show
the approximate solutions and their comparisons
with the exact solutions. Section 4 covers the ex-
istence and uniqueness of solution of fuzzy higher
order integro-differential equation and presents
an algorithm. The general conclusions are cov-
ered in section 5.

2 Basic Concepts

The basic definitions of a fuzzy number are given
as follows:

Definition 2.1 [19] A fuzzy number is a fuzzy
set like u : R→ [0, 1] which satisfies:

1. u is an upper semi-continuous function,

2. u(x) = 0 outside some interval [a,d],

3. There are real numbers b, c such as a ≤ b ≤
c ≤ d and

3.1 u(x) is a monotonic increasing function
on [a, b],

3.2 u(x) is a monotonic decreasing function
on [c, d],

3.3 u(x) = 1 for all x ∈ [b, c].

Remark 2.1 [21] Get RF is denoted the class
of fuzzy subsets of real axis, u(r) = (u(r), u(r))
and v(r) = (v(r), v(r)) and r ∈ [0, 1]. The
metric structure is given by Hausdorff distance
satisfying the following properties:

D(u(r), v(r)) =

Max{sup0≤r≤1|u(r)− v(r)|, sup|u(r)− v(r)|}

(RF , D) is a complete metric space and following
properties are well known:

D(u+ w, v + w) = D(u, v),∀u, v, w ∈ RF

D(ku, kv) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R
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D(u+ v, w + e) ≤ D(u,w) +D(v, e),

∀u, v, w, e ∈ RF

Definition 2.2 [21] Let x, y ∈ RF . If there ex-
ists z ∈ RF such that x = y + z then z is called
the H-differential of x, y and it is denoted x⊖ y.

Definition 2.3 [9] Let F : I → RF and t0 ∈ I.
We say that F is differentiable at t0 if there is
F ′(t0) ∈ RF such that either

(I) For h > 0 sufficiently close to 0, the H-
differences F (t0+h)⊖F (t0) and F (t0)⊖F (t0−h)
exist and the following limits
limh↘0

F (t0+h)⊖F (t0)
h = limh↘0

F (t0)⊖F (t0−h)
h

or
(II) For h > 0 sufficiently close to 0, the H-
differences F (t0)⊖F (t0+h) and F (t0−h)⊖F (t0)
exist and the following limits
limh↘0

F (t0)⊖F (t0+h)
−h = limh↘0

F (t0−h)⊖F (t0)
−h

or
(III) For h > 0 sufficiently close to 0, the H-
differences F (t0+h)⊖F (t0) and F (t0−h)⊖F (t0)
exist and the following limits
limh↘0

F (t0+h)⊖F (t0)
h = limh↘0

F (t0−h)⊖F (t0)
−h

or
(IV) For h > 0 sufficiently close to 0, the H-
differences F (t0)⊖F (t0+h) and F (t0)⊖F (t0−h)
exist and the following limits
limh↘0

F (t0)⊖F (t0+h)
−h = limh↘0

F (t0)⊖F (t0−h)
h

Definition 2.4 [12] Let F : I → RF be a set-
valued function. A point t0 ∈ I is said to be a
switching point for the differentiability of F , if in
any neighborhood T of t0 there exist points t1 <
t0 < t2 such that:

Type 1: F is differentiable at t1 in the sense (I) of
definition (2.4) while it is not differentiable in the
sense (II) of definition (2.4) and F is differentiable
at t2 in the sense (II) of definition (2.4) while it
is not differentiable in the sense (I) of definition
(2.4).
or
Type 2: F is differentiable at t1 in the sense (II) of
definition (2.4) while it is not differentiable in the
sense (I) of definition (2.4) and F is differentiable
at t2 in the sense (I) of definition (2.4) while it
is not differentiable in the sense (II) of definition
(2.4).

Theorem 2.1 [12] Let F : I → RF be differen-
tiable on each t ∈ I in the sense (III) or (IV) in
definition (2.4). Then F ′(t) ∈ R for all t ∈ I.

Definition 2.5 [3] Let F : I → RF and t0 ∈ I.
We can say that F is differentiable of n−ordered
at t0 if there is F (n−1)(t0) ∈ RF such that either

(I) For h > 0 sufficiently close to 0, for all n ∈ N,
the H-differences F (n−1)(t0 + h) ⊖ F (n−1)(t0)
and F (n−1)(t0) ⊖ F (n−1)(t0 − h) exist , and the
following limits

limh↘0
F (n−1)(t0 + h)⊖ F (n−1)(t0)

h
=

limh↘0
F (n−1)(t0)⊖ F (n−1)(t0 − h)

h
or
(II) For h > 0 sufficiently close to 0, for all n ∈
N, the H-differences F (n−1)(t0) ⊖ F (n−1)(t0 + h)
and F (n−1)(t0 −h)⊖F (n−1)(t0) exist and the fol-
lowing limits

limh↘0
F (n−1)(t0)⊖ F (n−1)(t0 + h)

−h
=

limh↘0
F (n−1)(t0 − h)⊖ F (n−1)(t0)

−h
or
(III) For h > 0 sufficiently close to 0, for all n ∈
N, the H-differences F (n−1)(t0 + h) ⊖ F (n−1)(t0)
and F (n−1)(t0 − h)⊖F (n−1)(t0) exist and the fol-
lowing limits

limh↘0
F (n−1)(t0 + h)⊖ F (n−1)(t0)

h
=

limh↘0
F (n−1)(t0 − h)⊖ F (n−1)(t0)

−h
or
(IV) For h > 0 sufficiently close to 0, for all
n ∈ N, the H-differences F (n−1)(t0)⊖F (n−1)(t0+
h) and F (n−1)(t0) ⊖ F (n−1)(t0 − h) exist and the
following limits

limh↘0
F (n−1)(t0)⊖ F (n−1)(t0 + h)

−h
=
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limh↘0
F (n−1)(t0)⊖ F (n−1)(t0 − h)

h

3 Analytic Solution of Nonlin-
ear fuzzy integro-differential
equation of n−th order

Fuzzy integro-differential equation of nth order
is defined by following:

x(n)(t) = f(t, x(t), x′(t), x′′(t), ..., x(n−1)(t))+∫ t

t0

g(t, s, x(s), x′(s), x′′(s), ..., x(n−1)(s))ds

where x(t) is a fuzzy function of t,
f(t, x(t), x′(t), x′′(t), ..., x(n−1)(t)) is a
fuzzy-valued function, the fuzzy variables
x′(t), x′′(t), ..., x(n−1)(t) are defined deriva-
tives of x(t), x′(t), ..., x(n−2)(t) respectively
and the kernel g(t, x(s), x′(s), ..., x(n−1)(s))
is a nonlinear function. Given initial values
x(t0) = k0, x

′(t0) = k1, ..., x
(n−1)(t0) = kn−1,

are used for fuzzy integro-differential problem of
n−th order is obtained as follows:

x(n)(t) = f(t, x(t), x′(t), ..., x(n−1)(t))+∫ t
t0
g(t, s, x(s), x′(s), ..., x(n−1)(s))ds,

x(t0) = k0,
x′(t0) = k1,
...

x(n−1)(t0) = kn−1

(3.1)
for all n ∈ N. The analytic solution of Eq. (3.1)
is acquired and proved by following theorem:

Theorem 3.1 Let t0 ∈ [a, b], and assume that
f : [a, b] × RF × RF × ...× RF︸ ︷︷ ︸

n−1

→ RF is continu-

ous. A mapping x : [a, b] → RF is a solution to
the initial value problem Eq. (3.1) if and only if
x and x′,..., x(n−1) are continuous and satisfy the
following integral equation for all t ∈ [a, b]:

x(t) = k0 + c1(k1(t− t0) + c2(
k2
2!
(t− t0)

2

+...+ cn−1(
kn−1

(n− 1)!
(t− t0)

(n−1)+

cn(

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

f(s, x(s), ..., x(n)(s))ds...ds+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

g(t, s, x(s), x′(s), ..., x(n−1)(s))ds...ds)))...).

(3.2)
where

ci =

{
1 x(i)(t)is (I)− differentiable,

⊖(−1) x(i)(t)is (II)− differentiable.
for all i = 1, 2, ..., n.
Proof. Since f is continuous, then f is in-
tegrable. It is clear that by integrating from
Eq. (3.1) over [t0, t], the following equation is
obtained:

x(n−1)(t) =

kn−1 + cn−1(

∫ t

t0

f(t, x(t), x′(t), ..., x(n−1)(t)ds

+

∫ t

t0

∫ t

t0

g(t, x(s), x′(s), ..., x(n−1)(s))dsds)),

(3.3)
now we integrate from Eq. (3.3), then we have:

x(n−2)(t) = kn−2 + cn−2(kn−1(t− t0)

+cn−1(

∫ t

t0

∫ t

t0

f(t, x(t), x′(t), ..., x(n−1)(t))dsds

+

∫ t

t0

∫ t

t0

∫ t

t0

g(t, x(s), x′(s), ..., x(n−1)(s))dsdsds)),

(3.4)
by recurrence, the following equation is gained:

x′(t) = k1 + c1(k2(t− t0) + c2(k3
(t− t0)

2

2

+...+ cn−2(kn
(t− t0)

n−1

(n− 1)!

+cn−1(

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n−1

f(t, x(t), x′(t), ..., x(n−2)(t))+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

g(t, x(s), x′(s), ..., x(n−2)(s))dsds...ds)))),

(3.5)
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Consequently, the solution of x(t) by integration
of Eq. (3.4) over [t0, t] equivalently:

x(t) = k0 + c0(k1(t− t0) + c1(k2
(t− t0)

2
+

...+ cn−1(kn
(t− t0)

n

(n)!

+cn(

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

f(t, x(t), x′(t), ..., x(n−1)(t))

+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

g(t, x(s), x′(s), ..., x(n−1)(s))ds...ds)))).

thus the proof is complete. Indeed, the solution
is gained by integrating n times from Eq. (3.1)
over [t0, t]. 2

Example 3.1 Let following fuzzy integro-
differential equation with initial values: x′′(t) = [−r2t3,−(2− r)2t3] +

∫ t
0 (x

2(s))ds
x(0) = [α− 1, 1− α],
x′(0) = [α, 2− α]

The exact solution is [3tr, 3t(2− r)] Then the so-
lution of this equation by applying theorem (3.1)
is:

x(t) = [α− 1, 1− α] + c1([α, 2− α]t

+c2((

∫ t

0

∫ t

0
[−r2t3,−(2− r)2t3]dsds

+

∫ t

0

∫ t

0

∫ t

0
(x2(s))dsdsds))

case (1): Let x(t) and x′(t) be (I)-
differentiable, the solution by theorem (3.1)
is obtained in the following:

x(t) = [α− 1, 1− α] + [α, 2− α]t

+

∫ t

0

∫ t

0
[−r2t3,−(2− r)2t3]dsds

+

∫ t

0

∫ t

0

∫ t

0
(x2(s))dsdsds

case (2): Let x(t) and x′(t) be (II)-differentiable,
the solution by theorem (3.1) is gained in the
following interval equation:

x(t) = [α− 1, 1− α] +⊖(−1)[α, 2− α]t

+

∫ t

0

∫ t

0
[−r2t3,−(2− r)2t3]dsds

+

∫ t

0

∫ t

0

∫ t

0
(x2(s))dsdsds

case (3): Let x(t) be (I)-differentiable and x′(t)
be (II)-differentiable, the solution by theorem
(3.1) is in the following interval equation:

x(t) = [α− 1, 1− α] + [α, 2− α]t

+⊖ (−1)

∫ t

0

∫ t

0
[−r2t3,−(2− r)2t3]dsds

⊖(−1)

∫ t

0

∫ t

0

∫ t

0
(x2(s))dsdsds

case (4): Let x(t) be (II)-differentiable and x′(t)
be (I)-differentiable, the solution by theorem
(3.1) is gained in the following equation:

x(t) = [α− 1, 1− α]⊖ (−1)[α, 2− α]t

+⊖ (−1)

∫ t

0

∫ t

0
[−r2t3,−(2− r)2t3]dsds

⊖(−1)

∫ t

0

∫ t

0

∫ t

0
(x2(s))dsdsds

These four cases are solved by the Adomian de-
composition method, the solutions of which are
shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4 by
maple programming. Some figures are presented
to illustrate the comparison between the exact so-
lution and the approximate solution Fig. 5, Fig.
6, Fig. 7 and Fig. 8. As can be seen, the solu-
tions are fuzzy number over the domain in four
cases.

Figure 1: Case (1) in Example (3.1)
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Figure 2: Case (2) in Example (3.1)

Figure 3: Case (3) in Example (3.1)

4 Existence and uniqueness of
solution of fuzzy integro-
differential equation

In this section, the existence and uniqueness of
the solution of fuzzy integro-differential equation
of nth order have been studied:

Theorem 4.1 Let

f : [t0, t]×RF × ...× RF︸ ︷︷ ︸
n−1

→ RF

is continuous and suppose that there exist
M1,M2, ...,Mn > 0 such that

D(f(t, s, x1, x2, ..., xn), f(t, s, y1, y2, ..., yn))

≤
∑

MiD(xi, yi).

for all t ∈ [a, b], xi, yi ∈ RF , i = 1, 2, ..., n and
there exist m1,m2...mn > 0 which

D(

∫ t

t0

g(t, s, x(s), x′(s), x′′(s), ..., x(n−1)(s)),

∫ t

t0

g(t, s, y, y′(s), y′′(s), ..., y(n−1)(s)))

≤
∑

miD(xi, yi),

Figure 4: Case (4) in Example (3.1)

Figure 5: Compare between the exact solu-
tion and obtained solution with t=0.1 in Example
(3.1), case (1)

there is ri > 0 such that D(ki, 0̃) ≤ ri and
Max(M1, ...,Mn−1,m1, ...,mn−1) ≤ M . Then
the initial value problem (1) has a unique solu-
tion on [t0, t], for all t ∈ [a, b] in each sense of
differentiability and the following successive iter-
ations:

x
(n)
1 (t) = f(t, s, x′0(s), x

′′
0, ..., x

(n−1)
0 ),

x
(n)
i (t) = f(t, s, xi−1, x

′
i−1, ..., x

(n−1)
i−1 )+∫ t

t0
g(t, s, xi−1, x

′
i−1, ..., x

(n−1)
i−1 ),

foralli = 2, 3, ...
(4.6)

where Eq. (4.6) is uniformly convergent to x(t)
on [t0, t].
Proof. First, it is proved that xn(t) is bounded.
Then is prove that xi(t) is reached as a sequence
of bounded functions on [t0, t]. Next it is proved
that xn(t) for all n ∈ N are continuous on [t0, t].
For t0 ≤ t1 ≤ t2 ≤ t, let:

D(xi(t), 0̃) ≤ D(k0, 0̃) + c1(D(k1, 0̃)(t− t0)

+c2(D(k2, 0̃)
(t− t0)

2

2!
+ ...

+cn−1(D(kn−1, 0̃)
(t− t0)

(n−1)

(n− 1)!
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Figure 6: Compare between the exact solu-
tion and obtained solution with t=0.1 in Example
(3.1), case (2)

Figure 7: Compare between the exact solu-
tion and obtained solution with t=0.1 in Example
(3.1), case (3)

+cn(

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(f(s, xi−1(s), x
′
i−1(s), ..., x

(n−1)
i−1 (s)))

, 0̃)ds...ds+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

D(g(t, s, xi−1(s), x
′
i−1(s), ...,

x
(n−1)
i (s), 0̃)ds...ds))...)) ≤ r0 + c1r1(t− t0)

+c1c2r2
(t− t0)

2

2!
+...+c1c2...cn−1rn−1

(t− t0)
(n−1)

(n− 1)!

+c1c2...cn

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(f(s, xi−1(s)

, ..., x
(n−1)
i−1 (s)), 0̃)ds...ds

+c1c2...cn

∫ t

t0

...
∫ t
t0︸ ︷︷ ︸

n+1

D(g(t, s, xi−1(s), x
′
i−1(s), ...,

x
(n−1)
i (s)), 0̃)ds...ds ≤ r0 + c1r1(t− t0)+

c1c2r2
(t− t0)

2

2!
+ ...

Figure 8: Compare between the exact solu-
tion and obtained solution with t=0.1 in Example
(3.1), case (4)

+c1c2...cn−1rn−1
(t− t0)

(n−1)

(n− 1)!

+c1c2...cn

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

∑
MiD(xi−1, 0̃)ds...ds+

c1c2...cn

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

∑
miD(xi, 0̃)ds...ds

≤ Max(r0, ..., rn−1,M0, ...,Mn−1,

m0, ...,mn−1)

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(xi−1, 0̃)ds...ds

It is concluded that xi is bounded.

Now we prove that x
(n)
i is continuous:

D(x
(n)
i (t1), x

(n)
i (t2)) ≤ D(f(t1, s, xi−1,

x′i−1, ..., x
(n−1)
i−1 ) +

∫ t1

t0

g(t1, s, xi−1

, x′i−1, ..., x
(n−1)
i−1 )ds, f(t2, s, xi−1, x

′
i−1, ...,

x
(n−1)
i−1 ) +

∫ t2

t0

g(t2, s, xi−1, x
′
i−1, ...,

x
(n−1)
i−1 )ds) ≤ D(f(t1, s, xi−1, x

′
i−1, ...,

x
(n−1)
i−1 ), f(t2, s, xi−1, x

′
i−1, ..., x

(n−1)
i−1 ))

+D(

∫ t1

t0

g(t1, s, xi−1, x
′
i−1, ..., x

(n−1)i−1)ds

,

∫ t2

t0

g(t2, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 )ds)
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≤ D(f(t1, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 )

, f(t2, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 ))

+D(

∫ t1

t0

g(t1, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 ds)

,

∫ t1

t0

g(t2, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 )ds)

+D(

∫ t2

t1

g(t2, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 )ds, 0)

≤ D(f(t1, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 )

, f(t2, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 ))

+

∫ t1

t0

D(g(t1, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 )

, g(t2, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 ))ds

+

∫ t2

t1

D(g(t2, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 ), 0)

Thus it is given:

D(x
(n)
i (t1), x

(n)
i (t2)) → 0

as t1 → t2.
Therefore the sequence x

(n)
i (t) is continuous on

[t0, t].

Here for proving that xi is continuous, we get:

D(xi+1(t), xi(t))

≤ D(

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

f(s, xi(s), ..., x
(n−1)
i (s)))ds...dsds

+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

g(t, s, xi(s), ..., x
(n−1)
i (s)))ds...ds,

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

f(s, xi−1(s), ..., x
(n−1)
i−1 (s)))ds...dsds+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

g(t, s, xi−1(s), ..., x
(n−1)
i−1 (s)))ds...ds)

≤
∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(f(s, xi(s), ..., x
(n−1)
i (s))+

∫ t

t0

g(t, s, xi(s), ..., x
(n−1)
i (s))ds,

f(s, xi−1(s), ..., x
(n−1)
i−1 (s))

+

∫ t

t0

g(t, s, xi−1(s), ..., x
(n−1)
i−1 (s))ds)ds...dsds

≤
∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

(D(f(s, xi(s), ..., x
(n−1)
i (s))

, f(s, xi−1(s), ..., x
(n−1)
i−1 (s)))

+

∫ t

t0

D(g(t, s, xi(s), ..., x
(n−1)
i (s)

, g(t, s, xi−1(s), x
′
i−1(s)), ..., x

(n−1)
i−1 (s)))ds)...ds

≤
∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

n∑
i=0

MiD(xi(s), xi−1(s))ds...ds

+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

n∑
i=0

miD(xi(s), xi−1(s))ds...ds

≤ Max(M1, ...,Mn−1,m1, ...,mn−1)∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(xi(s), xi−1(s))ds...ds

Thereupon if∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(xi(s), xi−1(s))ds...ds ≤ S

which S ∈ N, then it is written as follows:

D(xi+1(t), xi(t)) ≤ MS

Now for n = 1, it is given:
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D(x2(t), x1(t)) ≤
∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(f(s, x1(s),

x′1(s), ..., x
(n)
1 (s)), f(s, x0(s), x

′
0(s),

..., x
(n)
0 (s)))ds...dsds+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

D(g(t, s, x1(s),

x′1(s), ..., x
(n)
1 (s)))ds...ds, 0) ≤∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

n−1∑
i=0

MiD(x1, x0)ds...ds+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

n−1∑
i=0

miD(x1, 0)ds...ds

≤ Max(M1, ...,Mn−1)

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(x1, x0)ds...ds+Max(m1, ...,mn−1)∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(x1, 0)ds...ds.

Now if ∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

D(x1, x0)ds...ds ≤ P

and ∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

D(x1, 0)ds...ds ≤ U

where P,U ∈ N, then we get:

D(x2(t), x1(t)) ≤ Max(M1, ...,Mn−1)P

+Max(m1, ...,mn−1)U

To prove that the solution of fuzzy integro-
differential of nth order equation is unique, let
y(t) is a continuous solution of Eq. (3.1) on [t0, t].
Then

D(y(t), xi(t))

= D(

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

f(s, y(s), ..., y(n)(s)))ds...ds

+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

g(t, s, y(s), ..., y(n)(s)))ds...ds,

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

f(s, xi−1(s), x
′
i−1(s),

..., x
(n)
i−1(s)))ds...dsds+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

g(t, s, xi−1(s), x
′
i−1(s), ..., x

(n)
i−1(s))ds...ds)

≤
∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(f(s, y(s), y′(s), ..., y(n)(s))+

∫ t

t0

g(t, s, y(s), ..., y(n)(s))ds, f(s, xi−1(s),

x′i−1(s), ..., x
(n)
i−1(s)) +

∫ t

t0

g(t, s

, xi−1(s), x
′
i−1(s), ..., x

(n)
i−1(s)))ds...ds ≤∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(f(s, y(s), ..., y(n)(s)), f(s, xi(s),

..., x
(n)
i (s))) +

∫ t

t0

D(g(t, s, y(s), y′(s),

..., y(n)(s)), g(t, s, xi−1(s), x
′
i−1(s), ...

, x
(n)
i−1(s)))ds...ds ≤

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(f(s, y(s),

y′(s), ..., y(n)(s)), f(s, xi−1(s), x
′
i−1(s), ...

, x
(n)
i−1(s))) +

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n+1

D(g(t, s, y(s), y′(s)

, ..., y(n)(s)), g(t, s, xi−1(s), x
′
i−1(s), ...,
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x
(n)
i−1(s)))ds...ds ≤

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

n−1∑
i=0

MiD(y(s)

, xi−1(s))ds...ds+

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

n−1∑
i=0

miD(x(s),

xi−1(s))ds...ds ≤ Max(M1, ...,Mn,m1,

...,mn)

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(y(s), xi−1(s))ds...ds.

Now it can be given:

D(y(t), xi(t)) ≤

M

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(y(s), xi−1(s))ds...ds ≤

M2

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(y(s), xi−2(s))ds...ds

≤ ... ≤ M i

∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(y(s), x0(s))ds...ds.

Accordingly if∫ t

t0

...

∫ t

t0︸ ︷︷ ︸
n

D(y(s), x0(s))ds...ds ≤ K

where
K ∈ N

then
D(y(t), xi(t)) ≤ M iK.

Since M < 1 then limi→∞xi(t) = y(t) = x(t).
Hence the theorem is completely proved. 2

Algorithm:

step 1: For i = 1 set

x
(n)
i (t) = f(t, s, xi−1, x

′
i−1, ..., x

(n−1)
i−1 );

step 2: Calculate xi from Eq. (3.1);

step 3: Obtain that D(xi, 0) is bounded;

step 4: Prove that xi is continuous;

step 5: Obtain that D(xi+1(t), xi(t)) is bounded;

step 6: Let i+ 1 = i and set

x
(n)
i (t) = f(t, s, xi−1, x

′
i−1, ..., x

(n−1)
i−1 )

+

∫ t

t0

g(t, s, xi−1, x
′
i−1, ..., x

(n−1)
i−1 )ds

then go to step 2.

5 Conclusion

The paper studied analytic solution of nonlin-
ear fuzzy Volterra integro-differential of n-th or-
der of the second kind under generalized deriva-
tion. This analytic solution was a nonlinear fuzzy
Volterra integral equation with fuzzy nonlinear
kernels. Adomian method was applied to solve
this analytic solution. An example was used to
compare the exact solution with the analytic so-
lution. A least error was found and the approx-
imated results were found to be fuzzy numbers.
Moreover, upper bound on the solution of fuzzy
n-th order integro-differential is introduced and
the existence and uniqueness of its solution were
investigated. The results of this method can be
generalized as a credible model for getting ap-
proximate solution with a certainty the solutions
exist and are unique. An algorithm was also pro-
posed to vividly show the existence and unique-
ness of the solution. The computations in this
paper were performed by the application of the
Maple 18 .
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