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Abstract

The paper presents analysis of two-dimensional non-Newtonian incompressible viscous flow between
parallel plates. The governing problem of momentum equations are reduced to nonlinear ordinary
differential equation (NODE) using similarity transformations. The resulting equation is solved using
computer extended series solution (CESS) and homotopy analysis method (HAM). These methods
have advantages over pure numerical methods for obtaining the derived quantities accurately for
various values of parameters and results are valid in much larger parameter domain compared with
numerical schemes.
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1 Introduction

T
he two-dimensional incompressible viscous
flow between two parallel plates moving nor-

mal to the surface symmetrically about line of
symmetry, gives rise to squeezing flow is very
important because of its many widespread in-
dustrial, biological and practical applications in
many engineering fields. Squeezing flow between
parallel infinite plates or discs is an interesting
area of study in fluid mechanics; it has many
applications including hydrodynamical machines,
compression / injection modeling, flow inside sy-
ringes and nasogastric tubes etc. Stephan [33]
was the first researcher who initiated the pioneer-
ing work on the squeezing flow under lubrication
approach. Later Reynolds [31] and Architabald
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[2] investigated the squeezing flow between ellip-
tic plate and rectangular plate respectively.

The fluids involved are not simply Newtonian
in most of realistic models, and a single model
cannot capture the complex rheological proper-
ties of non-Newtonian fluids. The different types
of non-Newtonian fluids have been studied in
different mathematical approaches; one of such
model is Casson fluid model. McDonald [24] and
Mrill et al. [26] showed that the most compati-
ble formulation to simulate blood type fluid flows.
Many researchers have contributed their investi-
gation efforts towards the better understanding
of squeezing flow in different geometries. Moham-
mad et al. [25] and Ganesh et al. [15] discussed
the problem for unsteady flow of MHD viscous
fluid between two parallel plates through porous
medium. Kirubhashankar et al. [18, 19] studied
MHD flow of an electrically conducting viscous
fluid between moving parallel permeable plates.
Siddiqui et al. [32] examined the homotopy per-
turbation solution for the MHD squeezing flow of
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a viscous fluid between two plates. Mustafa et
al. [27] analyzed heat and mass transfer charac-
teristics in a fluid for the squeezing flow. Rashidi
et al. [30] considered the problem of unsteady
two dimensional squeezing flows between circu-
lar plates. The MHD squeezing flow of viscous
fluid has been studied by Umar Khan et al. [17]
and the same problem was discussed by Naveed
et al. [1] by invoking a magnetic field parameter
to the problem. Ellahi et al. [12] discussed the
non-Newtonian nanofluids with Reynolds model
and Vogels model which are the illustrative mod-
els of variable viscosity. In pure numerical meth-
ods, a set of discrete points on a curve has been
considered to obtain the solution of differential
equations. Therefore it is often difficult and time
consuming to get a complete path (curve) of re-
sults. On the other hand, at each point within the
domain of interest approximate analytical solu-
tions are available. The analytical solutions pro-
vide an effective initial guess to get approximate
solution of nonlinear problem within few itera-
tions. Many researchers are interested in obtain-
ing semi-analytical and semi-numerical solutions
of various nonlinear problems related to science
and engineering fields. We reinvestigate the prob-
lem of non-linear squeezing flow of a Casson fluid
between parallel plates using semi-analytical /
semi-numerical methods viz. computer extended
series solution and found some useful and inter-
esting results based on new type of series analysis.
Van Dyke [34] and his associates have shown the
probable applications of these methods in com-
putational fluid dynamics. For simple models the
semi-analytical and semi-numerical methods pro-
posed here is to provide accurate results and have
advantages over pure numerical schemes. The
few manually calculated approximations in low
Reynolds number perturbation solution of the
boundary value problem, which enables us to pro-
pose systematic series expansion to generate the
universal polynomial coefficients by using recur-
rence relation and Mathematica. The resulting
series have limited radius of convergence by non-
physical singularities, is extended to moderately
high Reynolds numbers using an analytic contin-
uation of series solution. The location and nature
of singularity restricts the convergence of series is
predicted by using Domb-Sykes plot [10]. The
sign pattern of the coefficients decides the nature
of singularity, then recast the series into contin-

ued fraction representation [7] and use Pade’ ap-
proximants of various orders for summing it. Bu-
jurke et al. [8, 9] studied the flow in a narrow
channel of varying gap using computer extended
series solution and his associates have used this
technique successfully.

The alternative approach is to obtain analytic
solution of the proposed problem using homotopy
analysis method (HAM). The HAM was devel-
oped by Liao [20] and further modified it in [21] to
introduce a non-zero auxiliary parameter which is
known as convergence-control parameter, which
allows us to adjust the convergence region and
rate of approximations of required solution. In
general perturbation and asymptotic techniques
are strongly dependent upon small / large pa-
rameters which are often valid for solving weakly
nonlinear boundary value problems. This method
is free from small / large physical parameter, flex-
ibility on choice of base function and initial guess.
Also, HAM is used to solve highly nonlinear dif-
ferential equations arising in engineering appli-
cations, which has great flexibility and generality
over all other analytical techniques. Recently, El-
lahi [13, 14] discussed various aspects related to
flow of non-Newtonian nanofluid and investigated
the effects of MHD and temperature dependent
viscosity by using HAM. Most recently, Awati et
al. [4, 5, 6] used CESS and HAM for the solution
of flow problems arising in fluid mechanics and
shown potential applications of these methods.

The present paper is structured as follows. Sec-
tion 1 describes the introduction of the problem.
Section 2 Mathematical formulation of the pro-
posed problem and relevant boundary conditions
is given. Section 3 is devoted to the solution of
the problem using CESS. Section 4 devoted to
the solution by HAM. Section 5 presents the re-
sults and discussion, and Section 6 is about the
conclusion.

2 Mathematical Formulation

Consider a two-dimensional viscous incompress-
ible Casson fluid over an exponentially stretching
/ shrinking porous sheet with the flow being con-
fined. For an isotropic and incompressible Cas-
son fluid the rheological equation of state given
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[11, 28] as

τij =

{
(µB +

py√
2π
)2eij , π > πc,

(µB +
py√
2π
)2eij , π < πc.

where τij is the (i, j)-th component of stress ten-
sor, π = eijeij and eij are the (i, j)-th component
of deformation rate, π is the product component
of deformation rate with itself, πc is critical value
of product based on non-Newtonian model, µB is
dynamic viscosity of non-Newtonian fluid and py
is the yield stress of fluid. The governing equa-
tions of present flow problem become [24]

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
=

(
1 +

1

β

)(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.2)

u
∂v

∂x
+ v

∂v

∂y
=

− 1

ρ

∂p

∂y
+ ν

(
1 +

1

β

)(
∂2v

∂x2
+
∂2v

∂y2

)
(2.3)

where u and v are the velocity components along
x and y directions respectively, ν is the kinematic
fluid viscosity, p be the pressure, ρ is the density

of fluid, β = µB
√

2πc
py

is the Casson fluid parame-

ter. The appropriate boundary conditions for the
flow equations are

u(x, y) = 0, v(x, y) = v0 at y = h,
uy(x, y) = 0, v(x, y) = 0 at y = 0.

(2.4)

There is no slip condition at upper plate for the
first two conditions and remaining two conditions
follow from symmetry of the flow at y = 0. Elim-
inating the pressure terms from Eqn. (2.2) and
(2.3), after cross differentiation and invoking vor-
ticity ω then simplify the above system of equa-
tions, we get

u
∂ω

∂x
+ v

∂ω

∂y
= ν

(
1 +

1

β

)(
∂2ω

∂x2
+
∂2ω

∂y2

)
(2.5)

where ω = ∂v
∂x − ∂u

∂y . Introducing the dimension-

less similarity variable η = y
h , where h is the dis-

tance between plates, then Eqns. (2.1) and (2.5)
becomes

∂u

∂x
+

1

h

∂v

∂η
, (2.6)

u
∂ω

∂x
+
v

h

∂ω

∂η
= ν

(
1 +

1

β

)(
∂2ω

∂x2
+

1

h2
∂2ω

∂η2

)
(2.7)

and the boundary conditions are

u(x, η) = 0, v(x, η) = v0 at η = 1,
uy(x, η) = 0, v(x, η) = 0 at η = 0.

(2.8)

Let ψ be a stream function is of the form

ψ(x, η) = [hU(0)− v0x] f(η) (2.9)

The velocity components u and v related to the
physical stream function defined by

u(x, η) =
∂ψ

∂y
=

1

h

∂ψ

∂η
and v(x, η) = −∂ψ

∂x
,

(2.10)
where U(0) is the average entrance velocity at
x = 0 and velocity components becomes

u(x, η) =
[
U(0)− v0

h
x
]
f ′(η)

and v(x, η) = v0f(η) (2.11)

Using Eqns. (2.11) the continuity equation sat-
isfied automatically and the Eqns. (2.7) and
(2.8) reduces to the nonlinear ordinary differen-
tial equation

f ′′′′ +R

(
β

1 + β

)(
f ′f ′′ − ff ′′′

)
, (2.12)

where R = v0h
ν is Reynolds number. The relevant

boundary conditions becomes

f(0) = 0, f ′(1) = 0, f ′′(0) = 0, f(1) = 0. (2.13)

3 Series Solution

We seek a solution of Eqn. (2.12) in powers of R
in the form

f(η) =
∞∑
n=0

Rnfn(η) (3.14)

Substituting Eqn. (3.14) into Eqn. (2.12) and
equating like powers of R on both sides, we get

f
′′′′
0 = 0, (3.15)

f
′′′′
n+1 = −(

β

1 + β
)[f

′
0f

′′
n + f

′
nf

′′
0 − f0f

′′′
n

− fnf
′′′
0 ]−

n−1∑
L=1

(
β

1 + β
)[f

′
Lf

′′
m − fLf

′′′
m ],

n = 1, 2, .... (3.16)



12 Vishwanath B. Awati et al. /IJIM Vol. 10, No. 1 (2018) 9-18

where m = n − L . The boundary conditions of
the flow equations are

f0(0) = 0, f
′
0(1) = 0, f

′′
0 (0) = 0, f0(1) = 0,

fn(0) = 0, f
′
n(1) = 0, f

′′
n (0) = 0, fn(1) = 0,

n = 1, 2, ... (3.17)

The required solutions of the above equations up
to O(R2) are

f0 =
1

2
(3η − η3)

f1 =− 1

280

(
β

1 + β

)
(2η − 3η2 + η7)

f2 =

(
β

1 + β

)
(− 703

1293600
η +

73

107800
η3

+
3

19600
η7 − 1

3360
η9 +

73

92400
η11) (3.18)

The calculation of higher order terms manually of
the series (3.16) is very difficult because the al-
gebra becomes cumbersome. It is essential to get
the higher order terms to approximate the func-
tion properly and we cannot analyze the problem
accurately by considering only these three terms
of the series. The behavior of the solution (3.18)
enables us to propose a systematic series expan-
sion with universal polynomial coefficients, which
is quite useful and more efficient in calculation of
higher order approximations. The nature of solu-
tions (3.18) suggest the general form fn(η) to be
of the form

fn(η) =

2n∑
k=1

A(n,2k−1)(1− η2)2η2k−1, n ≥ 1.

(3.19)
The above general form yields exactly the previ-
ous calculated terms fi(i = 1, 2), besides this it
enables us to find for (i > 2) using the follow-
ing recurrence relation and FORTRAN program-
ming. Substituting Eqn.(3.19) into an Eqn.(3.14)
and equating like powers of η on both sides
and obtained a recurrence relation for unknowns

A(n,2k−1) in the form

A(n+1,4n−(2J+1)) = 2A(n+1,4n−(2J−1))

−A(n+1,4n−(2J−3))+

1

(4n− (2J − 3))(4n− (2J − 2))(4n− (2J − 1))(4n− (2J))

× {[
4∑

i=1

A(4n−2i−2J+3)Pi(4n− i− J + 2)

+

n−1∑
L=1

[

2∑
r=−2

(

2L∑
k1=2L−J+r

A(L,2k1−1)

·A(m,4n−2k1−(2J+(1−2r)))

· S(7−r)(k1, N2 − k1 − (J − r)))]]} (3.20)

where m = n − L and J varies from
−2,−1, 0, 1, ....(2n− 1).
For obtaining other Aij ’s, we use above recur-
rence relation. The expression for radial velocity
is given by

f ′(η) =
3

2
(1− η2) +

∞∑
n=0

Rn
2n∑
k=1

A(n,2k−1)

[(2k + 3)η2k+2 − 2(2k + 1)η2k + (2k − 1)η2k−2]
(3.21)

The expression for pressure gradient of the series
is given by

f ′′′(0) = −3 +

∞∑
n=0

Rnan (3.22)

where an = −6A(n,1)+6A(n,3). The analytic con-
tinuation of region and validity of series can be
achieved by taking various Pade’ approximants.
The coefficients of the series (3.21) and (3.22)
representing the radial velocity f ′(η) and pres-
sure gradient f ′′′(0) are decreasing in magnitude
but having random sign pattern and results are
further extrapolated using rational approxima-
tion for determining the radius of convergence.
Fig.1 shows Domb-Sykes plot which confirms the
radius of convergence after extrapolation of the
series f ′′′(0) to be R0= 26.32272 and 15.78283
for Casson fluid parameter β = 1 and 5 respec-
tively. The direct sums of the series for radial
and axial velocities are valid only up to the ra-
dius of convergence. We use pade approximants
for summing the series which gives a converging
sum for sufficiently large Reynolds number R.

Figs. 8-10 show the effects of Casson fluid
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Table 1: Comparison of f ′′′(0) results with CESS, HAM and numerical results for different Casson fluid
parameter β and Reynolds number R.

f ′′′(0)

β R CESS HAM NDSolve

1 0 -3.00000 -3.00000 -3.00000
5 -2.81135 -2.81135 -2.81135
10 -2.55884 -2.55884 -2.55884
20 -1.87965 -1.87966 -1.87966
25 -1.50986 -1.50986 -1.50986
30 -1.16547 -1.16542 - - - -
35 -0.86244 -0.86221 - - - -
40 -0.5908 -0.59074 - - - -
45 -0.31877 -0.3162 - - - -

2 5 -2.7347 -2.73471 -2.73471
10 -2.35364 -2.35365 -2.35365
20 -1.39104 -1.3911 -1.3911
30 -0.5819 -0.59074 - - - -
35 -0.15008 -0.21509 - - - -

3 5 -2.69358 -2.69358 -2.69358
15 -1.69336 -1.69337 -1.69337
25 -0.72517 -0.72414 - - - -
30 -0.30432 -0.3162 - - - -

5 5 -2.65056 -2.65057 -2.65057
10 -2.12414 -2.12414 -2.12414
15 -1.50984 -1.50986 -1.50986
25 -0.49493 -0.50192 - - - -

Figure 1: Domb-Sykes plot for the series f ′′′(0)
for β = 1 and 5.

parameter on radial velocity for moderately large
Reynolds number. An identical behavior is ob-
served for almost all velocity profiles for Casson
fluid parameter and Reynolds number.

4 Homotopy Analysis Method

We employ HAM [22, 23] for the solution of the
flow problem (2.12) with boundary conditions

Figure 2: h̄ curves for the series f ′(0) for different
values of β and R.

(2.13), it is straight forward to choose the initial
approximation as

f0(η) =
3

2
η − 1

2
η3 (4.23)

and auxiliary linear operator of the governing
equation is defined as

L[f ] = f ′′′′ (4.24)
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Figure 3: h̄ curve for the series f ′′′(0) for different
values of β and R.

Figure 4: Axial velocity curves for different val-
ues of R when β = 2.

The above linear operator satisfies the following
property

L[C1η
3 + C2η

2 + C3η + C4] = 0 (4.25)

where C1, C2, C3 and C4 are constants to be de-
termined later. If q ∈ [0, 1] then the zeroth order
deformation problem can be constructed as

(1− q)L[f(η, q)− f0(η)] = qhH(η)N [f(η, q)],
(4.26)

subjected to the boundary conditions

f(0, q) = 0, f ′(1, q) = 0,

f ′′(0, q) = 0, f(1, q) = 1. (4.27)

where q ∈ [0, 1] is an embedding parameter, h̄
and H are the non-zero auxiliary parameter and
auxiliary function respectively. Further N is the
nonlinear differential operator given by

N [f(η, q)] =
∂4f(η, q)

∂η4
+R

(
β

1 + β

)
[
∂f(η, q)

∂η

∂2f(η, q)

∂η2
+ f

∂3f(η, q)

∂η3

]
(4.28)

Figure 5: Radial velocity curves for different val-
ues of R when β = 2.

Figure 6: Axial velocity curves for different val-
ues of β when R = 15.

For q = 0 and q = 1, Eqn. (4.26) have the solu-
tion

f(η, 0) = f0(η), f(η, 1) = f(η) (4.29)

As q varies from 0 to 1, f(η, q) also varies from
the initial guess f0(η) to the exact (final) solution
f(η). By Taylor’s theorem Eqn. (4.29) can be
written as

f(η, q) = f0(η) +
∞∑

m=1

fm(η)qm (4.30)

where fm(η) = 1
m!

∂mf(η,q)
∂qm |q=0. The convergence

of above series strictly depends upon the conver-
gence control parameter h̄, and also assume that
h̄ is selected in such a way that the series is con-
vergent at q = 1, then we have

f(η) = f0(η) +

∞∑
m=1

fm(η) (4.31)

Differentiating zeroth order deformation problem
(4.26) ′m′ times with respect to q and then divid-
ing it by m!, finally setting q = 0. The resulting



Vishwanath B. Awati et al. /IJIM Vol. 10, No. 1 (2018) 9-18 15

Figure 7: Axial velocity curves for different val-
ues of β when R = 15.

Figure 8: Velocity profiles for moderately larger
values of R when β = 1.

mth-order deformation problem becomes

L[fm(η)− χmfm−1(η)] = qHRm(η) (4.32)

and the homogeneous boundary conditions are

fm(0) = 0, f
′
m(1) = 0, f

′′
m(0) = 0,

f
′
m(1) = 0,m ≥ 1. (4.33)

where

Rm(η) = f
′′′′
m +R

(
β

1 + β

)
m−1∑
n=0

[f
′
nf

′′
m−n−1 − fnf

′′′
m−n−1] (4.34)

and

χm =

{
0, if m ≤ 1,

1, if m > 1.
(4.35)

To solve the system of linear equations (4.32) with
homogeneous boundary conditions (4.33) by us-

Figure 9: Velocity curves for moderately larger
values of R when β = 2.

Figure 10: Velocity curves for moderately larger
values of R when β = 5.

ing Mathematica software, we obtain solutions as

f1(η) =

(
βh̄R

(1 + β)

)(
1

140
η − 3

280
η3 +

1

280
η7
)

f2(η) = (
βh̄R

140(1 + β)
+

βh̄2R

140(1 + β)2

+
β2h̄2R

140(1 + β)2
+

703β2h̄2R2

1293600(1 + β)2
)η

+ (− 3βh̄R

280(1 + β)
− 3βh̄2R

280(1 + β)2

− 3β2h̄2R

280(1 + β)2
+

73β2h̄2R2

107800(1 + β)2
)η3

+ (
βh̄R

280(1 + β)
+

βh̄2R

280(1 + β)2

+
β2h̄2R

280(1 + β)2
+

3β2h̄2R2

19600(1 + β)2
)η7

− β2h̄2R2

3360(1 + β)2
η9 +

3β2h̄2R2

92400(1 + β)2
η11

(4.36)
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4.1 Convergence of HAM

The series (4.31) contains the auxiliary parame-
ter h̄. The convergence of series strictly depends
on the parameter h̄ and is known as convergence
control parameter, which influences the conver-
gence rate and region of series. We draw h̄ curves
for velocity and pressure gradient at 10th order of
approximations. To ensure that the permissible
ranges of parameter h̄, by drawing the line seg-
ment of h̄ curves parallel to η-axis. From Fig. 2
and Fig. 3, it is observed that admissible ranges
for h̄ are −2 ≤ h̄ ≤ 1.7 and −1.5 ≤ h̄ ≤ 1.7 for
the series f ′(0) and f ′′′(0) for different values of
Casson fluid parameter β and Reynolds number
R. The computation shows that series converges
in the whole region of 0 ≤ η ≤ 1 when h̄ = −0.9.

5 Results and discussion

The nonlinear squeezing flow of an incompress-
ible Casson fluid between two parallel plates is
analyzed. The resulting nonlinear ordinary dif-
ferential Eqn. (2.12) with boundary conditions
(2.13) is solved by using CESS and HAM. By
using both the methods the graphs of axial and
radial velocity profiles have been drawn for dif-
ferent Reynolds number R and Casson fluid pa-
rameter β. The series expansion scheme with
polynomial coefficients proposed here enables in
obtaining recurrence relation. Using recurrence
relation (3.20) and Mathematica, we generate
large number (n = 30) of universal coefficients
A(n,2k−1), k = 1, 2, ...2n and n = 1, 2, ...30. The
velocity profiles are further improved by using
Pade approximants for much larger values of R
for different values of Casson parameter β which
are shown in Figs. 8-10 and the profiles agree
closely with HAM curves.

Fig. 4 shows that an increasing value of R cor-
responds to a decrease in the velocity along the
y-direction for fixed Casson parameter β. Fig.
5 presents radial velocity profiles for increasing
values of R corresponds to a decrease in velocity
in the region η ≤ 0.5 and increase in the region
0.5 ≤ η ≤ 1. Fig. 6 depicts the behavior of Cas-
son fluid parameter β, it is observed that the axial
velocity decreases corresponds to increase in the
values of β.

Fig. 7 shows that the radial velocity for in-
crease in β corresponds to decrease in velocity
in the region η ≤ 0.5 and increase in the region

0.5 ≤ η ≤ 1.

The coefficient of the series (3.22) representing
pressure gradient f ′′′(0) are decreasing in mag-
nitude and having random sign patterns. Fig.1
shows Domb-Sykes plot which confirms the ra-
dius of convergence after extrapolation of series
f ′′′(0) to be R0 = 26.32272 and 15.78283 for Cas-
son fluid parameter β = 1 and β = 5 respectively.
The direct sum of the series (3.22) is valid only up
to the radius of convergence for different values
of Casson fluid parameter β. We use the Pade’
approximant’s for summing up series which give
a converging sum for sufficiently large Reynolds
number. The pressure gradient results are com-
pared between computer extended series solution
and homotopy analysis method with numerical
results, which agree very well with pure numeri-
cal solutions for different Casson fluid parameter
β and Reynolds number R. The results are given
in Table 1.

6 Conclusion

In the present analysis, the non-linear squeezing
flow of an incompressible Casson fluid between
parallel plates is studied using CESS and HAM.
The major observations are:

• The location and nature of singularity re-
stricts the convergence of series is predicted
quite accurately using Domb-Sykes plot.

• The region of validity of the series is ex-
tended for much larger value of Reynolds
number R.

• From the h̄ curves it is observed that 10th
order approximations are enough to obtain
the solutions of flow problem.

• Table 1 presents the validity of semi-
numerical / semi-analytical methods results
with numerical results.
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