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Abstract

Unsteady flow of gas through a porous medium is a strongly nonlinear ordinary differential equation
on semi-infinite interval. In this paper, we have applied the pseudo-spectral collocation method with
a positive scaling factor to solve unsteady flow of gas through a porous medium. The method reduces
the solution of this problem to the solution of a system of nonlinear algebraic equations. The arising
system is solved by Newton’s method. To confirm the accuracy and efficiency of the presented scheme,
we are compared the obtained numerical results with some well-known results. Results showed a very
good agreement between results of presented scheme and the numerical solutions.

Keywords : Chebyshev pseudo-spectral method; Newton iteration method; Semi-infinite interval;
Chebyshev-Gauss-Lobatto points; Positive scaling factor; Chebyshev interpolation.

—————————————————————————————————–

1 Introduction

S
pectral methods are very powerful tools for
obtaining the approximate solution of many

problems arising in different fields of science and
engineering [1]. Convenience of applying these
methods and exponential convergence are two
useful properties which have persuaded many au-
thors to use them for solving many types of prob-
lems. The basic idea of spectral methods to solve
functional equations is to expand the solution
function as a finite series of very smooth basis
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functions, as given

yN (x) =

N∑
n=0

ynϕn(x),

in which, the best choice of ϕn(x), are the eigen-
functions of a singular Sturm-Liouville problem.
It is well known that eigenfunctions of certain sin-
gular Sturm-Liouville problems allow the approx-
imation of functions C∞ [a, b], where the trunca-
tion error approaches zero faster than any neg-
ative power of the number of basic functions
used in the approximation, as that number (or-
der of truncation N) tends to infinity [1]. This
phenomenon is usually referred to as ” spec-
tral accuracy ” [14], (for more details, refer to
[1, 14, 15]). Throughout, we are using orthogonal
Chebyshev polynomials of the first kind {Tk}+∞

k=0,
which are eigenfunctions of the singular Sturm-
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Liouville problem:(√
1− x2T

′
k(x)

)′

+
k2√
1− x2

Tk(x) = 0.

Many problems in science and engineering can
be modeled by a nonlinear ordinary differential
equation on semi-infinite interval. Different spec-
tral methods have been proposed for solving non-
linear problems on semi-infinite interval.

Since Laguerre polynomials are orthogonal over
[0,∞) with the wight function exp(−x), Laguerre
spectral method is commonly applied to solve or-
dinary and partial differential equations on semi-
infinite interval [2, 3, 4, 5].

Another method which is named domain trun-
cation [6], replaces semi-infinite interval with
[0, L] by choosing L, sufficiently large.

The third method for solving such problems
is based on rational orthogonal functions. Boyd
[7] defined a new spectral basis, named rational
Chebyshev functions on the semi-infinite interval.
Guo et al. [8] introduced a new set of rational
Legendre functions which is mutually orthogonal
in L2(0,+∞). They applied a spectral scheme
using the rational Legendre functions for solving
the Korteweg-de Vries equation on the half line.
Parand and Razzaghi [9, 10, 11] applied spectral
method to solve nonlinear ordinary differential
equations on semi-infinite intervals. Their ap-
proach was based on rational Tau method. They
obtained the operational matrices of derivative
and product of rational Chebyshev and Legendre
functions and then they applied these matrices
together with the Tau method to reduce the solu-
tion of these problems to the solution of a system
of algebraic equations.

Guo [12] proposed a method that proceeds by
mapping the original problem in semi-infinite in-
terval to a problem in a bounded domain, and
then used the appropriate Jacobi polynomials to
approximate the resulting problem. Recently,
Abbasbandy and Shivanian [13] used this method
coupled with pseudo-spectral method and calcu-
late multiple (dual) solutions of a model of mixed
convection in a porous medium with boundary
conditions on semi-infinite interval which admit
dual solutions.

In this work, we first reformulate the unsteady
flow of gas through a porous medium problem in

[0,+∞) to a problem in [-1,1] by variable trans-
formation µ = x−s

x+s , with s > 0, and using spec-
tral collocation method [15] based on Chebyshev
polynomials (also called pseudo-spectral method)
to approximate the resulting problem. The com-
parison of the results obtained by this method
with results obtained by other methods shows
that this method provides more accurate and nu-
merically stable solutions.

Figure 1: The coefficients ŷk versus k for six dif-
ferent values of s. The diagonal cross show the best
choice for N = 50, which is s = 4, when α = 0.5.

Figure 2: Dash dotted: padeè[3,3], dash line:
Padeè[2,2], solid line: present method for N = 10,
circle: numerical solutions, α = 0.5..

Figure 3: Approximation of y(x) for different val-
ues of α, N = 30 and s = 4.
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Table 1: The maximum norm residual error of approximate solutions yN (x) for α = 0.5

MR errors of presented method

N s = 1.00 s = 2.00 s = 3.00 s = 4.00 s = 5.00 s = 6.00 CPU time

30 2.1E − 2 1.5E − 3 6.0E − 4 6.0E − 4 8.0E − 4 9.0E − 4 15.3s
40 1.5E − 3 1.4E − 5 1.6E − 5 1.2E − 5 1.6E − 5 2.5E − 5 31.5s
50 7.0E − 4 7.5E − 7 7.0E − 7 2.0E − 7 2.9E − 7 3.2E − 7 56.9s

Table 2: Values of y(x) for α = 0.5 and x = 0.1 to 1.0

Presented method

x HPM[27] MGLFM[25] PM[15] NS N = 8 N = 20

0.1 0.88808651 0.90931873 0.88165883 0.88136465 0.88235049 0.88136490
0.2 0.77922351 0.81748763 0.76630768 0.76582881 0.76758847 0.76583143
0.3 0.67597925 0.71522344 0.65653800 0.65600068 0.65721502 0.65600097
0.4 0.58027292 0.60982075 0.55440240 0.55389894 0.55417725 0.55390717
0.5 0.49332936 0.51632348 0.46136503 0.46094276 0.46077216 0.46094804
0.6 0.41572078 0.41932385 0.37831093 0.37798158 0.37820424 0.37798064
0.7 0.34747118 0.40982377 0.30559765 0.30535234 0.30672155 0.30535545
0.8 0.28819396 0.31999068 0.24313255 0.24295439 0.24589590 0.24296671
0.9 0.23723457 0.20820285 0.19046237 0.19033423 0.19488803 0.19034954
1.0 0.19379708 0.21991074 0.15876898 0.14677331 0.15265189 0.14678266

Table 3: The values of the initial slope y′(0) for various values of α

Presented method with Wazwaz [23]

α Numerical solutions N = 40 and s = 4 Padeè [2, 2] Padeè [3, 3]

0.1 −1.1390072 −1.1390072 −3.5565588 −1.9572089
0.2 −1.1504755 −1.1504755 −2.4418943 −1.7864755
0.3 −1.1629415 −1.1629414 −1.9283384 −1.4782708
0.4 −1.1766157 −1.1766156 −1.6068568 −1.2318018
0.5 −1.1917906 −1.1917906 −1.3731781 −1.0255297
0.6 −1.2088942 −1.2088941 −1.1855196 −0.8400346
0.7 −1.2285985 −1.2285984 −1.0214113 −0.6612048
0.8 −1.2520838 −1.2520838 −0.8633400 −0.4776697
0.9 −1.2818813 −1.2818813 −0.6844601 −0.2772628

Table 4: The values of the initial slope y′(0) for various values of α

α MR errors of presented method N = 40 and s = 4 MR errors of perturbation method

0.1 1.4E − 5 1.2E − 3
0.2 1.4E − 5 5.5E − 3
0.3 1.3E − 5 1.1E − 2
0.4 1.3E − 5 2.2E − 2
0.5 1.3E − 5 3.7E − 2
0.6 1.2E − 5 6.0E − 2
0.7 1.2E − 5 9.1E − 2
0.8 1.2E − 5 1.4E − 1
0.9 1.2E − 5 2.1E − 1
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Figure 4: Residual error of (2.2) for α = 0.5,
N = 30 and s = 4..

2 Unsteady gas equation

In this section, a brief review of unsteady flow of
gas through a porous medium is presented (more
details in this field can be found in [16, 17]). The
description of the physical problem closely follows
that of Agarwal and Regan [18]. In the study of
the unsteady flow of gas through a semi-infinite
porous medium initially filled with gas at a uni-
form pressure ρ0 = 0, at time t = 0, the pressure
at the outflow face is suddenly reduced from ρ0
to ρ1 = 0 (ρ1 = 0 is the case of diffusion into
a vacuum) and is, thereafter, maintained at this
lower pressure. The unsteady isothermal flow of
gas is described by a non-linear partial differen-
tial equation. The nonlinear partial differential
equation that describes the unsteady flow of gas
through a semi-infinite porous medium has been
derived by Muskat in the form

▽2 (P 2) = 2A
∂P

∂t
(2.1)

where P is the pressure within porous medium
and the constant A is given by the properties of
the medium. In the one dimensional medium ex-
tending from z = 0 to z = ∞, Eq. (2.1) reduces
to

∂

∂z

(
P
∂P

∂z

)
= A

∂P

∂t
,

with the following boundary conditions:{ P (z, 0) = P0, 0 < z < ∞,
P (0, t) = P1(< P0), 0 < t < ∞.

By using the following independent and
dimension-free variables:

x =
z√
t

(
A

4P0

) 1
2

, y(x) = α−1

(
1− P 2(z)

P 2
0

)
,

introduced by Kidder [16], the problem trans-
forms to the following nonlinear ordinary differ-
ential equation (unsteady gas equation):

y′′(x) +
2xy′(x)√
1− αy(x)

= 0, x ≥ 0, 0 ≤ α < 1.

(2.2)
The typical boundary conditions imposed by the
physical properties are

y(0) = 1, y(∞) = 0. (2.3)

Several methods have been applied for the an-
alytical and numerical solution of this problem.
Kidder [16], used perturbation technique to solve
problem (2.2). He assumed that

y(x) = y0 + αy1 + α2y2 + · · · , (2.4)

and set

(1− αy)−
1
2 = 1 +

1

2
αy +

3

8
α2y2 + · · · . (2.5)

Substituting (2.4) and (2.5) into (2.2) and orga-
nizing it based on coefficients of 1, α, α2 gives:

1 : y′′0 + 2xy0 = 0, y0(0) = 1, y0(∞) = 0

−→ y0 = 1− erf(x),

α : y′′1 + xy0y
′
0 + 2xy1 = 0, y1(0) = y1(∞) = 0

−→ y1 = − 1

2π

{
y0

[
1 +

√
πxe−x2

]
− e−2x2

}
,

α2 : y′′2 + xy′0

{
y1 +

6

8
y20

}
+ xy′1y0 + 2xy2 = 0,

y2(0) = y2(∞) = 0 −→ y2 = − 1

π
y1 −

1

2π
y0

+
1

8π3/2
xe−3x2 − 1

16
√
π
x(5− 2x2)e−x2

(y0)
2

+
1

4π
(2− x2)e−2x2

y0 +

33/2

16π

[
erf(

√
3x)− erf(x)

]
.

The convergence of the expansion (2.4) for 0 <
α < 1 is guaranteed [16] through physical prop-
erties of y. It is easily seen that the complexity of
the calculations increases rapidly with increasing
the number of terms [16] and also as perturba-
tion quantity α and variable x increases from 0
to 1, the exact solution decreases (see numerical
results in section 4).
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Agarwal and Regan [18], presented the vari-
ous existence results for Eq. (2.2). They show
that the boundary-value problem (2.2) has a so-
lution y ∈ C2[0,+∞) with 0 < y(x) ≤ 1 for
x ∈ [0,+∞). So far, several analytical and nu-
merical methods have been developed for solving
problem in Eq. (2.2). Wazwaz [23], solved this
problem by modifying the decomposition method
and Padé approximation. Noor and Mohyud-Din
[24], the variational iteration method using He’s
polynomials and Padé approximation for solv-
ing this problem. Parand et al. [25, 26, 27]
applied the Lagrangian method, generalized La-
guerre polynomials, rational Chebyshev colloca-
tion method and homotopy perturbation method
for solving nonlinear problem (2.2). This equa-
tion has been recently solved by Abbasbandy [28]
with two different numerical approaches based on
finite-difference scheme known as the Keller-box
method and the shooting method.

3 Pseudo-spectral method

Considering differential equation (2.2) with
boundary conditions (2.3), by the change of vari-
able

y(x) = Y (µ), with µ =
x− s

x+ s
, s > 0,

(3.6)
where the parameter s is a scaling factor which
can be used to tune the spacing of collocation
points.
We have

x =
s(1 + µ)

1− µ
,

dy

dx
=

1

2s
(1− µ)2

dY

dµ
,

d2y

dx2
=

1

4s2
(1− µ)4

d2Y

dµ2
− 1

2s2
(1− µ)3

dY

dµ
.

Hence, Eqs. (2.2) and (2.3) are converted to the
differential equation with boundary conditions on
interval [−1, 1], i.e.

1

4s2
(1− µ)3

d2

dµ2
Y (µ)− 1

2s2
(1− µ)2

d

dµ
Y (µ) +

(3.7)

(µ+ 1) d
dµY (µ)√

1− αY (µ)
= 0,

Y (−1) = 1, Y (1) = 0.

Now, we apply the pseudo-spectral method for
solving the boundary value problem (3.7). This
method involves using the Chebyshev-Gauss-
Lobatto points

µj = cos

(
πj

N

)
, j = 0, 1, · · · , N.

The unknown function y(µ) in problem (3.7) for
any s > 0, can be approximated by a truncated
series of Chebyshev polynomials,

YN (µ) =

N∑
k=0

ŶkTk(µ), (3.8)

where Tk(µ) are orthogonal Chebyshev polyno-
mials of the first kind,

T0(µ) = 1, T1(µ) = µ,

and in general,

Tk+1(µ) = 2µTk(µ)− Tk−1(µ), k ≥ 1,

and Ŷk are the Chebyshev coefficients which are
determined by

Ŷk =
2

Nĉk

N∑
i=0

1

ĉi
Y (µi) cos

(
πik

N

)
, (3.9)

where ĉ0 = ĉN = 2 and ĉi = 1 for 1 ≤ i ≤ N − 1.
As it is well-known in Chebyshev pseudo-spectral
method, derivatives formulae of the function y(µ)
at the collocation points are presented as

dY

dµ
(µi) =

N∑
j=0

DijY (µj), (3.10)

d2Y

dµ2
(µi) =

N∑
j=0

D2
ijY (µj), (3.11)

where D is the Chebyshev differentiation matrix
andN+1 is the number of collocation nodes. The
entries of the differentiation matrix D are [15]

D00 = −DNN =
2N2 + 1

6
,

Dii = −1

2

µi

1− µ2
i

, i ̸= 0, N, (3.12)

Dij = −1

2

ĉi
ĉj

(−1)i+j

µi − µj
.
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Using [20], when the number of nodes in-
creases, accordingly the condition number
of operational matrix of derivative grows.
But, the governing differential equation in
3.7 is defined on the interval [−1, 1] and
therefore, we do not need to large numbers
of nodal points (Based on spectral accuracy
property) for obtaining an appropriate ap-
proximate solution. By employing derivatives
formulations (3.10) and (3.11), Eq. (3.7) is trans-
formed to the following expressions

1
4s2

(1− µi)
3

 N∑
j=0

D2
ijY (µj)

−

1

2s2
(1− µi)

2

 N∑
j=0

DijY (µj)


+

(µi + 1)
(∑N

j=0DijY (µj)
)

√
1− αY (µi)

= 0, (3.13)

i = 1, 2, · · · , N − 1,

where

Y (µ0) = 0, Y (µN ) = 1.

Eqs. (3.13) are actually a system of nonlinear
equations. The system of nonlinear algebraic
equations, has motivated many theoretical devel-
opments including the fact that solution formu-
las do not in general exist and hence, it must be
solved numerically by iteration methods [21, 22].
As is well-known, a disadvantage of such methods
is that the initial approximation must be chosen
sufficiently close to the exact solution in order to
guarantee their convergence. After solving sys-
tem (3.13), we have Y (µk) yielding the Cheby-
shev coefficients Ŷk by (3.9). Now we denote the
approximate solution of Eq. (2.2) by

yN (x) = YN (µ) =
N∑
k=0

ŶkTk,s (x) , x ∈ [0,+∞),

where Tk,s(x) = Tk

(
x−s
x+s

)
.

4 Comparison study

The system (3.13), can be solved by using New-
ton’s method [21] with initial value Y (0) =

(0, 0, · · · , 0)T and 40 iterations. All the computa-
tions associated with the method have been per-
formed by a personal computer having the Intel
Pentium 4, 2.2 GHz processor and using Maple
13 with 30 digits precision.
We denote the maximum norm of residual error
of approximate solutions yN (x) for Eq. (2.2), in
the following form:

MR = max
x∈[0,+∞)

|A(yN (x))|,

where A(y) = y′′ + 2xy′(1− αy)−
1
2 .

In, Table 1, some values of N and s, the CPU
time and the MR errors are listed. Fig. 1 shows
the absolute values of Chebyshev coefficients as
computed for several s. Fig. 1 and Table 1
show that, s = 4 can be a proper value for
scaling parameter s when 30 ≤ N ≤ 50 but is
smaller for smaller N: note that the curves for
small s are well below those of the diagonal cross
for s = 4. Also, Fig. 1 indicates that the de-
cay rate of the absolute values of Chebyshev co-
efficients is geometric. Fig. 2 shows compari-
son of unsteady gas equation graph obtained by
present method when N = 10 and s = 2, with
perturbation method [16], Adomian decomposi-
tion method [23] and numerical solutions [28].
Fig. 3 shows the values of y(x) obtained by
10th-order approximation of presented method,
for different values of α. See Fig. 4 for resid-
ual error of Eq. (2.5) obtained by presented
method. Table 2 shows the approximations of
y(x) for unsteady gas equation with α = 0.5 ob-
tained by the proposed method for N = 8, 20
when s = 2, the perturbation method(PM) [16],
the Lagrangian interpolation of modified general-
ized Laguerre functions (MGLF) [25], homotopy
perturbation method (HPM) [27] and numerical
solutions (NS). For comparison purposes, Table 3
shows the values of the initial slope y′(0) by using
the padé [2, 2] and padé [3, 3] by Wazwaz [23], by
numerical solutions and by presented method for
some values of α. Table 4 shows the values of the
MR errors by presented method when N = 40
and s = 4, 2-term of perturbation method [16]
for some values of α. It indicates that as pertur-
bation quantity α increases from 0 to 1, the rate
of convergence decreases.
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5 Conclusion

One knows that calculation of the solution of the
unsteady gas through a porous medium is difficult
even by numerical methods. On the other hand,
it is quite valuable in order to its importance in
investigating gas-solid processes. So, finding ac-
curate solution of this equation has become an
important task in physics and engineering. In this
paper we constructed an approximation to the
solution of nonlinear unsteady gas equation by
a Chebyshev pseudo-spectral. With this method
we can approximate the unbounded differential
equations like unsteady gas, Blasius and Falkner-
Skan. The numerical results show the reliability
and efficiency of the presented method compared
with some well-known methods which have ap-
plied.
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