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Abstract

In The current paper presents an idea for solving a class of linear matrix differential equations of
second order. To perform so, the operational matrix of the integration based on the Bernstein multi-
scaling polynomials are used to reduce the main problem to system of matrix equations. Numerical
experiments illustrate the applicably and efficiency of the propounded technique.
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1 Introduction

I
n the presented work, we consider the following
second-order matrix differential problem:{
Y

′′
(x) = A(x)Y

′
(x) +B(x)Y (x) + C(x),

Y (a) = Ya, Y
′
(a) = Y

′
a .

(1.1)
WhereY (x) ∈ Rp×q, is an unknown matrix, the
matrices Ya, Y

′
a ∈ Rp×q A(x), B(x) : [a, b] :→

Rp×p and C(x) : [a, b] :→ Rp×q are given. In
(1.1), we assume A,B,C satisfy in condition of
existence and uniqueness of the solution. A great
variety of phenomena in physics and engineer-
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ing can be modelled in the form of matrix dif-
ferential equations. Models of differential equa-
tions of second-order frequently appear in molec-
ular dynamics, quantum mechanics and for scat-
tering methods, where one solves scalar or vec-
torial problems with boundary value conditions
[1, 2, 3, 4, 7, 14]. There are various ways to
solve these equations. In recent research, the use
of polynomials in solving equations is common
[9, 12, 13]. Here, we use Bernstein multi-scaling
polynomials (BMSPs) to find a solution of these
equations. One of the advantages of this method
is the ability to approximate piecewise continu-
ous functions. At first, all of the functions in
the problem (1.1) approximate in terms of the
BMSPs of degree m with unknown coefficient.
Then, we reach to a system of matrix equations.
So, unknown coefficients will obtained by solv-
ing the matrix equations simply. The outline of
this paper is arranged as follows: in Section 2, we
presents a brief survey on some definitions and
properties of the BMSPs which are needed for
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our researches. In section 3, it exposes that how
the BMSPs can be implemented to change solv-
ing (1.1) into resolving matrix equations. Section
4 is assigned to illustrate some numerical exper-
iments which show the accuracy of the proposed
numerical approach for solving (1.1). Eventually,
the paper is ended with a brief conclusion in Sec-
tion 5.

2 An overview on BMSPs

Bernstein polynomials are one of the oldest and
most famous polynomials. These polynomials
have several properties that can be found in some
of their features in [5, 8].

Definition 2.1 Suppose m is a positive integer
number, BPs of degree m on interval [a, b] are
defined as follows:

Bi,m(x) =

(
m

i

)
(x− a)i(b− x)m−i

(b− a)m
, 0 ≤ i ≤ m.

Also, Bi,m(x) = 0 if i < 0 or i > m . For
convenience we consider [a, b] = [0, 1] , namely
Bi,m(x) =

(
m
i

)
xi(1− x)m−i, 0 ≤ i ≤ m.

We denote Φm , an m-column vector as follows:

Φm(x) = [B0,m(x) B1,m(x) · · · Bm,m(x)]
T

Theorem 2.1 [6] Suppose H = l2([a, b]) is
a Hilbert space with the inner product de-
fined by ⟨f, g⟩ =

∫ b
a f(t)g(t)dt and also, Y =

Span {B0,m(x), B1,m(x), ..., Bm,m(x)} be the span
space by Bernsteins polynomials of degree m . Let
f be an arbitrary element in H .

Since Y is a finite dimensional and closed sub-
space, it is a complete subset of H . So, f has
the unique best approximation out of Y such that
yo

∃y0 ∈ Y ;∀y ∈ Y :∥ f − y0 ∥2⩽∥ f − y ∥2 .

Therefore, there are the unique coefficients
αj , 0 ≤ j ≤ m. such that

f(t) ≈ y0(t) =
m∑
j=0

αjBj,m(t) = αT .Φm

where,α =
[
α0 α1 · · · αm

]T
, can be obtained

by

α =
⟨f(t),Φm(t)⟩
⟨Φm(t),Φm(t)⟩

such that ⟨f,Φm(t)⟩ =
∫ b
a f(t)Φm(t)dt.

we denote Q = ⟨Φm(t),Φm(t)⟩ as dual matrix.
Furthermore, it is easy to see

Qi,j =

(
m
i−1

)(
m
j−1

)
(2m+ 1)

(
2m

i+j−2

) , i, j = 1, ...,m+ 1.

Operational matrix is a matrix that works on ba-
sis like an operator. In [10, 11, 15] two different
computational methods are presented for the op-
erational matrices for the integration and product
as follows:

(i) ∫ x

0
Φm(x)dx =MΦm(x).

(ii)
ΦT
mCΦm = ĈTΦ2m

Definition 2.2 Assume Bi,m(x) be th BPs of
degreem on unit interval, Bernstein Multi-scaling
polynomials on [0, 1) define as follow:

ψi,j(x) =

{
Bi,m(kx− j), j

k ⩽ x < j+1
k ,

0, otherwise.
Where

k ⩾ 1 is the number of partitions on [0, 1] andi =
0, · · · ,m and also, j = 0, · · · , k − 1.
Now every function f ∈ l2([0, 1]) has the unique
best approximation with respect to span space by
BMSPs as follows:

f(x) =

k−1∑
j=0

m∑
i=0

ci,jψi,j = CTΨ,

where

CT =
[
c0,0 · · · cm,0 · · · c0,k−1 · · · cm,k−1

]
and

Ψ =
[
ψ0,0 · · · ψm,0 · · · ψ0,k−1 · · · ψm,k−1

]T
are two k(m+ 1) column vectors.

The operational matrices for the integration P̄ ,
dual Q̄ and product C̄ are respectively given by∫ x

0
Ψ(t)dt = P̄Ψ(x). (2.2)
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Table 1: Results on example 4.1.

x y1(x) Exact solution y2(x) Exact solution y3(x) Exact solution y˙4(x) Exact solution
0.05 1.05172101 1.05127109 0.0 0.0 -0.0012920 -0.0012924 1.05127109 1.05127109
0.15 1.16183424 1.16183424 0.0 0.0 -0.0124408 -0.0124402 1.16183424 1.16183424
0.25 1.284024988 1.28402541 0.0 0.0 -0.036980 0.0369809 1.284024988 1.28402541
0.35 1.419064067 1.41906754 0.0 0.0 -0.0776011 -0.0776060 1.419064067 1.41906754
0.45 1.568315078 1.56831218 0.0 0.0 -0.0137419 -0.0137488 1.568315078 1.56831218
0.55 1.733205328 1.733253018 0.0 0.0 -0.220176 -0.2200361 1.733205328 1.733253018
0.65 1.915535467 1.915540829 0.0 0.0 -0.328976 -0. 3295607 1.915535467 1.915540829
0.75 2.117000134 2.117000017 0.0 0.0 -0.470739 -0.4707499 2.117000134 2.117000017
0.85 2.339698743 2.339646852 0.0 0.0 -0.6490590 -0.6490529 2.339698743 2.339646852
0.95 2.585740962 2.585709659 0.0 0.0 -0.8707165 -0.8707145 2.585740962 2.585709659

Table 2: Results on example 4.1.

x y1(x) Exact solution y2(x) Exact solution y3(x) Exact solution y˙4(x) Exact solution
0.05 1.05172101 1.05127109 -0.0012920 -0.0012924 0.0 0.0 1.05127109 1.05127109
0.15 1.16183424 1.16183424 -0.0124408 -0.0124402 0.0 0.0 1.16183424 1.16183424
0.25 1.284024988 1.28402541 -0.036980 0.0369809 0.0 0.0 1.284024988 1.28402541
0.35 1.419064067 1.41906754 -0.0776011 -0.0776060 0.0 0.0 1.419064067 1.41906754
0.45 1.568315078 1.56831218 -0.0137419 -0.0137488 0.0 0.0 1.568315078 1.56831218
0.55 1.733205328 1.733253018 -0.220176 -0.2200361 0.0 0.0 1.733205328 1.733253018
0.65 1.915535467 1.915540829 -0.328976 -0. 3295607 0.0 0.0 1.915535467 1.915540829
0.75 2.117000134 2.117000017 -0.470739 -0.4707499 0.0 0.0 2.117000134 2.117000017
0.85 2.339698743 2.339646852 -0.6490590 -0.6490529 0.0 0.0 2.339698743 2.339646852
0.95 2.585740962 2.585709659 -0.8707165 -0.8707145 0.0 0.0 2.585740962 2.585709659

∫ x

0
Ψ(t)ΨT (t)dt = Q̄ (2.3)

C̄Ψ̂pΨ̂
T
p = Ψ̂T

p C̃ (2.4)

The details of the obtaining of these matrices are
given in [11].

3 Implementation of the proce-
dure

Let us approximate each of the entries of Y
′′
(x)

in (1.1), on by the BMSPs. That is,

Y
′′
(x) = Ψ̂T

p Ȳ (3.5)

Where Ȳ , is a p(m+ 1)× q unknown matrix and
Ψ̂p = Ψ ⊗ Ip . Also, the the notation ⊗ stands
for the well-known Kronecker product, Ip is the
identity matrix of order p . Also, using Eq. (2.2)
implies:

Y ′(x) = Ψ̂T
p P̂

T
p Ȳ + Ŷ T

p Ȳ
′
0 (3.6)

Y (x) = Ψ̂T
p (P̂

T
p )2Ȳ + Ψ̂T

p P̂
T
p Ȳ0

′ + Ψ̂T
p Ȳ0 (3.7)

Where, Ȳ0
′ and are two known p(m + 1) × q

matrix and P̂p = P̄ ⊗ Ip. In a similar way for
matrix functions A(x), B(x), C(x) we can see:

A(x) = ĀΨ̂p, B(x) = B̄Ψ̂p, C(x) = Ψ̂T
p C̄, (3.8)

WhereĀ , B̄ are two p × p(m + 1) matrices and
C̄ is a p × q(m + 1) matrix. The substitution of
(3.5) to (3.8) in (1.1) concludes:

Ψ̂T
p Ȳ = ĀΨ̂p

(
Ψ̂T

p P̂
T
p Ȳ + Ψ̂T

p Ȳ0
′
)

(3.9)

+ B̄Ψ̂p

(
Ψ̂T

p (P̂
T
p )2Ȳ + Ψ̂T

p P̂
T
p Ȳ0

′
+ Ψ̂T

p Ȳ0

)
+ Ψ̂T

p C̄.

Now (2.4) implies:

ĀΨ̂pΨ̂
T
p = Ψ̂T

p Ã,

B̄Ψ̂pΨ̂
T
p = Ψ̂T

p B̃.

So, (3.9) changes to:

Ψ̂T
p Ȳ = Ψ̂T

p Ã
(
P̂ T
p Ȳ + Ȳ0

′
)

+ Ψ̂T
p B̃

(
(P̂ T

p )2Ȳ + P̂ T
p Ȳ0

′
+ Ȳ0

)
+ Ψ̂T

p C̄.

Consequently, the final system is:

Ȳ = Ã
(
P̂ T
p Ȳ + Ȳ0

′
)

+ B̃
(
(P̂ T

p )2Ȳ + P̂ T
p Ȳ0

′
+ Ȳ0

)
+ C̄.

4 Numerical Examples

In this section, two numerical examples are
examined to illustrate the efficiency of pro-
posed method and the presented theoretical
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results. All of the numerical experiments are
performed using maple 18 and E.E.S. 11. In
the following tables, exact solution denoted by

Y (X) =

[
y1(x) y2(x)
y3(x) y4(x)

]
.

Also, we use absolute error for every entry
of solution matrix. Also, all example computed
with m = 3 and k = 4.

Example 4.1 Consider the following equation
Y ′′(x) +

[
1 −1
0 2

]
Y ′(x) +

[
0 0
0 −1

]
Y (x) = 0

Y (0) =

[
1 0
0 1

]
, Y ′(0) =

[
1 0
0 1

]
.

where Y (x) =

[
ex 0

−1 + ex − xex ex

]
is the exact

solution. Table 1 shows results of example 4.1.

Example 4.2 Consider Eq. (1.1) where:

A =

[
−1 1
0 2

]
, B =

[
0 0
0 1

]
,

C =

[
0 0
0 0

]
, Y (0) = Y ′(0) =

[
1 0
0 1

]
.

The exact solution is :

Y (x) =

[
ex −1 + ex − xex

0 ex

]
.

The results of example 4.2 are presented in table
2.

5 Conclusion

The properties of the BMSPs and their opera-
tional matrix have been utilized to numerically
solve a class of the second order matrix differ-
ential problems. The proposed method converts
the main problem to a linear matrix equations.
Numerical examples have illustrated to demon-
strate the efficiency and applicably of our offered
approach. Finally, we mention that the proposed
technique can be extended for more complicated
types of matrix differential equations.
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