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Abstract

In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpo-
lation and present a new approach based on the two-dimensional fuzzy splines interpolation and
iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equa-
tion (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis for the proposed
numerical algorithm. Finally, by an example, we show the efficiency of the proposed method.

Keywords : Two-dimensional linear fuzzy Fredholm integral equations; Two dimensional fuzzy splines
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1 Introduction

Ecently many authors proposed various nu-
merical methods for solving one dimensional
fuzzy integral equations [2, 3, 4, 5, 6, 13, 14, 16,
17, 18, 21, 22, 24, 25, 28, 39, 40, 42]. Also, two-
dimensional fuzzy integral equations have been
noticed by a lot of researchers because of their
broad applications in engineering science. Some
of the most important papers in this area are:
trapezoidal quadrature rule and iterative method
[7, 41, 42], triangular functions [23], quadrature
iterative [26], Bernstein polynomials [12, 15], col-
location fuzzy wavelet [20], homotopy analysis
method (HAM) [35], open fuzzy cubature rule
[8], kernel iterative method [29], modified homo-
topy pertubation [30], block-pulse functions [31],
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optimal fuzzy quadrature formula [34], hybrid of
Block-Pulse functions and Bernstein polynomials
[41] and finally, iterative method and fuzzy bivari-
ate block-pulse functions [37]. Furthermore, some
researchers have solved one-dimensional fuzzy
Fredholm integral equations by using fuzzy inter-
polation via iterative method such as: iterative
interpolation method [28], Lagrange interpolation
base on the extension principle [18], spline inter-
polation [22]. Also, in 2018, Nouriani and Ezzati
[27] solved two-dimensional linear fuzzy integral
equation by using the fuzzy Lagrange interpola-
tion.

As we know interpolation is one of the most
substantial and the most applicable methods in
numerical analysis. So, in this study, we want
to solve 2DLFFIEs by applying two-dimensional
fuzzy splines interpolation and iterative method.
First of all an approximate solution of integral
by applying splines interpolation and iterative
method is provided. Then, convergence analysis
and numerical stability analysis of the proposed
method in theorems 4.1 and 5.1 is proved.
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The paper is organized as follows: Some nota-
tions and theorems about the structure of fuzzy
sets are reviewed in Section 2. In Section 3, at
first, we review two-dimensional fuzzy splines in-
terpolation. Also, we present two-dimensional
fuzzy splines interpolation and iterative method
for solving 2DLFFIEs. Also, in Section 4, we ver-
ify convergence analysis for proposed method. In
Section 5, we prove numerical stability analysis
for the method. One numerical example is pre-
sented in Section 6.

2 Preliminaries

At first, we review some basic definitions and nec-
essary results about fuzzy set theory.

Definition 2.1 ([1]) A fuzzy number is a func-
tion f: R — [0, 1] with the following properties:

1. Fzp € R such that f(xzo) = 1.

2. f(nz+(1—n)y) > min{f(z), f(y)}, Vz,y€
R,V n € [0,1].

3. Vxog € R andV e > 0, 3 neighborhood U(xy) :
f(x) < fwo) +€ Ve Uwo).

4. InR, the set supp(f) is compact.

The set of all fuzzy numbers is denoted by Rp.

Definition 2.2 ([1]) For f € Rp and 0 < a <
1, define [f]° :={x € R: f(z) > 0} and

[f1*:={z eR: f(z) = a}.

Then it is well known that for each o € [0, 1], [f]¢
s a bounded and closed interval of R. We define
uniquely the sum f ® g and the product p© f for
f,9g€Rp and p € R by

[f ®g]* = [f]" + 9],
[ © f1* = plf]*, Va €0,1],

where [f]*+ [g]* means the usual addition of two
intervals (as subsets of R) and u[f]® means the
usual product between a scalar and a subset of R.
Notice 10 f = f and it holds fdg = gb f, pOf =
fOup. If0 < a; <ap <1 then [f]* C [f]*.
Actually [f]¢ = [f&a), J(ra)}, where fﬁa) < j(La),
f&a), fJ(ra) € R, Va € [0,1]. For p > 0 one has

uff) =(puo f)gg), respectively.
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Definition 2.3 ([1]) Define D : Rp xRp — Ry
by

D(f,9)

= sup max{ ‘fﬁa) - g(_a) ) f_(s_a) - gia)
a€(0,1]

= sup Hausdorff distance ([f]*,[g]%),
a€(0,1]

|

where [g]* = [¢",¢\"]; f. g € Rp. Clearly D
is a metric on Rp. Also (Rp, D) is a complete
metric space, with the following properties [1]:

D(f®h,goh) = D(f.g), Vf,g9,h € Rp,
DKo f,Kog) = |K|D(f9),
Vf,g € Rp, Yk € R,
D(f,h) + D(g;e),
Vf,g,h,e € Rp.

D(f®g.hde) <

Definition 2.4 ([1]) Suppose f,g : R — Rp be
fuzzy number valued functions, then the distance
between f, g is defined by

D*(f,9) := igED(f(fﬂ),g(w))-

Lemma 2.1 ([1])

1. If we denote 0 := X{o}, then Vf € Rp, [ @
0=0®f="f.

2. With respect to 0, none of f € Rp, f # 0
has opposite in Rp.

3. Leta, BeR:a.f>0, and any f € Ry, we
have (a +B)© f =a® f& L6 f. Notice
that for general o, 5 € R, the above property
is false.

4. For any v € R and any f, g € Ry, we have
1O(f@g)=70f870y.

5. For any v, n € R and any f € Rp, we have
TOMmof)=nhonof.

If we denote || f||  := D(f,0), Vf € R, then ||.||
has the properties of a usual norm on Rp, i.e.,

11l = 0iff f =0,
e © fllp = 1l e
If@glle <Iflr+l9le,
1l = llgllz < D(f, 9)-
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Notice that (Rp,®,®) is not a linear space over
R, and consequently (Rp,||.||z) is not a normed
space. Here > * denotes the fuzzy summation.

Definition 2.5 ([1]) A fuzzy valued function f :
[a,b] = Rp is said to be continuous at xo € [a, b],
if for each € > 0 there exists § > 0 such that
D(f(x), f(z0)) < €, whenever z € [a,b] and
|z — xo| < 5. We say that f is fuzzy continuous
on [a,b] if f is continuous at each xy € [a,b], and
denotes the space of all such functions by Crla,b].

Definition 2.6 ([41]) Suppose that f : [a,b] x
lc,d] = Ry is a bounded mapping. The function

Wiapxfed (f>-) : Ry U{0} = Ry defined by

wuwmﬂﬁﬁ)=ﬂm{DU@wmf@¢M

z,5 € [a,b;y,t € [c,d];

¢@—sﬁ+wy—w2s5}

is called modules of oscillation of f on [a, b] X [c, d].
Also, if f S CF([a7 b] X [Ca d])v then Wla,b] x [c,d] (fv 5)
is called uniform modules of continuity of f.

Theorem 2.1 ([41]) The following properties
hold:

1. D(f(z,y), f(s,1))
w[a,b]><[c,d](f7 \/(.Z' —s)?+ (y—1)*),
Vs € [a,b], y,t € [c,d];

IN

2. Wiap|x[e,d)(f:0) s a nondecreasing mapping
mo;

8. Wiapx[e,a(f;0) =0;

4o Wiapxled (f,01 + 02) < Wiapxfe,q(f,01) +
Wia,b)x[ed) (5 02), ¥o1,02 > 0;

5. Wap)x[ed (fs10) < nwiap)x(eq (f;0), V0 >0,
n € N;

6. Wiapxled(fy16) < (1 + Dwiap)x(eq(f9),
Yu,d > 0;

Theorem 2.2 ([41]) If f and g are Henstock
integrable mapping on la,b] X [e,d] and if
D(f(s,t),g(s,t)) is Lebesgue integrable, then

D ((FH) tr F(s,t)dsdt, (FH) ’ bg(s,t)dsdt
(em [ f L)

d b
<@ [ [ D(ss.0). 906 0)dsi.

3 The main result

In this section, we review bicubic fuzzy splines
interpolation. Then, we propose bicubic fuzzy
splines interpolation and iterative method for
solving Eq. (3.12).

In [19], authors presented approximation of
fuzzy functions by fuzzy interpolating bicubic
splines by using following definitions and theo-
rems.

Definition 3.1 ([19]) We denote by < . >, and
< .,. >p, respectively, the Euclidean norm and
inner product in R™. For any real intervals (a,b)
and (c,d), with a < b and ¢ < d, also, we consider
the rectangle R = (a,b) x (c,d) and let H3(R) be
the usual Sobolev space of functions u belonging
to L2(R), together with all their partial deriva-
tives DB (u) with B = (B, Ba), in the distribution
sense, of order |B| = 1+ P2 < 3. This space is
equipped with the norm

Jull = (

the seminorms
3
Z/R(D%(p))zdp> :

’U‘l = (
|Bl=!

0<1<3,

> /R(D5U(p))2dp)%7

181<3

and the corresponding inner semiproducts

(w,v)i =Y | Du(p)D’v(p)dp,
1=t
0<i1<3.
Moreover, for m,n € N* let T,, = {zo, -, 2n},
T = {y0," -+, ym} be some subsets of distinct of

[a,b] and [¢,d], witha =20 <21 <--- <zp =D
and c=yp < y1 < - - < ym = d. We denoted by
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S3(T),) and S3(T,,,) the spaces of cubic splines of
class C? given by

S3(Ty,) = {s € C?[a,b] :

S|[ri_1,xi]€ Pg[l’i,l,ﬂ?i], 1= 17 to 771,},
and

S3(Tyn) = {s € C?[c,d] :
S|[yj—layj]€ P3[yj*17yj]v J=1- 'am}a

where Ps[z;—1,x;](Ps]yj—1,y;]) is the restriction
on [z;—1,%;]([yj—1,y;]) of the linear space of real
polynomials with total degree less than or equal
to 3. It is known that dimSs(T,) = n +
3 (dimS3(T,,) = m+ 3). Let {¢1,- -+, pny3} and
{1, -+, ¥m+3} be bases of functions with local
support of S3(T},) and S3(7),) respectively, and
consider the space S3(7T), x T,,) of bicubic spline
functions of class C? given by

S3(Ty, x Thy) = span{ey, - - -
® Span{¢17 o ﬂ/fm—&—S}-
This space is a Hilbert subspace of H?(R)

equipped with the same norm, semi-norms and
inner semi-products of such space, and verifies

) ¢TL+3}

S3(Ty, x Tp,) € H*(R) N C*(R). (3.1)
Particulary, let
{Bi(@), -, Byya(x)}
(1580, Bt ).
be the (C?-cubic B-splines basis  of

S3(T,)(S3(Ty,)), then
{B?(%)B?(y), 74:07'”7”—’_27 8207"‘7m+2}7

is the C%-bicubic B-splines basis of S3(T}, x T},),
then dimSs(T,, x Tr,) = (n+ 3)(m + 3) and we
can define

By(z,y) = Bi(x)Bi(y), (z,y) € R,

forr=0,---,n+2,s=0,---;m+2 k= (m+
3)r+s+1. Then 1 <k < (n+3)(m+3) and if
we denote M = (n + 3)(m + 3), we have that

B1(az,y),-~,BM($,y),

is the C2-bicubic B-splines basis of S3(T}, x Tj,)-
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Definition 3.2 ([19]) Let AN = {(z;,y;) €
T X Ty i=0,--,n,j=0,---,m}, with N =
(n+1)(m + 1) and suppose that

1
sup min < p—a >o= O(), N — +o0.
peRCLGAN N

(3.2)

From (3.2) we deduce that n — 400 and m —

+00. Let LY be a Lagrangian operator defined
from H3(R) into RY given by

Li'v = (v(a))aeav, (3.3)
and LY : H3(R) — R?"+2m+8 given by
LYv = (L10)i=1, 2n+2m+85 (3.4)
where
2
giyg(l‘l—hc)v
I=1,--- n+1,
2
3712)(1;[—71—27 d)7
l=n+2,---,2n+ 2,
2
58(a, Yi—2n—3),
Liv=<( 1=2n+3,---,2n+m + 3,
2
%(bayl72n7m74)a
[l=2n4+m+3,---,2n+2m + 4,
4
%(xlnvy]m%
1=0,1, 7=0,1,
l=2n+2m+4+2i+7+1.
Let BN = {u;, l=1,---,N} CR.
Theorem 3.1 ([19]) There exists a unique

Sy € S3(T,, x Th,) such that

LY SN = (w)i=1,..N,

Ly Sy =0 € R*F2m 8,

called the interpolating natural C?-bicubic spline
associated with AN and BN .

Thus C2-bicubic spline verifies that

M
Sn(z,y) =D axBi(,y), (v,y) €R, (3.5)
k=1
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where a = (aq, -+, ap)? € RM is the solution of
the linear system

Aa =0, (3.6)
. | A | b
with A = [ Ay } and b= [ by ],Where
A = (LY Bp)k=1..1, (i=1,2) (3.7)
b1 = (u)1=1,-.N, (3.8
by = (0)i=1,... M—N- (3.9)

Theorem 3.2 ([19]) Let f € C*(R) and let Sy
be the interpolating natural C?-bicubic spline as-
sociated with AN and LY f, then there exists a
constant C > 0 such that

|f =Syl <Ch* 1=0,1,2,3, N — 400,

(3.10)
where h = max{b_T“, %} Hence
li — =0. A1
Jim f = Snl =0 (3.11)
Consider 2DLFFIE as follows
G(S, t) - 9(37 t)
d b
S§IX0; (FR)/ (FR)/ K(z,y,s,t)
® G(z,y)dzdy, (3.12)

where p > 0, K(x,y,s,t) is an arbitrary posi-
tive function on [a,b] X [¢,d] X [a,b] X [¢,d] and
g :[a,b] x [c,d] - Rp. We assume that K is con-
tinuous, and therefore it is uniformly continuous
with respect to (s,t). So, there exists M > 0
such that M = } IK(z,y,s,t)]|.

max
s,z€[a,b],t,y€c,d

Therefore, the two-dimensional interpolation in
the spline form is

n n
p(xy) =Y > flsity) ©spy(w,y),  (3.13)
§=0 i=0
where the coefficients f(s;,t;) are the fuzzy num-
bers.
Here, we consider the two-dimensional fuzzy
spline interpolation in the given points a = sg <
s1<-<sp=bandc=tg<t; < - <t,=d
such that

K:<x7y7 S,t) © G(w,y)
DY spig(n,y) © K(si tj,5,1) © G(siy t).

j=0 i=0
(3.14)

Now, we propose a numerical method to solve
(3.12). To do this, we suppose the following it-
erative procedure to approximate the solution of
(3.12) in point (s,t)

DO Y Y CiiK(sity,s,t) © up_1(si, 1),
(3.15)

where

d b
Cij:/ / spij(x,y)drdy.

In Theorem 3.3 of [41], authors proved the exis-
tence and uniqueness solution of Eq. (3.12) by
using the Banach fixed point theorem.

(3.16)

Theorem 3.3 ([41]) Let the function
K(x,y,s,t) be continuous and positive for
x,s € Ja,b], and y,t € [e,d], and let
g : la,b] x [e,d — Rp be continuous on
[a,b] x [e,d]. If B=pM(d—c)(b—a) <1 then

the fuzzy integral equation (3.12) has a unique
solution G* € X where

X ={g:[a,b] X [¢,d] — Rp; g is continous},

be the space of two-dimensional fuzzy continuous
functions with the metric D* and it can be ob-
tained by the following successive approximations
method

(57 t)?
(s,1)

d b
1o (FR) / (FR) / K(z,y, 5,0)
© Gk*l('ra y)d$dy, vk > 1.

GO('S?t)
87

g
Gr(s,t) =g

(3.17)

Moreover, the sequence of successive approxima-
tions, (Gg)r>1 converges to the solution G*. Fur-
thermore, the following error bound holds

k+1

* * <

My, VE>1, (3.18)

where M; = sup  ||G(s,?)||. O

s€la,b],t€lc,d]
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4 Convergence analysis
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:pD<(FR) /Cd(FR) /ablC(:n,y,s,t)

In this section, we obtain an error estimate be-
tween the exact solution and the approximate so-

lution of 2DLFFIE (3.12).

Theorem 4.1 Under the hypotheses of Theorem
3.3 and p > 0, the iterative procedure (3.15) con-

verges to the unique solution of (3.12), G*, and

its error estimate is as follows:

D*(G*,uk)
Bk+1
(1-B)
B
1-B

IN

My

+

2C

where

mg = sup

(s,t)€la,b] x[c,d]

my = max{mo, - - -

and

w(um, v(A)) =

max{w(ug, v(A)),---,

Proof. Clearly, we have

)

w)””>’

(14 =

[ur(s, )]

7mk—1})

W(Uk-, U(A))}

D(G*(s,t), ug(s, t))
< D(G*(s,t), Gi(s,1))
+ D(G(s, 1), ur(s,1)).

From (3.17) and (3.15), we conclude that

D(Gp(s,t), uk(s, t))

:D<g(s,t)@u®(FR) /Cd(FR) /ablC(x,y,s,t)

© Gr—1(z,y)dzdy,
g(s,t)

DpoY Y CiiK(sit),s,t)

j=0 i=0

® uk1<3i,tj)>

(4.19)

© Gr—1(z, y)dzxdy,

n

j=0 i=0

® uk_l(si, tj)>

n n

_MD<Z (FR)
7j=11i=1

© Gk—l (,I, y)dfﬂdy,

En: an Cz]IC(Slat]> S,

§=0 i=0
® uk—1(5i7tj>>
= uD < > Z FR)

j=11=1
© Gi—1(z,y)dzdy,

ZZt —tj-1)

7j=11i=1

Z Zn: Cij/C(Si, tj,s, t)

/ Y (FR) / K(z,y,5,1)

t)

/ Y (FR) / K(z,y,5.1)

—5;1) (6 — t;—1)(5i — Si-1)

K(Sia tja S, t) © uk—l(sia t])

D C()()/C(So,to, S,t)

® Uk—1(507t0)>

<MZZD<FR /t (FR)/sjillC(x,y,s,t)

j=11i1=1
© G-1(z,y)dzdy,

(FR\[?(FRWAiluj

Jj—1

Cij
—tj—1)(si —

Si—1)

K:(SZ‘, tj, S, t) ©) Uk—1 (Si, tj)d:vdy>

©® ,LLD (COOIC(SO, th S, t)

© uk—1(s0, o), 6)

DR

jlzltﬂls

tj
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[D </C(:E, Y,8,t) © Gp_1(z,y),
K(z,y,s,t) © ugp_1(84, tj))

+ D<IC(:r,y7 $,t) © uk-1(si, t5),
Ci;
(tj —tj-1)(s

@ uia(s.0)) | oy

K(si, t;,s,t
i — Si—l) ( ] )
+/~LD <COOIC(807t07S7t)

© ug—1(s0, t0)76>

SEE[ [

]lzltﬂl

(vc:ry,sm

D(Gr-1(w,y), up—1(si,t;5))

+|K([L‘,y, t)‘D(uk 1(51, )76)
Cij
+ K iat‘v ’t
‘ (tj —tj—1)(si — si—1) S )'
D(Uk—l(siatj)>6)>dxdy

+ /LD(C()()’C(S(), t(), S, t)
O) Uk—l(SO, to), 6)

By supposing my = sup [uk(s, )|, we

(s,t)€la,b] x[c,d]
get

D(Gk(s’t)vuk(svt )

n o n t;
<n z//
1 Si—1

7j=11i=1

<|/c<:c,y,s,t>| (D(Gk_1<:c,y>,uk_1<sz-,tj>>

T Huk_msi,tj)r\)
(tj —tj—1)(s
o150 )1] ) docy

+ |uCoo (50, to, 5, )| [|up—1(si, ;)| -

+ K:(Sivtj?svt)

T 51’—1)
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So, we have

D(G(s,t), uk(s, 1))

sy [

]111tJ181

(M <D(Gk—1($> Y), up—1(8:,t5)) + mk—1>
(tj —tj—1)(si — si-1)
dCCdy + p ’COOIC(SCH to, s, t)‘ Mg—1-

+ ‘ ’C(siatjasat)‘mk‘—l)

We know that v(A) =
sup{y/(si — si-1)2 + (t; —t;-1)%},  Vi,j =
1,---,n, so we conclude

D(Gk(s t) uk(s t))

( *(Gr—1,uk-1)
—1

|
(tj — tj—l)(sz' — 8i-1)
dxdy + |Coo/C(So, to, S, t)’ ME_1-

K(Sia tja S, t)‘ mg—1

Therefore,

D(Gk(s,t), (9
< pM(d —c)
+ puM(d —c)
+ puM(d —c)

s,t))
b— a)
b—a)w
b—a)m

(
( (Gr—1,up—1)
( (Uk 1,v(A))
(

C

M - I

)(b— a)my—

+ pMCmy_q

< BD*(Gy—1,up—1)

+ Bw(ug_1,v(A))

+ Bmyp_1 + QBmk,l#
(d—c)(b—a)
= BD*(Gg—1,ug_1)

+ Bw(ug—_1,v(A))

+ Bmy_1 (1 + (d—c2)%—a))7
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where C' = max |C;;|. Hence, we conclude that

D*(Gy—1,ui—1) < BD*(Gp—2,u—2)
+ Bw(ug—2,v(A))

+ Bmy_o <1 T (d—f)fl;—a)>’

D*(Gl, ul) S BD*(G(), 'LLo)
+ Bw(u07 U(A))

# B (14 o).

So,

w(up—i, v(A))B’

M=

D* (G, ug) S

I
—

+<1+(d >ZBmkzz

If m; = max{mg, -+, mg_1} and w(um,v(A)) =
max{w(ug,v(A)), -+, w(ug,v(A))}, then we ob-

/-\QI

tain
D*(Gruk) < 5 (W(UmaU(A))
+ (1 + (d—c2)((jb—a)>ml)’
therefore
D*(G*,u) < BEJF;Ml
] L)
+ (1 amaema)m)

5 Numerical stability analysis

To show the numerical stability analysis of the
proposed method in previous section, we consider
another starting approximation f(s,t) = Yy(s,t)
such that 3 € > 0 for which D(Go(s,t), Yo(s,t)) <
€, Vs, t € [a,b] X [c,d]. The obtained sequence of
successive approximations is

d b
Vilst) = S0 @ pe (FR) [ (PR) [
K(x,y,s,t) © Yi_1(x,y)dzdy,

and using the same iterative method as (3.15),
the terms of produced sequence are

UO(Svt) = Yb(svt)
Uk:(svt) = f(svt)

n n
DuOY Y CiiK(sity,s,t) ©vp_1(si,t;).

§=0 i=0

= f(S,t),

Theorem 5.1 The proposed method (3.15), un-
der the assumptions of Theorem /.1 is numeri-
cally stable with respect to the choice of the first
iteration.

Proof. At first, we obtain

D(ug(s,t),vx(s,t)) < D(up(s,t), Gi(s, 1))
+ D(Gi(s,t), Yi(s, 1))
+ D(Yi(s,t), vg(s, 1))

However,

D(Gils, ), Yis, 1)) = D(g<s,t>

d b
EBM@(FR)/ (FR)/ K(z,y,s,t)

© Gk,’—l(xa y)diﬁdy,
f(s,)

d b
@u@(FR)/ (FR)/ K(x,y,5,1)
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© Y1 (z, y)d:vdy) Therefore,
< Dlg(s. 1) £(5.) D0 < 12 (s ()
d b
cun((n) R [ Koo + w(om, v(A)
¢ ¢ 20
Gr-1(w,y)dzdy, + 2my (1 + (d—c)(b—a)) + 6)-

(FR) /Cd(FR) /ablC(w,y,s,t)Q

6 Numerical examples

In this section, we use the proposed method in
Yk_l(w,y)dxdy> Section 3 for solving a two-dimensional linear
fuzzy Fredholm integral equations for solving ex-
ample. By using the proposed method for n = 3,
kE = 5 and r € {0.00,0.25,0.50,0.75,1.00} in
+M/ / IK(z,y,s,1)] (s,t) = (0.5,0.5), we present the absolute errors

in Table 1.
D(Gi-1(z,y), Yi—1(z,y))dzdy.

Example 6.1 ([23]) Consider the linear inte-
gral equation

We conclude that
G(s,t) = g(s,t)® (6.20)

* € 1 !
D*(Gy, Yy) < (FR)/O (FR)/O K(st,2,y) © G(z,y)dzdy,

d b
_|_'LL/ / MD*(Gy—1, Yi—1)dzdy
=€+ BD*(Gk;—laYk:—l)’

with

g(S,t, T) <5t+ 7(5 +t2 )> )
and thus - 676

D 1
G + g(s,t,r) =(2— P4 — 2 _9
(G, Yy) <€+ BD*(Gp_1,Yy_1) g(s,t,r) =(2~—r) <3 + 676(8 + )) 7

D*(Gr-1,Yi-1) < €+ BD*(Gk—_2, Yi_2)

: : and kernel
D*(G1,Y1) < e+ BD*(Go, Yo). 1
K(s,t,z,y) = —(s° + 1> — 2)(z* + y* — 2),
169
0<s,t,z,y < 1.
So,
The exact solution is
D*(Gy, Ya) s e+ B <€ + BDY (G2, Yk2)> G*(s,t,r) = rst, é*(s, t,r) = (2 —r)st.

< €+ Be + B2 (e + BD*(Gj_3, Yk_3)>
Table 1: The absolute errors on the level sets with
n = 3, k = 5 for Example 6.1 by using the proposed
: method in (s,t) = (0.5,0.5).

< e+ Be+ B% + B3 +--- + B*D*(Go, o)

r — level QT = ‘Q* (S, t, T) - @k(s7 t, T')

<e(1+B+B*+B*+..-+B* 0.00 0.
0.25 2.07813¢ — 5
€ 0.50 2.15625¢ — 5
< 0.75 6.23438¢ — 5

1-B 1.00 8.31251le — 5
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Table 2: The absolute errors on the level sets with
n =3, k = 5 for Example 6.1 by using the proposed
method in (s,t) = (0.5,0.5).

r—level € = Ié*(s,t,r) — (s, t,r)
0.00 1.6625¢ — 4
0.25 1.45469¢ — 4
0.50 1.24688¢ — 4
0.75 1.03906e — 4
1.00 8.31251e — 5

7 Conclusion

The 2DLFFIE is solved by utilizing iterative
method and fuzzy bicubic spline interpolation.
As it was expected the method used to approx-
imate the integral in this equation is a suitable
one since convergence analysis and stability anal-
ysis have been proved and also absolute error in
example is good. As a result, considering the fact
that the proposed method does not lead to solve
fuzzy linear system, it can be utilized as an effi-
cient method to solve this type of equations. As
future researches, we can use finite and divided
differences methods for solving two-dimensional
fuzzy Fredholm integral equations.
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