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Abstract

In this work, we propose a simple method for obtaining the algebraic solution of a complex interval
linear system where coefficient matrix is a complex matrix and the right-hand-side vector is a complex
interval vector. We first use a complex interval version of the Doolittle decomposition method and
then we restrict the Doolittle’s solution, by complex limiting factors, to achieve a complex interval
vector that satisfies the mentioned system.
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1 Introduction

I
n many engineering and scientific problems,
such as engineering analysis or design [8, 13]

and control engineering [4], the linear systems of
equations involving uncertain model parameters
are very important. However, in some practi-
cal problems, for example the electrical circuits
[13, 14], the model parameters are complex vari-
ables. Therefore, in such problems we have a lin-
ear system of equations with uncertain complex
parameters. As we know, this uncertainty can be
represented by various ways. In this paper, we
focus on the use of intervals to represent the un-
certain quantities in a system of complex linear
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equations [11].

Unfortunately, there are no many numerical
procedures and mathematical models for alge-
braic solving an interval complex linear system.
The interval complex linear systems were inves-
tigated in [11, 13, 14]. In 1999 , Rump [18, 19]
implemented the complex interval arithmetic for
Matlab in the package Intlab . In 2006, Djany-
bekov [7] have used interval Householder method
for presenting an outer estimation of solution set
of an interval linear algebraic system with com-
plex interval parameters. In 2010, Hladik [11]
have described the solution set for complex in-
terval systems of equations (rectangular case) by
a system of nonlinear inequalities and also, he
showed how it can be used to obtain a very ac-
curate approximation of the interval hull of the
solution set. In the same year, Popova et al.
[17] have reported on new software for solving
linear systems where the coefficient matrix and
the right-hand-side vector are affine linear func-
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tions of parameters varying within given complex
intervals. Recently, Ghanbari [9] have introduced
an algorithm for presenting an inner estimation
of the solution set of a complex interval linear
system. Also, he showed that under some cer-
tain conditions, the obtained inner estimation is
an algebraic solution.

In this paper, we investigate the complex inter-
val linear systems where the coefficient matrix is
complex crisp-valued and the right-hand-side col-
umn is complex interval-valued. Also, we present
a new approach for obtaining a complex interval
vector, as an “algebraic solution”, such that sat-
isfies the complex interval linear system. To this
end, we first use a complex interval version of the
classic Doolittle decomposition method [6] to ob-
tain a solution set, namely “Doolittle’s solution”.
In the next step, we will limit the Doolittle’s solu-
tion by some parameters, namely “complex lim-
iting factors”. Finally, we show that the obtained
complex interval vector is an algebraic solution,
that means it satisfies the complex interval linear
system.

The outline of the paper is as follows. In Sec-
tion 2 we state some basic definitions and the-
orems about the real and complex intervals. In
Section 3, we present a complex interval version
of the classic Doolittle decomposition method. In
Section 4, we present a new approach for obtain-
ing the algebraic solution of a complex interval
linear system. In Section 5, we use the proposed
method for solving two numerical examples. Con-
clusion is drawn in Section 6.

2 Preliminaries

In this section, we first briefly present the basic
definitions of the real interval theory, which are
used throughout this paper. Full aspects of all
definitions can be found in [2, 3, 15, 11].

Definition 2.1 A real interval [x] is defined as
the set of real numbers such that [x] = [x, x] =
{x′ ∈ R : x ⩽ x′ ⩽ x} where x ⩽ x.

In this paper, the set of all real intervals is de-
noted by IR.

Definition 2.2 We define the midpoint and
width of the real interval [x] = [x, x] respectively

as follows:

[x]c =
x+ x

2
,

[x]∆ = x− x.

Definition 2.3 For the arbitrary real intervals
[x] = [x, x] and [y] = [y, y], we define addition
and multiplication by a scalar λ as

[x] + [y] = [x+ y, y + x],

λ[x] =

{
[λx, λx], if λ ⩾ 0,
[λx, λx], if λ < 0.

Remark 2.1 [10] For the real intervals [x1],
[x2], . . ., [xn] and the real numbers a1, a2, . . .,
an we have(

n∑
i=1

ai [xi]

)c

=
n∑

i=1

ai [xi]
c,

(
n∑

i=1

ai [xi]

)∆

=
n∑

i=1

|ai| [xi]∆.

Definition 2.4 We define the midpoint vector
and the width vector of the real interval vector
[X] = ([x1], [x2], . . . , [xn])

T as follows:

[X]c = ( [x1]
c, [x2]

c, . . . , [xn]
c )T ,

[X]∆ = ( [x1]
∆, [x2]

∆, . . . , [xn]
∆ )T .

Now, we briefly remind some basic concepts of
complex interval theory.

Definition 2.5 [1, 5] A complex interval [z] is
defined as

[z] = [a, a] + i[b, b]

:= {a+ ib ∈ C | a ⩽ a ⩽ a, b ⩽ b ⩽ b},

where [a] = [a, a] and [b] = [b, b] are two arbitrary
real intervals.

The set of all such complex intervals will be de-
noted by IC. Based on Definition 2.5, we can
denote

[z] = [z, z],

where
z = a+ ib, z = a+ ib.

Obviously, we can take IR ⊂ IC, because the
real interval [a] can be regarded as a complex in-
terval [a] = [a] + i[0, 0] ∈ IC.
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Definition 2.6 [1, 5] For two complex intervals
[z1] = [p1] + i[q1] and [z2] = [p2] + i[q2], where
[pj ] = [pj , pj ] and [qj ] = [qj , qj ], j = 1, 2 and the
complex number c = a+ ib, we will have

[z1] + [z2] = ([p1] + [p2]) + i ([q1] + [q2])

= [p1 + p2, p1 + p2]

+ i [q1 + q2, q1 + q2],

and

c · [z1] = (a+ ib) · ([p1] + i [q1])

= (a[p1]− b[q1]) + i (a[q1] + b[p1]) .

Definition 2.7 [11, 12] We define the midpoint
and width of the complex interval [z] = [z, z] re-
spectively as follows:

[z]c =
z + z

2
,

[z]∆ = z − z.

Remark 2.2 Based on Definitions 2.2 and 2.7,
for the complex interval [z] = [p] + i[q], it can be
easily shown that

[z]c = [p]c + i[q]c, [z]∆ = [p]∆ + i[q]∆.

In the following theorem, we obtain the mid-
point and width of a linear combination of the
complex intervals.

Theorem 2.1 [9] For the complex intervals
[zj ] = [pj ] + i[qj ], and the complex numbers cj =
aj + ibj, j = 1, 2, ..., n we have n∑

j=1

cj [zj ]

c

=

n∑
j=1

(aj [pj ]
c − bj [qj ]

c)

+i

 n∑
j=1

(aj [qj ]
c + bj [pj ]

c)

 ,

 n∑
j=1

cj [zj ]

∆

=
n∑

j=1

(
|aj |[pj ]∆ + |bj |[qj ]∆

)

+i

 n∑
j=1

(
|aj |[qj ]∆ + |bj |[pj ]∆

) .

Definition 2.8 A vector [z] =
([z1], [z2], . . . , [zn])

T where [zi], i = 1, 2, . . . , n,
are the complex intervals, is called a complex
interval vector.

Definition 2.9 We define the midpoint vector
and the width vector of the complex interval vector
[z] = ([z1], [z2], . . . , [zn])

T respectively as follows:

[z]c = ([z1]
c, [z2]

c, . . . , [zn]
c)T ,

[z]∆ =
(
[z1]

∆, [z2]
∆, . . . , [zn]

∆
)T

.

In the following, we provide a generalized def-
inition of completely nonsingular matrices. Its
classic definition can be found in [20, 16].

Definition 2.10 Let C = (ckj)n×n be a crisp
complex-valued matrix, i.e. ckj = akj + i bkj and
also A = (akj)n×n and B = (bkj)n×n be the real
and imaginary parts of the matrix C, respectively.
We say that the matrix C is completely nonsin-
gular, if all matrices C, |A|+|B| and |A|−|B|
are nonsingular, where |A|= (|akj |)n×n and |B|=
(|bkj |)n×n are two nonnegative real matrices.

Definition 2.11 The n× n linear system
c11 [z1] + c12 [z2] + · · ·+ c1n [zn] = [w1],
c21 [z1] + c22 [z2] + · · ·+ c2n [zn] = [w2],

...
cn1 [z1] + cn2 [z2] + · · ·+ cnn [zn] = [wn],

(2.1)
where the coefficient matrix C = (ckj)n×n, ckj =
akj+ibkj, is an n×n crisp complex-valued matrix
and [wj ] = [uj ] + i [vj ], 1 ⩽ j ⩽ n are the com-
plex intervals, is called a complex interval linear
system.

We denote the matrix form of Eq. (2.1) as

C[z] = [w],

where
[z] = ([z1], [z2], . . . , [zn])

T ,

and
[w] = ([w1], [w2], . . . , [wn])

T ,

are two complex interval vectors. Also, if we set
[zj ] = [pj ] + i [qj ] and [wj ] = [uj ] + i [vj], 1 ⩽ j ⩽
n, then we can write

C = A+ iB, [z] = [p] + i [q],
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and

[w] = [u] + i [v].

Definition 2.12 [7, 17, 11] The solution set of
the complex interval linear system (2.1) is defined
traditionally as

Σ =
{
z′ ∈ Cn | (∃w′ ∈ [w])(Cz′ = w′)

}
.

Theorem 2.2 [9] Suppose that the coefficient
matrix C is nonsingular, i.e. det(C) ̸= 0 + i0.
then we have

Σ = C−1 [w].

For the complex interval linear system (2.1), in
addition to the solution set, there is another so-
lution namely “algebraic solution”, that is defined
in [9, 21] as follows.

Definition 2.13 A complex interval vector

[z] = ([z1], [z2], . . . , [zn])
T ,

where [zj ] = [zj , zj ], is called an “algebraic solu-

tion” of the complex interval linear system (2.1)
if

n∑
j=1

ckj · [zj , zj ] = [wk, wk], k = 1, 2, . . . , n.

In this paper, the algebraic solution of complex
interval linear system (2.1) is denoted by means
of

[zA] = ([z1A], [z2A], . . . , [znA])
T ,

where [zjA] = [zjA, zjA] is a complex interval for
j = 1, 2, . . . , n.

Remark 2.3 From Definition 2.13, it is clear
that C [zA] = [w] and consequently C [zA]

c =
[w]c. Therefore, by supposing that the matrix C
be nonsingular, we have [zA]

c = C−1 [w]c.

Theorem 2.3 [9] Suppose that [zA] =
([z1A], [z2A], . . . , [znA])

T , be an algebraic so-
lution for the complex interval linear system
(2.1). Then we have

[zA] ⊆ Σ.

3 Complex interval Doolittle
decomposition

In this section, we first present a complex inter-
val version of Doolittle decomposition for solving
the complex interval linear system (2.1). This
method is obtained from its real version (see [6]),
replacing the real numbers by the complex inter-
vals and the real classic operations by the corre-
sponding complex interval operations. Also, we
will investigate the relation between the algebraic
solution, the solution set and the obtained solu-
tion by complex interval Doolittle decomposition
method.

Consider again the complex interval linear sys-
tem

C[z] = [w]. (3.2)

Similar to the classic Doolittle method, we de-
compose the complex matrix C = (ckj)n×n into
the product of the lower-triangular complex ma-
trix L = (lkj)n×n and the upper-triangular com-
plex matrix U = (ukj)n×n, where the main diag-
onal of L consists of all 1 + 0is. In other words

C = LU, (3.3)

where

L =


1 0 · · · 0

l′21 + il′′21 1 · · · 0
...

...
. . .

...
l′n1 + il′′n1 l′n2 + il′′n2 · · · 1

 ,

and

U =


u′11 + iu′′11 · · · u′1n + iu′′1n

0 · · · u′2n + iu′′2n
...

. . .
...

0 · · · u′nn + iu′′nn

 .

Remark 3.1 [6] In the above decomposition, if
all ones be on the main diagonal of U, then
the corresponding decomposition is called “Crout
method”.

From Eqs. (3.2) and (3.3), we have

LU[z] = [w], (3.4)

if we set [y] = U[z], we have L[y] = [w]. But [w]
is given data, and L is a lower triangular matrix;
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hence, we can directly solve for [y] by forward
substitution, starting with the first component of
[y], as follows

[y1] = [w1], (3.5)

[yk] = [wk]−
k−1∑
j=1

lkj [yj ], k = 2, 3, . . . , n.

(3.6)
In the next step, we can find the desired solution,
[z], from U[z] = [y] via backward substitution,
since U is upper triangular, as follows

[zn] =
1

unn
[yn], (3.7)

[zk] =
1

ukk

[yk]−
n∑

j=k+1

ukj [zj ]

 , (3.8)

where k = n− 1, n− 2, . . . , 1. It should be noted
that the complex interval arithmetic rules, de-
fined in Definition 2.6, have been used in the Eqs.
(3.5)-(3.8).

In this paper, we denote the obtained solution
via the complex interval Doolittle method by

[zD] = ([z1D], [z2D], . . . , [znD])
T ,

where [zjD] = [pj ] + i[qj ], j = 1, 2, . . . , n.
In the following theorem, we investigate the re-

lation between the complex interval vector [zD]
and the solution set Σ for the complex interval
linear system (2.1).

Theorem 3.1 Suppose that the coefficient ma-
trix C of the system (2.1) be nonsingular, then
we have

Σ ⊆ [zD].

Proof. At first, based on Theorem 2.2, the solu-
tion set Σ is obtained as Σ = C−1[w]. Also, let
us consider z′ ∈ Σ. Then

∃w′ ∈ [w]; Cz′ = w′.

We know that C = LU (Doolittle decomposi-
tion), then LUz′ = w′. If we set y′ = Uz′, then
we have Ly′ = w′. From the other point of view,
since L is a lower triangular matrix, by forward
substitution we conclude

y′1 = w′
1,

y′k = w′
k −

k−1∑
j=1

lkjy
′
j , k = 2, 3, . . . , n.

Now, since w′ = (w′
1, w

′
2, . . . , w

′
n)

T ∈ [w], then
y′ = (y′1, y

′
2, . . . , y

′
n)

T ∈ [y], where [y] is defined
in the Eqs. (3.4)-(3.6).

On the other hand, since U is a upper triangu-
lar matrix, for the system y′ = Uz′, by backward
substitution we have

z′n =
1

unn
y′n,

z′k =
1

ukk

y′k −
n∑

j=k+1

ukjz
′
j

 ,

where k = n − 1, n − 2, . . . , 1. Now, since
y′ = (y′1, y

′
2, . . . , y

′
n)

T ∈ [y], then z′ =
(z′1, z

′
2, . . . , z

′
n)

T ∈ [zD], where [zD] is obtained
by the Eqs. (3.7) and (3.8). Consequently Σ ⊆
[zD].

Remark 3.2 From Theorems 3.1 and 2.3, we
conclude that if the system (2.1) have the alge-
braic solution [zA] and also the coefficient matrix
C be nonsingular, then

[zA] ⊆ Σ ⊆ [zD].

In the following theorem, we prove that the
complex interval vector [zD] satisfies the mid-
point system of Eq. (2.1).

Theorem 3.2 Let the coefficient matrix C be
nonsingular. Then, we have

C [zD]
c = [w]c,

and consequently

n∑
j=1

ckj

(
zjD + zjD

)
=
(
wk + wk

)
,

where 1 ≤ k ≤ n.

Proof. From Remark 2.1 and Eqs. (3.5) and
(3.6), we have

[y1]
c = [w1]

c,

[yk]
c = [wk]

c −
k−1∑
j=1

lkj [yj ]
c, k = 2, 3, . . . , n.
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Since the midpoint of a complex interval num-
ber is a complex crisp number, therefore we can
rewrite the above equations as follows

[y]c = L−1 [w]c. (3.9)

On the other hand, from Remark 2.1 and Eqs.
(3.7) and (3.8), we have

[zn]
c =

1

unn
[yn]

c,

[zk]
c =

1

ukk

[yk]
c −

n∑
j=k+1

ukj [zj ]
c

 ,

where k = n − 1, n − 2, . . . , 1. As before, we can
rewrite the above equations as follows

[zD]
c = U−1 [y]c. (3.10)

From Eqs. (3.9) and (3.10) we conclude

[zD]
c = U−1 L−1 [w]c = C−1[w]c,

and therefore
C[zD]

c = [w]c.

Remark 3.3 Assuming that [wk] = [uk, uk] +
i [vk, vk], and [zkD] = [pk, pk] + i [qk, qk], for k =
1, 2, . . . , n, by virtue of Theorem 3.2 and the com-
plex interval arithmetic, we conclude

n∑
j=1

akj

(
pj + pj

)
−

n∑
j=1

bkj

(
qj + qj

)
= uk + uk,

n∑
j=1

akj

(
qj + qj

)
+

n∑
j=1

bkj

(
pj + pj

)
= vk + vk,

for k = 1, 2, . . . , n.

By Theorem 3.2, we can show a new relation be-
tween the Doolittle’s solution [zD], the algebraic
solution [zA] and the solution set Σ for the com-
plex interval linear system (2.1) as follows.

Theorem 3.3 Suppose that the complex inter-
val linear system (2.1) has an algebraic solution
and also the complex coefficient matrix C be non-
singular. Then, we have

[zD]
c = [zA]

c = Σc.

Proof. By Remark 2.3 and Theorems 2.2 and
3.2, it is concluded that [zD]

c = [zA]
c = Σc =

C−1 [w]c.
For a numerical illustration of the above discus-
sion, we present the following example. All final
results are obtained by MATLAB software.

Example 3.1 Consider the following 4×4 com-
plex interval linear system

(2− i)[z1] + (1− i)[z2] + (−1 + i)[z3] + (i)[z4]
= [−4, 6] + i [−6, 5],

(1− 3i)[z1] + (i)[z2] + (2− 2i)[z3] + (1 + i)[z4]
= [−3, 11] + i [−4, 11],

(−1− i)[z1] + (2− i)[z2] + (i)[z3] + (3− i)[z4]
= [−9, 10] + i [−9, 7],

(i)[z1] + (2− 2i)[z2] + (1 + i)[z3] + (1 + 2i)[z4]
= [−9, 7] + i [−5, 12],

with the unique algebraic solution

[zA] =


[0, 1] + i [0, 1]

[−1, 1] + i [0, 1]
[−1, 0] + i [1, 2]
[−1, 2] + i [−1, 1]

 .

For the above system, by Theorem 2.2, the solu-
tion set Σ can be obtained as follows

Σ = C−1 [w]

=


[−4.950, 5.950] + i [−4.840, 5.840]
[−7.297, 7.297] + i [−6.728, 7.728]
[−6.807, 5.807] + i [−5.043, 8.043]
[−6.402, 7.402] + i [−6.910, 6.910]

 .

Also, by using the complex interval Doolittle de-
composition method , we obtain

[zD] =


[z1D]
[z2D]
[z3D]
[z4D]



=


[−162.344, 163.34] + i [−162.43, 163.43]

[−83.17, 83.17] + i [−82.34, 83.34]
[−39.16, 38.16] + i [−36.93, 39.93]
[−22.60, 23.60] + i [−23.15, 23.15]

 .

From the above solutions, it is clear that

[zA] ⊆ Σ ⊆ [zD],
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[zA]
c = Σc = [zD]

c =


0.5 + 0.5i
0 + 0.5i

−0.5 + 1.5i
0.5 + 0i

 ,

and

C [zD]
c = C [zA]

c = CΣc = [w]c

=


1− 0.5i
4 + 3.5i

0.5− i
−1 + 3.5i

 .

In the next section, we present a new way for
obtaining the algebraic solution of a complex in-
terval linear system.

4 The proposed method

In this section, we introduce a simple method
for obtaining the algebraic solution of the com-
plex interval linear system (2.1). In the pro-
posed method, we first apply the complex interval
Doolittle decomposition method and then restrict
the obtained solution by using of some parame-
ters, such that the final solution be a complex in-
terval vector and also satisfies the complex inter-
val linear system (2.1) . We propose our method
as follows.

Let [zD] = ([z1D], [z2D], . . . , [znD])
T be the ob-

tained solution by the complex interval Doolittle
decomposition method. Obviously, [zD] is a com-
plex interval vector. We define

[zA] =


[z1A]
[z2A]

...
[znA]

 =


[z1D + θ1, z1D − θ1]
[z2D + θ2, z2D − θ2]

...
[z2D + θn, z2D − θn]

 ,

(4.11)
where θj , j = 1, 2, . . . , n are called “complex lim-
iting factors” and

0 ⩽ θj ⩽
zjD − zjD

2
, j = 1, 2, . . . , n, (4.12)

this means that

0 ⩽ Real(θj) ⩽
1

2
Real

(
[zjD]

∆
)
, (4.13)

0 ⩽ Imag(θj) ⩽
1

2
Imag

(
[zjD]

∆
)
, (4.14)

where j = 1, 2, . . . , n. If we set θj = αj + iβj
and [zjD] = [pj ] + i[qj ] for j = 1, 2, . . . , n, then
obviously zjD = pj+ iqj and zjD = pj+ iqj . Also,

we can rewrite the Eqs. (4.11)-(4.14) as follows:

[zA] =


[p1 + α1, p1 − α1] + i [q1 + β1, q1 − β1]

[p2 + α2, p2 − α2] + i [q2 + β2, q2 − β2]
...

[pn + αn, pn − αn] + i [qn + βn, qn − βn]

 ,

(4.15)
where the parameters αj and βj satisfy the fol-
lowing conditions

0 ⩽ αj ⩽
1

2
[pj ]

∆, j = 1, 2, . . . , n, (4.16)

0 ⩽ βj ⩽
1

2
[qj ]

∆, j = 1, 2, . . . , n. (4.17)

It should be noted that the conditions (4.16) and
(4.17) on αj and βj imply [zD] be a complex in-
terval vector.

Now, we are going to obtain the value of pa-
rameters αj and βj such that the obtained solu-
tion via Eq. (4.15) be an algebraic solution for
the complex interval linear system (2.1). To this
end, we must have

n∑
j=1

ckj [zjA] = [wk], k = 1, 2, . . . , n,

or

n∑
j=1

ckj

(
[pj + αj , pj − αj ] + i [qj + β1, qj − βj ]

)
= [wk],

for k = 1, 2, . . . , n. Due to [wk] = [uk, uk] +
i [vk, vk] and ckj = akj + i bkj , by using of the
complex interval arithmetic, we conclude

uk =
∑
akj⩾0

akj

(
pj + αj

)
+

∑
akj<0

akj (pj − αj)

−
∑
bkj<0

bkj

(
qj + βj

)
−

∑
bkj⩾0

bkj (qj − βj) ,
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uk =
∑
akj⩾0

akj (pj − αj)

+
∑
akj<0

akj

(
pj + αj

)
−

∑
bkj<0

bkj (qj − βj)

−
∑
bkj⩾0

bkj

(
qj + βj

)
,

vk =
∑
akj⩾0

akj

(
qj + βj

)
+

∑
akj<0

akj (qj − βj)

+
∑
bkj⩾0

bkj

(
pj + αj

)
+

∑
bkj<0

bkj (pj − αj) ,

vk =
∑
akj⩾0

akj (qj − βj)

+
∑
akj<0

akj

(
qj + βj

)
+

∑
bkj⩾0

bkj (pj − αj)

+
∑
bkj<0

bkj

(
pj + αj

)
.

From the above equations, we have

uk − uk =

n∑
j=1

|akj |(pj − αj)−
n∑

j=1

|akj |
(
pj + αj

)
+

n∑
j=1

|bkj |(qj − βj)−
n∑

j=1

|bkj |
(
qj + βj

)
,

vk − vk =
n∑

j=1

|akj |(qj − βj)−
n∑

j=1

|akj |
(
qj + βj

)
+

n∑
j=1

|bkj |(pj − αj)−
n∑

j=1

|bkj |
(
pj + αj

)
.

In other words

[uk]
∆ =

n∑
j=1

|akj |
(
pj − pj

)
− 2

n∑
j=1

|akj |αj

+

n∑
j=1

|bkj |
(
qj − qj

)
− 2

n∑
j=1

|bkj |βj ,

[vk]
∆ =

n∑
j=1

|akj |
(
qj − qj

)
− 2

n∑
j=1

|akj |βj

+

n∑
j=1

|bkj |
(
pj − pj

)
− 2

n∑
j=1

|bkj |αj ,

for k = 1, 2, . . . , n. Therefore, in the matrix form,
we have

[u]∆ = |A|·[p]∆ − 2|A|·ff
+ |B|·[q]∆ − 2|B|·fi,

[v]∆ = |A|·[q]∆ − 2|A|·fi
+ |B|·[p]∆ − 2|B|·ff ,

(4.18)

where

|A|= (|akj |)n×n, |B|= (|bkj |)n×n,

α = (α1, α2, . . . , αn)
T ,

and

β = (β1, β2, . . . , βn)
T .

From Eq. (4.18) we conclude
|A|ff + |B|fi

= 1
2

(
|A| [p]∆ + |B| [q]∆ − [u]∆

)
,

|B|ff + |A|fi
= 1

2

(
|A| [q]∆ + |B| [p]∆ − [v]∆

)
.
(4.19)

Obviously, the above equation (4.19) is a 2n× 2n
real linear system and also its right hand side
vector can be easily computed, because all pa-
rameters of right hand side are known. Finally,
The real linear system (4.19) can be now uniquely
solved for α and β, if and only if its coefficient
matrix is nonsingular.

Theorem 4.1 [9] The coefficient matrix of the
real linear system (4.19) is nonsingular if and
only if the matrices |A|+|B| and |A|−|B| are both
nonsingular.
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Remark 4.1 [9] Supposing that

S =

(
|A| |B|
|B| |A|

)
,

we conclude that if S−1 exists it must have the
same structure as S, i.e.

S−1 =

(
D E
E D

)
,

where

D =
1

2

[
(|A|+|B|)−1 + (|A|−|B|)−1

]
,

E =
1

2

[
(|A|+|B|)−1 − (|A|−|B|)−1

]
.

Theorem 4.2 [9] Suppose that in the real lin-
ear system (4.19) the matrices |A| and H =
|A|−|B|·|A|−1·|B| are both nonsingular. Then
the system (4.19) has a unique solution as fol-
lows

β = H−1 ·
(
G− |B|·|A|−1·F

)
,

α = |A|−1· (F− |B|·β) ,

where

F =
1

2

(
|A|·[p]∆ + |B|·[q]∆ − [u]∆

)
,

and

G =
1

2

(
|A|·[q]∆ + |B|·[p]∆ − [v]∆

)
.

In general, according to the defined notations
in Remark 4.1 and Theorem 4.2 and also assum-
ing that the coefficient matrix of real linear sys-
tem (4.19) is nonsingular, we achieve(

α
β

)
= S−1

(
F
G

)
,

and consequently

α = D · F+E ·G,

β = E · F+D ·G.

Finally, we obtain

[zA] = [p+ α,p− α] + i[q+ β,q− β],

where

[p,p] = Real([zD]), [q,q] = Imag([zD]).

The above solution vector is thus unique but may
still not be a complex interval vector, because it
is possible that either Real([zA]) > Real([zA]) or

Imag([zA]) > Imag([zA]). A necessary condition
for the unique solution vector to be a complex
interval vector is that the vectors α and β satisfy
the conditions (4.16) and (4.17), respectively.

In the following theorem, we prove that the ob-
tained solution via the above method is an “al-
gebraic solution” for the complex interval linear
system (2.1).

Theorem 4.3 Let the coefficient matrix C of
the complex interval linear system (2.1) be com-
pletely nonsingular (see Definition 2.10) and the
solution of system (4.19) satisfies the conditions
(4.16) and (4.17). Then the complex interval vec-
tor [zA] obtained via Eq. (4.15) is a unique alge-
braic solution of the complex interval linear sys-
tem (2.1).

Since the coefficient matrix C is completely non-
singular, then according to Theorem 4.1, the sys-
tem (4.19) has a unique solution. Also the con-
ditions (4.16) and (4.17) guarantees that this
unique solution is a complex interval vector.
Now, to prove the theorem, we must show

n∑
j=1

ckj [zjA] = [wk], k = 1, 2, . . . , n,

or

n∑
j=1

ckj

(
[pj + αj , pj − αj ] + i [qj + β1, qj − βj ]

)
= [wk],

for k = 1, 2, . . . , n. Since [wk] = [uk, uk]+ i [vk, vk]
and ckj = akj + i bkj , by using the complex inter-
val arithmetic, it is sufficient to prove that

uk =
∑
akj⩾0

akj

(
pj + αj

)
+
∑
akj<0

akj (pj − αj)

−
∑
bkj<0

bkj

(
qj + βj

)
−
∑
bkj⩾0

bkj (qj − βj) , (4.20)

uk =
∑
akj⩾0

akj (pj − αj)+
∑
akj<0

akj

(
pj + αj

)
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−
∑
bkj<0

bkj (qj − βj)−
∑
bkj⩾0

bkj

(
qj + βj

)
, (4.21)

vk =
∑
akj⩾0

akj

(
qj + βj

)
+
∑
akj<0

akj (qj − βj)

+
∑
bkj⩾0

bkj

(
pj + αj

)
+
∑
bkj<0

bkj (pj − αj) , (4.22)

vk =
∑
akj⩾0

akj (qj − βj)+
∑
akj<0

akj

(
qj + βj

)
+
∑
bkj⩾0

bkj (pj − αj)+
∑
bkj<0

bkj

(
pj + αj

)
. (4.23)

Here, we prove only the Eq. (4.20). The Eqs.
(4.21)-(4.23) can be proven similarly. For this
end, from Eq. (4.19) and Remark 3.3, we have∑

akj⩾0

akj

(
pj + αj

)
+
∑
akj<0

akj (pj − αj)

−
∑
bkj<0

bkj

(
qj + βj

)
−
∑
bkj⩾0

bkj (qj − βj)

=
∑
akj⩾0

akjpj +
∑
akj⩾0

akjαj

+
∑
akj<0

akjpj −
∑
akj<0

akjαj

−
∑
bkj<0

bkjqj −
∑
bkj<0

bkjβj

−
∑
bkj⩾0

bkjqj +
∑
bkj⩾0

bkjβj

=
∑
akj⩾0

akjpj +
∑
akj<0

akjpj

−
∑
bkj<0

bkjqj −
∑
bkj⩾0

bkjqj

+

n∑
j=1

|akj |αj +

n∑
j=1

|bkj |βj

=
∑
akj⩾0

akjpj +
∑
akj<0

akjpj

−
∑
bkj<0

bkjqj −
∑
bkj⩾0

bkjqj

+
1

2

n∑
j=1

|akj |
(
pj − pj

)
+

1

2

n∑
j=1

|bkj |
(
qj − qj

)
− 1

2

(
uk − uk

)

=
∑
akj⩾0

akjpj +
∑
akj<0

akjpj

−
∑
bkj<0

bkjqj −
∑
bkj⩾0

bkjqj

+
1

2

∑
akj⩾0

akj

(
pj − pj

)
−

∑
akj<0

akj

(
pj − pj

)
+

1

2

∑
bkj⩾0

bkj

(
qj − qj

)
−

∑
bkj<0

bkj

(
qj − qj

)− 1

2

(
uk − uk

)

=
1

2

∑
akj⩾0

akj

(
pj + pj

)
+

∑
akj<0

akj

(
pj + pj

)
− 1

2

∑
bkj⩾0

bkj

(
qj + qj

)
+

∑
bkj<0

bkj

(
qj + qj

)− 1

2

(
uk − uk

)

=
1

2

 n∑
j=1

akj

(
pj + pj

)
−

 n∑
j=1

bkj

(
qj + qj

)− 1

2

(
uk − uk

)
=

1

2

(
uk + uk − uk + uk

)
= uk.

Therefore, the proof of the theorem is completed.
Based on the above mentioned discussion, we

can propose an algorithm with three steps for
obtaining the algebraic solution of the complex
interval linear system (2.1) as follows. In this
algorithm we suppose that the coefficient matrix
C is completely nonsingular.

Algorithm model:
Step 1 : Solve the complex interval linear sys-
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tem (2.1) by the complex interval Doolittle de-
composition method and obtain the solution [zD].

Step 2 : Solve the real linear system (4.19) and
obtain the real and imaginary parts (αj and βj)
of the complex limiting factors θj , j = 1, 2, . . . , n.

Step 3 : If αj and βj satisfy the conditions
(4.13) and (4.14) for all j = 1, 2, . . . , n, respec-
tively, then the presented [zA] by Eq. (4.15) is an
unique algebraic solution for the complex interval
linear system (2.1). Otherwise the system (2.1)
does not have any algebraic solution.

5 Numerical examples

In this section, we present two numerical exam-
ples to show ability and efficiency of our Algo-
rithm. It should be noted that all numerical re-
sults are obtained by MATLAB software.

Example 5.1 Consider the 3×3 complex inter-
val linear system

(1 + i)[z1] + (2− 3i)[z2] + (−1− i)[z3]
= [−8, 7] + i[−8, 8],

(1 + 2i)[z1] + (−1− i)[z2] + (2 + i)[z3]
= [−4, 12] + i[−4, 10],

(2− 3i)[z1] + (1− 2i)[z2] + (1 + 2i)[z3]
= [−5, 16] + i[−6, 14],

(5.24)
It can be easily verified that det(C) = −18−58 i,
det(|A|+|B|) = 22 and det(|A|−|B|) = 2, where
C is the complex coefficient matrix of system
(5.24) and A and B are the real and imaginary
parts of the matrix C, respectively. Therefore,
according to Definition 2.10, we conclude that
the the matrixC is completely nonsingular. Now,
based on our algorithm, we first solve the complex
interval linear system (5.24) by the complex inter-
val Doolittle method. For this, we decompose the
matrix C into the product of the lower-triangular
complex matrix L and the upper-triangular com-
plex matrix U, where the main diagonal of L con-
sists of all 1 + 0is, as follows

C = LU,

where

L =

 1 0 0
1.5 + 0.5i 1 0

−0.5− 2.5i −1.33− 0.88i 1

 ,

and

U =

 1 + i 2− 3i −1− i
0 −5.5 + 2.5i 3 + 3i
0 0 4.36 + 5.62i

 .

Since L is a lower-triangular matrix , we can eas-
ily solve the system L [y] = [w] by forward sub-
stitution. Therefore, from Eqs. (3.5) and (3.6)
we obtain

[y] =

 [y1]
[y2]
[y3]


=

 [−8, 7] + i [−8, 8]
[−18.5, 28] + i [−19.5, 26]

[−76.38, 93.80] + i [−72.13, 94.60]

 .

Now, by solving L [z] = [y] via backward substi-
tution, we can find the Doolittle’s solution [zD].
Therefore, from Eqs. (3.6) and (3.7) we obtain

[zD] =

 [z1D]
[z2D]
[z3D]



=

 [−175.03, 176.03] + i [−175.03, 176.03]
[−26.93, 26.93] + i [−26.39, 27.39]
[−14.60, 18.60] + i [−16.65, 16.65]

 .

In the next step, by solving the real linear
system (4.19), we obtain the real and imagi-
nary parts of the complex limiting factors θj =
αj + i βj , j = 1, 2, . . . , n, respectively as follows

α =

 α1

α2

α3

 =

 175.03
25.93
15.60

 ,

and

β =

 β1
β2
β3

 =

 174.03
26.39
15.65

 .

It can be easily investigated that the above ob-
tained vectors α and β satisfy the conditions
(4.13) and (4.14), respectively. Consequently,
based on the proposed algorithm, by using the
Eqs. (4.11) or (4.15) we obtain the unique alge-
braic solution of the complex interval linear sys-
tem (5.24) as follows

[zA] =

 [z1A]
[z2A]
[z3A]

 =

 [0, 1] + i [−1, 2]
[−1, 1] + i [0, 1]
[1, 3] + i [−1, 1]

 .
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Example 5.2 Consider the 5×5 complex inter-
val linear system



(1 + 2i)[z1] + (−1− i)[z2] + (1 + 3i)[z3]
+(−1 + i)[z4] + (−2 + i)[z5]
= [−7, 6] + i[9, 20],

(3− 2i)[z1] + (−2 + i)[z2] + (−3− i)[z3]
+(−2− 2i)[z4] + (2 + 2i)[z5]
= [3, 21] + i[−21,−3],

(−1− i)[z1] + (2− i)[z2] + (3 + i)[z3]
+(4− 3i)[z4] + (5− i)[z5]
= [1, 24] + i[−24,−8],

(−1− 5i)[z1] + (1− 2i)[z2]
+(1 + 3i)[z3]
+(2− 4i)[z4] + (3− 2i)[z5]
= [−12, 12] + i[−30,−10],

(2 + i)[z1] + (−1 + i)[z2] + (1 + i)[z3]
+(2− 3i)[z4] + (4− 5i)[z5]
= [−2, 12] + i[−35,−20],

(5.25)

It can be easily verified that det(C) = 2511 −
2247 i, det(|A|+|B|) = 192 and det(|A|−|B|) =
30. Therefore, we conclude that the matrix C is
completely nonsingular. Now, based on our algo-
rithm, we first solve the complex interval linear
system (5.25) by the complex interval Doolittle
method. For this, we decompose the matrix C
into

C = LU,

where

L =


1 0

−0.2− 1.6i 1
−0.6 + 0.2i 0.4 + 1.8i
−2.2− 0.6i 4.2 + 2.4i
0.8− 0.6i −1.2− 0.4i

0 0 0
0 0 0
1 0 0

2.10− 1.04i 1 0
−0.42 + 0.46i −0.77− 0.48i 1

 ,

and

U =


1 + 2i −1− i 1 + 3i
0 −0.6− 0.8i −7.6 + 1.2i
0 0 9.4 + 15.8i
0 0 0
0 0 0

−1 + i −2 + i
−3.8− 3.4i −i
−1 + 6i 2.2 + 0.4i

2.85 + 7.36i −9.44 + 4.65i
0 −2.94− 9.97i

 .

By solving the system L [y] = [w] by forward
substitution and also Eqs. (3.5) and (3.6), we
obtain

[y] =


[y1]
[y2]
[y3]
[y4]
[y5]



=


[−7, 6] + i[9, 20]

[−30.4, 7.8] + i[−30.4, 10.6]
[−59.24, 62.84] + i[−38.08, 72.28]

[−352.40, 337.02] + i[−291.16, 383.67]
[−555.17, 490.64] + i[−539.96, 504.84]

 .

Now, by solving L [z] = [y] via backward substi-
tution and Eqs. (3.6) and (3.7), we can find the
Doolittle’s solution [zD] as follows

[zD] =


[z1D]
[z2D]
[z3D]
[z4D]
[z5D]



=


[−4995.49, 4998.49] + i[−4997.74, 4996.74]
[−3626.97, 3623.97] + i[−3624.45, 3625.45]
[−120.42, 121.42] + i[−120.58, 121.58]
[−198.57, 201.57] + i[−200.59, 200.59]

[−59.97, 64.97] + i[−65.00, 60.00]

 .

In the next step, by solving the real linear sys-
tem (4.19), we obtain the real parts αj and the
imaginary parts βj of the complex limiting factors
θj = αj + i βj , j = 1, 2, . . . , n, as follows

α =


α1

α2

α3

α4

α5

 =


4996.49
3624.97
120.42
199.57
61.97

 ,



R. Nuraei et al., /IJIM Vol. 11, No. 1 (2019) 11-24 23

and

β =


β1
β2
β3
β4
β5

 =


4996.74
3624.45
120.58
199.59
63.00

 .

It can be easily investigated that the above ob-
tained vectors α and β satisfy the conditions
(4.13) and (4.14), respectively. Consequently,
based on the proposed algorithm, by using the
Eqs. (4.11) or (4.15), we obtain the unique alge-
braic solution of the complex interval linear sys-
tem (5.25) as follows

[zA] =


[z1A]
[z2A]
[z3A]
[z4A]
[z5A]

 =


[1, 2] + i [−10]

[−2,−1] + i [0, 1]
[0, 1] + i [0, 1]
[1, 2] + i [−1, 1]
[2, 3] + i [−2,−3]

 .

6 Conclusion

In this paper, we have presented a simple method
for solving the complex interval linear system
C[z] = [w], where C is a complex n × n ma-
trix, the unknown vector [z] and the right-hand
side vector [w] are all vectors consisting of n com-
plex interval numbers. In the proposed method,
by restricting the solutions of complex interval
Doolittle method, we achieved a complex interval
vector such that satisfies the system C[z] = [w].
For future work, we try to extend our method
to solve complex fuzzy linear systems when, at
least one of the elements of right-hand side is a
complex fuzzy number.
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