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Abstract

This study aims to examine the pulsatile flow of blood through tapered artery with a stenosis under
the effects of body acceleration and external magnetic field. Blood flow is modeled as non-Newtonian
micropolar fluid. The non-linear governing equations of continuum and momentum in the cylindrical
coordinate are being discretized using a finite difference approach and have been solved iteratively,
through Crank-Nicolson method. The blood velocity distribution, volumetric flow rate and Resistance
to blood flow at the stenosis throat are computed for various values of angle of tapering, amplitudes
of body acceleration and Hartman number. It is shown that the results are in good agreement with
the previous studies.

Keywords : Stenosed artery; Micropolar fluid; Body acceleration; Magnetic field; Crank-Nicolson
method.
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1 Introduction

B
locked blood vessels are cause of stroke and
heart attack and in recent years scientists

have focused on mathematical models of blood
flow in stenosed Vessels to provide better thera-
pies or help create more efficient medical equip-
ments. Mathematical modeling of blood flow
in the disease stenosis artery is very important
due to considerable applications in medical and
biomedical engineering. Hence, research on char-
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acteristic of blood flow in stenosis arteries has
received great attention.

A large number of experimental and numeri-
cal studies that focus on blood flow behavior in
artery with different shape of stenosis have been
reported. However, most of them are limited to
Newtonian fluids [1, 2, 3, 4]. Many biofluids such
as blood are classified as non-Newtonian fluids,
whose viscosities are basically a function of shear
rate, different from those of Newtonian fluids.
Recently, interest in problems of non-Newtonian
fluid have grown and many mathematical models
for describing the blood flow in artery by con-
sidering the rheological behavior of blood have
been extensively developed [5, 6, 7, 8]. heological
behavior of blood have been extensively devel-
oped. In these studies the non-Newtonian nature
of blood are described by different models, such as
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power law [9, 10], Sisko [11, 12, 13], Carreau [14]
and micropolar [8, 15, 16]. In addition to con-
sidering the blood non-Newtonian rheology, the
micropolar model takes care the effect of micro-
rotations of microelements suspended in plasma
by using of independent microrotation vector.

Due to electrical conductivity of blood, the ex-
ternally applied magnetic field effects on blood
flow in arteries and changes the velocity profiles.
This physical phenomena can be very useful in di-
agnosis and treatment of vascular diseases. Sev-
eral works in which the effect of MHD on char-
acteristic of flow for various models of blood and
stenosed artery geometries are investigated have
been documented in [14, 17, 18, 19, 20, 21].

Patients with blocked vessels, when exposed
to body acceleration, like shaking when driving
vehicles or flying in an airplane, and fast body
exercises, causes serious physical problems such
as headaches, loss of vision, increased heart rate
and bleeding in Face, neck and brain. Body ac-
celeration highly influenced the blood velocity,
shear stress, flow rate and impedance in a blocked
artery. Due to these physiological importance of
body acceleration, research in this area has in-
tensified recently and many works have been re-
ported [23, 24, 25].

A review of previous works show that the inves-
tigation of micropolar blood flow through tapered
stenosed artery subjected to external magnetic
field and body acceleration has received little at-
tention. Motivated by this, the main aim of this
work is to investigate the effects of external mag-
netic field and body acceleration on blood pul-
satile flow in tapered stenosed artery with empha-
sis on micropolar nature of blood using implicit
finite difference Crank-Nicolson method.

2 Mathematical Equations

Consider a two-dimensional, unsteady, fully de-
veloped and axially symmetric flow of blood and
also, the fluid blood is assumed to behave like a
micropolar fluid. Let (r, θ, z) be the cylindrical
polar coordinats system, in which r and z axes
are the radial and axial directions of the artery.
v1, v2 and v3 are the axial, radial and microro-
tational velocity components respectively. The
blood flow in a vibration environmental is con-

sidered, in which exist the acceleration. Also,
the magnetic field strength B = (B0 + B1) ap-
plied for the flow of blood. The governing equa-
tions for micropolar fluid may be written in non-
dimensional forms as follows:

∂v1
∂z

+
∂v2
∂r

+
v2
r

= 0, (2.1)

∂v1
∂t
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The dimensionless pressure gradient and the
body acceleration respectively, can be written as
[4, 3, 12, 26]:

− ∂p

∂z
= A0 +A1cosωt, t > 0, (2.5)

G(t) = a0cos(bt+ φg). (2.6)

where a0 =
a2a∗0
νU , b = wb

w , A0 is the constant am-
plitude of the pressure gradient, A1 is the am-
plitude of the pulsatile component giving rise to
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systolic and diastolic pressures, w = 2πfp, fp be-
ing the pulse frequency.

The following non-dimensional quantities have
been used in Eqs. (2.1)-(2.4):

v1 =
v∗1
U
, v2 =

v∗2
U
, r =

r∗

a
, v3 =

av∗3
a
, z =

z∗

a
,

t =
t∗U

a
, J =

J∗

a2
, p =

p∗

ρU2
, Re =

ρUa

µ+ k
,

N =
κa2

ν
,M =

µa2

ν
,m =

κ

µ+ κ
.

where p is the pressure, ρ is the density, J is
the microinertia constant, µ is the viscosity, κ is
the rotational viscosity, ν is the material constant

and Ha = B0a
√

σ
ρν is the Hartmann number.

The initially and boundary conditions are as
follows [27, 28] :

r = 0 :
∂v1(r, z, t)

∂r
= 0,

v2(r, z, t) = v3(r, z, t) = 0, (2.7)

r = R(z) : v1(r, z, t) = 0,

v2(r, z, t) =
∂R

∂t
, v3(r, z, t) = −λ∂v1

∂r
(2.8)

v1(r, z, 0) =

2v1[1−(
r

R
)2+

4γ

β2
I0(β)

I0(
βr
R )

I0(β)
− 1],

v2(r, z, 0) = v3(r, z, 0) = 0. (2.9)

where γ = mβ
4I0(β)

, β2 = N(2 − m). v1 is the
mean axial velocity at any given cross-section. I0
is the modified Bessel functions of zeroth-order of
first kind.

The geometry of the time variant stenosis is
constructed mathematically in non-dimensional
form as (see Fig. 1) [7, 29, 30]:

R(z, t) =


[(mz + a) + τmsecψ(z−ψ)

τ2msinψ
2−

l20
4

(l0 − (z − d1))]a1(t) d1 ≤ z ≤ d1l0

(mz + a)a1(t) otherwise

(2.10)

Figure 1: Geometry of the stenosed artery.

In above expression, R(z, t) represents the ra-
dius of the arterial segment in the constricted
region, ψ is the angle of tapering, a is the ra-
dius of the artery in the non-stenotic region, d1
is location of the stenosis, L is the finite length
of arterial segment. The time-variant parameter
a1(t) is given by a1(t) = 1 − b(cosωt − 1)e−bωt

[12, 29, 30, 31], in which b is a constant, w = 2πfp,
fp is the pulse frequency.

3 Method of solution

We introduce a suitable coordinate transforma-
tion by η = r

R [7, 10, 12, 32, 33, 34] for the
purpose of prove the artery wall. By using this
transformation Eqs. (2.1-2.4 and 2.7-2.9) take the
following form:
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− η2R
∂2R

∂z2

}
× ∂v3

∂η
+
∂2v3
∂z2

− v3
(ηR)2

}]
, (3.12)

1

R

∂v2
∂η

+
v2
ηR

+
∂v1
∂z

− η

R

∂R

∂z

∂v1
∂η

= 0, (3.13)

The initially and boundary conditions are:

η = 0 :
∂v1(η, z, t)

∂η
= 0, v2(η, z, t) = 0,

v3(η, z, t) = 0, (3.14)

η = 1 : v1(η, z, t) = 0, v2(η, z, t) =
∂R

∂t
,

v3(η, z, t) = − λ

R

∂v1
∂η

, (3.15)

v1(η, z, 0) = 2v1[1−η2+
4γ

β2
I0(β){

I0(βη)

I0(β)
}−1],

v2(η, z, 0) = v3(η, z, 0) = 0. (3.16)

For compute the radial velocity component by us-
ing the continuity equation. Thus, multiply Eq.
(3.13) by ηR and integrate with respect to η in
the interval of [0, η], arrive:

ηv1(η, z, t)+R

∫ η

0
η
∂v1
∂z

dη−∂R
∂z

η2v1

+
∂R

∂z

∫ η

0
2ηv1dη = 0 (3.17)

Applying the boundary condition η = 1, Eq.
(3.17) yields:

∫ 1

0
η
∂v1
∂z

dη = −
∫ 1

0

2

R

∂R

∂z
ηv1dη

+

∫ 1

0

1

R
(
∂R

∂t
ηf(η))dη. (3.18)

Now choose f(η) = 4(1 − η2), that is satisfied∫ 1
0 ηf(η)dη = 1. Taking integrating of both sides
Eq. (3.18) can be written as:

∂v1
∂z

= − 2

R

∂R

∂z
v1 −

4

R
(1− η2)

∂R

∂t
. (3.19)

Substituting (3.19) into (3.17), the radial ve-
locity component can be obtained as follows:

v2(η, z, t) = η[
∂R

∂z
v1 +

∂R

∂t
(2− η2)]. (3.20)

4 Computational Scheme

For compute the axial velocity component by ap-
plying Crank-Nicolson method. In this method,
all the spatial derivatived and all the time deriva-
tives discretized by using central difference for-
mula and forward difference formula respectively.
So, the spatial derivatived and the time deriva-
tives as following:

∂v1
∂η

=
1
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2∆η
+

+
(v1)

k+1
i,j+1 − (v1)

k+1
i,j−1

2∆η
], (4.21)
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∂v1
∂t

=
(v1)

k+1
i,j − (v1)

k
i,j

∆t
. (4.25)

Using these methode, the discretized form of
Eqs. (3.11) and (3.12) can be written as:

Ai,j(v1)
k+1
i,j−1+Bi,j(v1)

k+1
i,j +Ci,j(v1)

k+1
i,j+1

= Di,j , (4.26)

Ai,j =
∆t

4Rki∆η
[ηj((v1)i,j(

∂R

∂z
)ki+(

∂R

∂t
)ki )

−(v2)i,j ]−
∆t

2Re(Rki )
2∆η2

{1+(ηj(
∂R

∂z
)ki )

2}



AR. Haghighi et al., /IJIM Vol. 11, No. 1 (2019) 1-10 5
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{1+2(ηj(
∂R

∂z
)ki )

2−η2jRki (
∂2R

∂z2
)ki }

+
∆t(1−m)
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((v3)
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k
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k
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2
.

The rate of flow (Q) and the resistive
impedance (Λ) in non-dimensional forms can be
obtained:

Qki = 2π(Rki )
2

∫ 1

0
ηj(v1)

k
i,jdηj , (4.28)

Λki =
|L(∂p∂z )

k
i |

Qki
. (4.29)

5 Results and discussion

Numerical computations have been carried out by
using the following data [29, 35, 36]:

∆t = 0.001,∆η = 0.125,∆z = 0.1, d = 10,

Re = 300, L = 45, a = 1.52, A0 = 0.1,

A1 = 0.2A0, N = 1,M = 1,

m = 0.85, fp = 1.2.

In order to verify the numerical method pro-
posed in this paper, the present numerical results
are compared with the results by Ponalagusamy
and Priyadharshini [37] for velocity distribution
in the case of micropolar fluid. The comparisons
are shown in Fig. 2. As it can be seen, there is
agreement between them. Figure 3 shows the ax-
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Ponalagusamy and Priyadharshini

present

Figure 2: Comparison of the dimensionless axial
velocity profile.

ial velocity profiles of micropolar fluid through a
stenosed artery, at the specific location z = 28 at
t = 9 and τm = 0.2a, for different values of Hart-
mann number. As expected because of Lorentz

forces effect, by increasing the Hartman number
the maximum axial velocity decreases. As a con-
sequence, under the action of a magnetic field,
the volume of blood flow can be controlled during
surgeries. Figure 4 depicts the effects of Hartman
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Figure 3: The axial velocity profiles for different
Hartmann number.

number and the amplitudes of body acceleration
on microrotational velocity at the time t = 8 and
t = 4 in maximum constricted region. It is ob-
served that the microrotational velocity decreases
with the increase of the Hartmann number and
increases with the increases of the amplitudes of
body. The rate of flow in the stenosed artery
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Figure 4: The microrotational velocity profiles
for different amplitudes of body acceleration and
Hartmann number.

for different Hartmann number at the t = 4 and
τm = 0.2a is shown in Fig. 5. Considering Eq.
(4.28) the rate of flow and the axial velocity pro-
file are directly related. so the rate of flow de-
creases with hartman number due to decreasing
of axial mean velocity. Figure 6 illustrates the
rate of flow for different amplitudes of body ac-
celeration at the time t = 4 and τm = 0.2a. In
Fig. 6, it is shown that by increasing the ampli-
tute of body acceleration, the flow rate increases.
So, the blood flow may increases in the vibration
environmental. The resistive impedance in the
stenosed artery for the different Hartmann num-
ber at the time t = 4 and τm = 0.2a is obvious in
Fig. 7. Considering Eq. (4.29) the rate of flow
and the resistive impedance are inversely related
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Figure 5: Distribution of the rate of flow for dif-
ferent Hartmann number.
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Figure 6: Distribution of the rate of flow for dif-
ferent amplitudes of body acceleration.

so, unlike the rate of flow, the resistive impedance
increases with the increase in the Hartmann num-
ber. Resistive impedance through a stenosed
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Figure 7: Distribution of the resistive impedance
for different Hartmann number.

artery for different amplitudes of body acceler-
ation at the time t = 4 is presented in Fig. 8. As
shown, the resistive impedance decreases with the
increase in the amplitudes of body acceleration.
Fig. 9 depicts the blood flow patterns for different
values of tapering angle and stenosis size. Pan-
els (a) and (b) show flow pattern for the stenosis
artery. Obviosly, increasing the size of stenosis at
t=4 leads to the decrease of the flow lines, thus,
increasing the size of stenosis gives rise to the de-
crease of the axial velocity. Panel (c) describes
the flow lines for the converging stenosis artery
( ψ > 0). On the contrary panel (d) shows the
diverging stenosis artery (ψ < 0) that decreases
the flow lines with the decrease the tapering an-
gle. So, the axial velocity decrease with decreases
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Figure 8: Distribution of the resistive impedance
for different amplitudes of body acceleration.

of the taper angle at t=4.
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Figure 9: Instantaneous flow patterns of stream-
ing blood

6 Conclusion

The pulsatile flow of conducting micropolar blood
in a stenosed tapered artery under the influence
of an applied external magnetic field and body
acceleration numerically are studied using an im-
plicit finite difference Crank-Nicolson method.
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The results show that by increasing both taper
angle and Hartman number. axial velocity and
flow rate increase and in opposite trend, the resis-
tive impedance and microrotational velocity de-
crease. Also, it is clear that as body acceleration
increases, the axial velocity increases which leads
to increase the of flow rate.
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