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Abstract

A fractional minimal cost flow problem under linear type belief degree based uncertainty is studied for
the first time. This type of uncertainty is useful when no historical information of an uncertain event
is available. The problem is crisped using an uncertain chance-constrained programming approach
and its non-linear objective function is linearized by a variable changing approach. An illustrative
example is solved to prove the efficiency of the proposed formulation.
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1 Introduction

F
ractional minimal cost flow problem (FM-
CFP) is defined on a network of nodes and

their associated arcs. Each node has to supply
other nodes or being supplied by other nodes. It
is also possible for a node to be supplied by some
nodes and also supply some other nodes simul-
taneously. The amount that each node supplies
the other nodes or is supplied by other nodes is
restricted by supply and demand values given for
the nodes. On the other hand, each arc has a
unit flow cost (arc cost) which is defined accord-
ing to the concepts of the network under study.
This cost may have the units, e.g. time, length,
money, etc. In the classic version of FMCFP, the
costs of the arcs are represented by real numbers.
Therefore, the FMCFP aims to find the amount
of flow in each arc which minimizes the sum of to-
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tal arc costs respecting to the demand and supply
values of the nodes.
The FMCFP has been focused in few studies of
the literature (see [11, 6, 20], developed the dual
formulation of FMCFP and a special simplex al-
gorithm to obtain its optimal solution. Sher-
ali [15] suggested a dual formulation based algo-
rithm for linear fractional programming problems
in network based problems. The study shows that
the algorithm of Xu et al. [20] is exactly the same
as the method of Gilmore and Gomory [4]. As
mentioned by Sherali [15], the obtained duality
results can also be obtained by using the trans-
formation of Charnes and Cooper [1] to convert
the linear fractional problem to a linear problem.
Fakhri and Ghatee [3] studied a typical FMCFP
as the fractional multi-commodity flow problem.
They defined the dual of this problem based on its
linear programming representation, where some
other duality properties were derived. Singh and
Yadav [17] introduced an approach to tackle tri-
angular intuitionistic fuzzy linear fractional pro-
gramming problem by converting the problem to
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a multi-objective problem and then to a single-
objective one.
Optimization problems including the transporta-
tion problem and its fractional form, can be even
more interesting and realistic when tackled in un-
certain environments with uncertain values for
parameters and even variables. For coping with
such problems with uncertain parameter, in exis-
tence of its historical information, any approach
based on fuzzy theory (see [5, 13, 2, 12, 18, 14, 10],
etc.), stochastic programming (see [19], etc.),
probability theory, etc. can be applied. For the
cases that no historical information for an un-
certain event exists, uncertainty theory based on
belief degree has been introduced by Liu [7]. This
uncertainty theory can be explained by a simple
example. Consider a box of 100 balls including
blue and red balls when there is no information
on the number of the blue and red balls. To select
a ball from the box, no probability for determin-
ing its color exists and there is no priority for
the colors blue and red. In such case, the belief
degree of selecting for example blue ball is cal-
culated to cope with this uncertain event. Some
basic concepts of the belief degree based uncer-
tainty theory will be explained in Section 2 where
a complete study of this topic can be found in Liu
[7].
In the real-world applications of the FMCFP, in
most of cases the values given for the costs of arcs
cannot be an exact value as those may be fuzzy
numbers, or of given intervals, or even stochas-
tic values. When there is no historical data for
this aim, the uncertainty theory based on belief
degree can be useful for modelling the uncertain
FMCFP. In this study the FMCFP in existence of
belief degree based uncertain parameters (UFM-
CFP) is studied for the first time. The UFM-
CFP is crisped applying some techniques of un-
certainty theory that will be presented in Section
2 and the variable changing technique of Charnes
and Cooper [1] is applied to linearize its fractional
terms. The approach is then evaluated by a nu-
merical example.
Other sections of the paper are organized as fol-
lows: In Section 2 some initial definitions of the
belief degree based uncertainty theory is pre-
sented. The FMCFP and UFMCFP formulations
are presented by Section [3]. A numerical exam-
ple used to show the efficiency of the proposed
uncertain formulation is presented by Section [4].

The study is concluded by Section [5].

2 Uncertainty theory

In this section some preliminaries of uncertainty
theory are introduced. The definitions and theo-
rems are taken from [7, 8, 10].

Definition 2.1 Considering Γ as a non-empty
set and L as a σ−algebra on the set,M{Λ} is
defined as the belief degree function of occurring
the uncertain event Λ (where Λ ∈ L). Therefore,
the function M should follow the following condi-
tions,

(i) M{Λ} = 1.

(ii) M{Λ}+M{Λ′} = 1 where Λ′ is the comple-
ment for Λ.

(iii) Considering a countable sequence {Λi}
where i = 1, 2, ...,∞, the inequality
M{∪∞

i=1} ≤
∑∞

i=1M{Λi} is held.

(iv) Considering infinite uncertainty spaces
where the k-th one is shown by
{Γk, Lk,Mk}, the uncertain function
M{⊓∞

k=1Λk} = ∧∞
k=1Mk{Λk} is defined,

where Λk is an uncertain event from Lk.

Definition 2.2 Uncertain variable ξ is a func-
tion of the uncertainty space {Γ, L,M}. For any
Borel set B of the real numbers, the set {ξ ∈ B} =
{γ ∈ Γ|ξ(γ) ∈ B} is an uncertain event.

Definition 2.3 Uncertainty distribution Φ is de-
fined as Φ(x) = M{ξ ≤ x} where x ∈ R.

Definition 2.4 Expected value of ξ is defined as
E[ξ] =

∫∞
0 M{ξ ≥ r}dr −

∫ 0
−∞M{ξ ≤ r}dr with

the condition that one of the integrals be finite.

Definition 2.5 The uncertainty distribution
Φ(x) is a regular uncertainty distribution where
it is continuous and strictly increasing respecting
to x, with the following conditions,

(i) 0 < Φ(x) < 1.

(ii) limx→−∞Φ(x) = 0.

(iii) limx→∞Φ(x) = 1.

As for the regular uncertainty distribution
Φ(x), 0 < Φ(x) < 1 is held, its inverse function
Φ−1(α) is defined on the interval(0,1).
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Definition 2.6 The uncertain variable ξ from
the uncertainty space {Γ, L,M}, is positive if,
M{ξ ≤ 0} = 0.

Definition 2.7 The uncertain variables
ξ1, ξ2, ..., ξn from the Borel sets B1, B2, ..., Bn are
independent if,

M{
n∏

i=1

(ξi ∈ Bi)} = Λn
i=1M{ξi ∈ Bi}

Theorem 2.1 Assume that ξ1, ξ2, ..., ξn are
independent uncertain variables with regular
uncertainty distributions Φ1,Φ2, ...,Φn, respec-
tively. If the function f(x1, ..., xn) is strictly
increasing on x1, x2, ..., xm and strictly decreas-
ing on xm+1, ..., xn then the uncertain variable
ξ = f(x1, ..., xn) has the inverse uncertainty
distribution,

Ψ
−1

(α) = f
(
Φ

−1
1 (α), ...,Φ

−1
m (α),Φ

−1
m+1(1 − α), ...,Φ

−1
n (1 − α)

)
Definition 2.8 The expected value of the uncer-
tain variable ξ with regular uncertainty distribu-
tion Φ(x) is calculated as E[ξ] =

∫ 1
0 Φ−1(α)dα.

Theorem 2.2 Assume that ξ1, ξ2, ..., ξn are
independent uncertain variables with regular
uncertainty distributions Φ1,Φ2, ...,Φn, respec-
tively. If the function f(x1, ..., xn) is strictly
increasing on x1, x2, ..., xm and strictly decreas-
ing on xm+1, ..., xn then the uncertain variable
ξ = f(x1, ..., xn) has the expected value of,

E[ξ] =

∫ 1

0

f
(
Φ

−1
1 (α), ...,Φ

−1
m (α),Φ

−1
m+1(1−α), ...,Φ

−1
n (1−α)

)
dα

Theorem 2.3 Assuming ξ and η as independent
uncertain variables, then for any real numbers a
and b,

E[aξ + bη] = aE[ξ] + bE[η].

Definition 2.9 A linear type uncertain variable
ξ represented by L(a, b) has the following uncer-
tainty distribution where a < b are real numbers.

Φ(x) =


0 x < a,

x−a
b−a a ≤ x ≤ b

1 x > b

3 Deterministic and uncertain
fractional minimal cost flow
problem

In order to construct the mathematical model of
the FMCFP, we assume G = (V,E) as a con-
nected and directed graph with the set of vertices

V = (v1, , vm) and the set of arcs E. Each ver-
tex vi ∈ V has a value of bi. This value shows
the difference between the amount sent from this
vertex and the amount received by this vertex.
It is supposed that

∑m
i=1 bi = 0 which is a basic

condition for feasibility. Parameters cij and dij
are the coefficient for cost of the arc (i, j) ∈ E.
Moreover, the value uij is considered for the up-
per bound of the capacity of arc (i, j) ∈ E. Also,
α and β are given constants. Here, the variable
Xij is flow on arc (i, j). Therefore, the fractional
minimum cost flow problem is modeled using the
following formulation [20].

Min f(X) =

∑
(i,j)∈E cijXij + α∑
(i,j)∈E dijXij + β

(3.1)

s.t.∑
(i,j)∈E

Xij −
∑

(j,i)∈E

Xji = bi, i = 1, ...,m (3.2)

0 ≤ Xij ≤ uij (i, j) ∈ E (3.3)

In the formulation 3.1-3.3, the constraint set (3.2)
guarantees that net flow that is sent out of each
node is equal to its capacity. Furthermore, the
condition

∑
(i,j)∈E dijXij + β > 0 is considered

for feasibility of the problem.
An uncertain environment for optimization prob-
lems usually considers uncertain parameters for
such problems. The uncertainty type of such pa-
rameters usually can be determined by histor-
ical information about the parameters’ values.
For example historical data about a parameter
like demand can help decision maker to estimate
the uncertain value of demand by fuzzy theory,
stochastic theory, interval theory, etc. Another
uncertainty type can be considered for the uncer-
tain parameters of optimization problems when
no historical data exists. In this situation deci-
sion maker asks the opinion of an expert for deter-
mining the parameters’ uncertain value. There-
fore, the uncertain values of the parameters are
determined according to the belief degree of the
expert. The belief degree based uncertain values
can be shown by zigzag, normal, and linear type
uncertainty variables (see [7, 8]).
To extend the FMCFP to its uncertain form say
uncertain fractional minimal cost flow problem
(UFMCFP), the parameters cij , dij , and uij are
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assumed to be of linear independent uncertain
variables shown by ξij , ηij , and ũij respectively.
Therefore the UFMCFP is formulated by the fol-
lowing model.

Min f(X; ξ, η) =

∑
(i,j)∈E ξijXij + α∑
(i,j)∈E ηijXij + β

(3.4)

s.t.∑
(i,j)∈E

Xij −
∑

(j,i)∈E

Xji = bi, i = 1, ...,m (3.5)

0 ≤ Xij ≤ ũij (i, j) ∈ E (3.6)

Notably, the objective function value f(X; ξ, η) is
an uncertain variable.
In order to cope with the uncertainty of the UFM-
CFP, first it is converted to a deterministic form,
and then it is solved. For the conversion pur-
pose, two main criteria of expected value and
critical value of the uncertain variables can be
considered (see [7, 8]). According to these cri-
teria, three different deterministic forms of the
UFMCFP as expected value model, expected
value and chance-constrained model, and chance-
constrained model can be obtained (see [7, 8]). In
this paper the chance-constrained model is used
to obtain the crisp form of the UFMCFP. Using
the chance-constrained model, the UFMCFP is
converted to a deterministic form considering the
following issues,
A chance-constrained technique is considered to
crisp the uncertain constraints. Therefore, the
belief degree based function of each constraint
should be greater than a confidence level which is
determined in advance from the interval (0, 1]
A new objective function say f̄ is introduced
where a new constraint is defined such that
the main uncertain objective function f(X; ξ, η)
be less than or equal to f̄ . Then, a chance-
constrained technique is considered to crisp the
new uncertain constraint. Therefore, the belief
degree based function of this constraint should
be greater than a confidence level which is deter-
mined in advance from the interval (0, 1]. So, the
ULFTP first is converted to the following form,

Min f̄ (3.7)

s.t.

M
{∑

(i,j)∈E ξijXij + α∑
(i,j)∈E ηijXij + β

≤ f̄
}
≥ γ (3.8)

∑
(i,j)∈E

Xij −
∑

(j,i)∈E

Xji = bii = 1, ...,m, (3.9)

M
{
Xij ≤ ũij

}
≥ λij (i, j) ∈ E, (3.10)

Xij ≥ 0, (3.11)

where, the confidence levels γ and λ are deter-
mined in advance.
In order to find the crisp form of the UFMCFP
represented by the formulation 3.7-3.11, the fol-
lowing theorem is presented.

Theorem 3.1 Assume that the independent un-
certain variables ξij , ηij, and ũij have the
regular uncertainty distributions Φij ,Ψij and
Ωijrespectively. If ξij , ηij be positive uncertain
variables, the uncertain model 3.7-3.11 is equiva-
lent to the following deterministic model.

Min

∑
(i,j)∈E Φ−1

ij (γ)Xij + α∑
(i,j)∈E Ψ−1

ij (1− γ)Xij + β
(3.12)

s.t.∑
(i,j)∈E

Xij −
∑

(j,i)∈E

Xji = bii = 1, ...,m, (3.13)

Xij ≤ Ω−1
ij (1− λij) (i, j) ∈ E, (3.14)

Xij ≥ 0, (3.15)

Proof. In order to prove the equivalency of con-
straint 3.8 and objective function 3.12, using the
concept of Definition 2.3, the following conversion
is done where Υ is the uncertainty distribution of∑

(i,j)∈E ξijXij+α∑
(i,j)∈E ηijXij+β

M
{∑

(i,j)∈E ξijXij + α∑
(i,j)∈E ηijXij + β

≤ f̄
}
≥ γ

⇐⇒ Υ(f̄) ≥ γ

Now, as the term
∑

(i,j)∈E ξijXij+α∑
(i,j)∈E ηijXij+β is strictly in-

creasing according to ξij and strictly decreasing
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according to ηij , the following conversion is done
according to Theorem 3.1.

Υ(f̄) ≥ γ ⇐⇒ f̄ ≥ Υ−1(γ) ⇐⇒

f̄ ≥
∑

(i,j)∈E Φ−1
ij (γ)Xij + α∑

(i,j)∈E Ψ−1
ij (1− γ)Xij + β

To prove the equivalency of the constraints 3.10
and 3.14, using Definition 2.3 and Theorem 2.1
the following conversion is done,

A fuzzy number is a function u : ℜ −→ [0, 1]
satisfying the following properties:

M
{
Xij ≤ ũij

}
≥ λij ⇐⇒ 1−M

{
Xij > ũij

}
≥ λij ⇐⇒ 1− Ωij(Xij) ≥ λij ⇐⇒ Ω−1

ij (Xij)

≤ 1− λij ⇐⇒ Xij ≤ Ω−1
ij (1− λij)

Therefore, the theorem is proved.
The crisp form of the UFMCFP which is rep-

resented by the formulation 3.12-3.15, is a non-
linear model because of its fractional term ap-
peared in the objective function 3.12. This non-
linearity is linearized by the approach of Charnes
and Cooper [1]. For this aim the variable chang-
ings

∑
(i,j)∈E Ψ−1

ij (1−γ)Xij +β = 1
T and XijT =

Yij is introduced. Then, the following linearized
version for the crisp form of the UFMCFP is ob-
tained.

Min
∑

(i,j)∈E

Φ−1
ij (γ)Yij + α (16) (3.16)

s.t.∑
(i,j)∈E

Ψ−1
ij (1− γ)Yij + βT = 1 (3.17)

∑
(i,j)∈E

Yij −
∑

(j,i)∈E

Yji = biT, i = 1, ...,m (3.18)

Yij ≤ TΩ−1
ij (1− λij) (i, j) ∈ E (3.19)

Yij , T ≥ 0, (3.20)

4 An illustrative example

In order to study the performance of the pro-
posed UFMCFP, a simple example is solved in
this section. For this aim a network of seven
nodes with their given capacities is considered

Figure 1: Schematic representation of the net-
work of the example.

and represented by Figure 1. The data related to
the arcs of the network is represented by Table
1, where α = β = 0.

According to the data of the example and
the linear formulation of the crisp version of
the UFMCFP represented by the formulation
3.16-3.19, the expanded formulation of the
example is shown as follow,

Min Y13Φ
−1
13 (γ) + Y14Φ

−1
14 (γ) + Y15Φ

−1
15 (γ)+ (4.21)

Y23Φ
−1
23 (γ) + Y24Φ

−1
24 (γ) + Y25Φ

−1
25 (γ)+

Y34Φ
−1
34 (γ) + Y36Φ

−1
36 (γ) + Y37Φ

−1
37 (γ)+

Y45Φ
−1
45 (γ) + Y46Φ

−1
46 (γ) + Y47Φ

−1
47 (γ)+

Y56Φ
−1
56 (γ) + Y57Φ

−1
57 (γ)

s.t.

Y13Φ
−1
13 (1− γ) + Y14Φ

−1
14 (1− γ)+

Y15Φ
−1
15 (1− γ) + Y23Φ

−1
23 (1− γ)+

Y24Φ
−1
24 (1− γ) + Y25Φ

−1
25 (1− γ)+

Y34Φ
−1
34 (1− γ) + Y36Φ

−1
36 (1− γ)+

Y37Φ
−1
37 (1− γ) + Y45Φ

−1
45 (1− γ)+

Y46Φ
−1
46 (1− γ) + Y47Φ

−1
47 (1− γ)+

Y56Φ
−1
56 (1− γ) + Y57Φ

−1
57 (1− γ) = 1

Y13 + Y14 + Y15 = 30T

Y23 + Y24 + Y25 = 60T

Y34 + Y36 + Y37 − Y13 − Y23 = 0

Y45 + Y46 + Y47 − Y14 − Y24 = 0

Y56 + Y57 − Y15 − Y25 = 0

−Y36 − Y46 − Y56 = −20T

−Y37 − Y47 − Y57 = −70T

Y13 ≤ TΩ−1
13 (1− λ13)

Y14 ≤ TΩ−1
14 (1− λ14)

Y15 ≤ TΩ−1
15 (1− λ15)

Y23 ≤ TΩ−1
23 (1− λ23)

Y24 ≤ TΩ−1
24 (1− λ24)

Y25 ≤ TΩ−1
25 (1− λ25)
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Table 1: The arc related data of the example.

Arc index Tail-node(i) Head-node (j) ξij ηij ũij

1 1 3 L(5, 7) L(2, 3) L(20, 30)
2 1 4 L(4, 5) L(3, 4) L(50, 90)
3 1 5 L(5, 7) L(6, 8) L(50, 80)
4 2 3 L(10, 12) L(5, 7) L(50, 80)
5 2 4 L(8, 9) L(8, 9) L(50, 80)
6 2 5 L(3, 6) L(5, 6) L(25, 50)
7 3 4 L(2, 4) L(9, 10) L(60, 90)
8 3 6 L(8, 10) L(7, 8) L(50, 90)
9 3 7 L(2, 5) L(1, 3) L(60, 85)
10 4 5 L(3, 10) L(2, 3) L(20, 50)
11 4 6 L(8, 9) L(4, 6) L(30, 60)
12 4 7 L(5, 7) L(8, 9) L(40, 55)
13 5 6 L(5, 8) L(2, 4) L(10, 30)
14 5 7 L(2, 5) L(4, 5) L(55, 90)

Table 2: The results obtained for the example

Exp. λij γ X13 X14 X15 X14 X24 X25 X34

1 0 0 30 0 0 10 0 50 40
2 0 0.35 30 0 0 10 0 50 40
3 0 0.65 30 0 0 25 0 35 55
4 0 1 30 0 0 0 45 15 30
5 0.5 0 25 0 5 22.5 0 37.5 47.5
6 0.5 0.35 25 0 5 22.5 0 37.5 47.5
7 0.5 0.65 25 0 5 22.5 0 37.5 47.5
8 0.5 1 25 0 5 0 42.5 17.5 25
9 1 0 20 0 10 35 0 25 55
10 1 0.35 20 0 10 35 0 25 55
11 1 0.65 20 0 10 35 0 25 55
12 1 1 20 0 10 0 40 20 20

Table 2. (Continue)

Exp X36 X37 X45 X46 X47 X56 X57 O.F

1 0 0 0 0 40 20 30 0.589
2 0 0 0 0 40 20 30 0.759
3 0 0 0 0 55 20 15 0.915
4 0 0 0 20 55 0 15 1.078
5 0 0 0 0 47.5 20 22.5 0.614
6 0 0 0 0 47.5 20 22.5 0.773
7 0 0 0 0 47.5 20 22.5 0.925
8 0 0 0 20 47.5 0 22.5 1.097
9 0 0 5 10 40 10 30 0.644
10 0 0 0 15 40 5 30 0.795
11 0 0 0 15 40 5 30 0.939
12 0 0 0 20 40 0 30 1.117

Y34 ≤ TΩ−1
34 (1− λ34)

Y36 ≤ TΩ−1
36 (1− λ36)

Y37 ≤ TΩ−1
37 (1− λ37)

Y45 ≤ TΩ−1
45 (1− λ45)

Y46 ≤ TΩ−1
46 (1− λ46)

Y47 ≤ TΩ−1
47 (1− λ47)

Y56 ≤ TΩ−1
56 (1− λ56)

Y57 ≤ TΩ−1
57 (1− λ57)

Y13, Y14, Y15, Y23, Y24, Y25, Y34, Y36, Y37,

Y45, Y46, Y47, Y56, Y57, T ≥ 0



S. Niroomand, /IJIM Vol. 11, No. 2 (2019) 111-118 117

The model 4.21 was coded in GAMS solver
and was run on a PC with an Intel Pentium
Dual 2 GHz processor and 1024 MB RAM.
In order to run the experiments the constants
Φ−1
ij (γ),Ψ−1

ij (1 − γ)and Ω−1
ij (1 − λij) are easily

calculated from the values of Table 2 and the
definitions of Section 2, prior to running the ex-
periments. Notably, the confidence levels are se-
lected from the sets γ ∈ {0, 0.35, 0.65, 1} and
λij ∈ {0, 0.5, 1}. In an experiment a similar value
from the set {0, 0.5, 1} is fixed for all λij values
of the model 4.21. Therefore, 12 combinations of
the confidence levels are considered where each of
them construct an experiment, giving totally 12
experiments. The results obtained by the exper-
iments are reported in Table 2. In order to an-
alyze the sensitivity of the formulation 4.21 over
the confidence level values, marginal mean of the
objective function values (MMOFV) is taken for
each confidence level value of γ and λij . The ob-
tained MMOFVs are plotted for γ and λij sepa-
rately shown by Figure 2 and Figure 3. Accord-

Figure 2: Marginal mean of the objective func-
tion values (MMOFV) over λij values.

Figure 3: Marginal mean of the objective func-
tion values (MMOFV) over γ values.

ing to the trend of the graph of Figure 2, it can
be concluded that the objective function value is
generally increased by increasing the value of con-
fidence level λij . This increase is because of the
nature of linear uncertainty function considered

for the data of the example. A similar trend with
the same reason happens when the value of con-
fidence level γ is increased as shown by the graph
of Figure 3.

5 Conclusion

A fractional minimal cost flow problem under be-
lief degree based uncertainty was studied in this
paper for the first time. This type of uncertainty
is useful for the cases that no historical informa-
tion of an uncertain event exists. Linear uncer-
tainty distribution was used to show the uncer-
tainty of objective function parameters and node
capacity values. The uncertain fractional min-
imal cost flow problem was converted to a crisp
form using a chance-constrained approach and its
non-linear objective function was linearized by a
variable changing approach. An illustrative ex-
ample was solved to prove the efficiency of the
proposed formulation. The sensitivity analysis il-
lustrated the high dependency of the objective
function value to the change of the confidence
level values of the chance constraints.
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