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Abstract

In this paper, we consider the second of the edge version of geometric-arithmetic (GAe2) index of
graphs belonging to the class of geometric-arithmetic indices. It is nearly related to the new versions
of vertex Szeged index and vertex PI index of line graphs. The main properties of GAe2 are considered,
such as upper and lower bounds. We compare the second version of the edge geometric-arithmetic
indices for some graphs, TUC4C6C8[p, q] nanotorus and molecular octane isomers.

Keywords : Geometric-arithmetic index; Line graph; PI index; Szeged index; Degree of a vertex;
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—————————————————————————————————–

1 Introduction

O
ne of the branch of theoretical chemistry is
mathematical chemistry, for discussion and

Prediction of the molecular structure using math-
ematical methods without necessarily referring to
quantum mechanics. Chemical graph theory is
a branch of mathematical chemistry that applies
graph theory to mathematical modeling of chem-
ical phenomena. A molecular graph is a sim-
ple connected graph such that its vertices cor-
respond to the atoms and the edges to the bonds.
In many states, the hydrogen atoms are omit-
ted. By IUPAC terminology, a topological index
is a numerical value related to chemical struc-
ture of correlation of chemical structure with dif-
ferent physical properties, chemical or biological
activity. Throughout this research G is a sim-
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ple connected graph with vertex and edge sets
V (G) and E(G), respectively. A topological in-
dex is a numeric quantity from the structure of
a graph that is invariant under automorphisms
of the graph under consideration. A topologi-
cal index is a numeric quantity from the struc-
tural graph of a molecule. Usage of topologi-
cal indices in chemistry has been began in 1947
when chemist Wiener developed the most widely
known topological descriptor, the Wiener index,
and used it to determine physical properties va-
riety of alkanes known as paraffin.
The concept of geometric-arithmetic indices has
been introduced in the chemical graph theory. A
single number that can be used to characterize
some property of the graph of molecular is called
a topological index for that graph. There are nu-
merous topological descriptors that have found
some applications in theoretical chemistry, espe-
cially in QSPR/QSAR research [12]. Vukicevic
and Furtula [13, 14, 15, 16], proposed a topolog-
ical index named the geometric-arithmetic index
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as:

GA(G) =
∑

uv∈E(G)

2
√
du · dv

du + dv

where du denotes the degree of the vertex u in G,
in [2, 3, 4, 5, 6].

It is natural which we introduce the edge ver-
sion of geometric-arithmetic index based on the
end-vertex degrees of edges in ling graph of G as
follows:

GAe(G) =
∑

e=fs∈E(L(G))

2
√

df · ds
df + ds

(1.1)

where df denotes the degree of the edge f in
G [7, 8, 9, 10, 11]. In this work we focus our
attention to another member of this class which
we denote by GAe2 be referred to as the second
version of the edge geometric-arithmetic index
[1].

Let e = fs be an edge of line graph L(G) of G,
connecting the vertices f and s. Define the sets:

N(e, f, L(G)) = {x ∈ V (L(G)) | d(x, f) < d(x, s)} ,
N(e, s, L(G)) = {x ∈ V (L(G)) | d(x, f) > d(x, s)} .

Consisting, respectively, of vertices of L(G) lying
closer to f than to s, and lying closer to s than
to f . The number of such vertices is then

nf (e) = |N(e, f, L(G))| ,
ns(e) = |N(e, s, L(G))| .

We know that f ∈ N(e, f, L(G)), s ∈
N(e, s, L(G)) so that nf (e) ≥ 1, ns(e) ≥ 1.

In this paper we define the new version of the
Szeged index and PI index as:

Szv(L(G)) =
∑

e=fs∈E(L(G))

nf (e) · ns(e), (1.2)

PIv(L(G)) =
∑

e=fs∈E(L(G))

[nf (e) + ns(e)] (1.3)

Also we define the second version of the edge
geometric-arithmetic index as:

GAe2(G) =
∑

e=fs∈E(L(G))

√
nf (e).ns(e)

1
2 [nf (e) + ns(e)]

(1.4)

Remark 1.1 In a line graph L(G) of G, we have
de = du + dv − 2, here e = uv ∈ E(G). Then the
number of edges in a line graph is:

|E(L(G)|= 1

2

∑
ei=uivi∈E(G)

(ui + vi − 2)× |Ei|

where

|Ei| = |{(ei) | ei ∈ E(G), 1 ≤ i ≤ |E(G)|,
(ei) = (dui, dvi)}|.

Remark 1.2 For each e = fs ∈ E(L(G)) that
ns(e) = nf (e). Then:

GAe2(G) = |E(L(G))| .

In this paper, we compare the second version of
the edge geometric-arithmetic indices for some
graphs, TUC4C6C8[p, q] nanotorus and molecu-
lar octane isomers.

2 The Main Results

In this section we will show the second edge GA
index for some graphs Cn, Pn and Sn which are
the cycle, Path and star graphs respectively.
In the next propositions, we suppose the graph G
is a connected.

Lemma 2.1 Let G be any graph with n vertices
and m edges. Therefore, we have:

|E(L(G))| = 1

2

∑
x∈V (G)

d2x −m (2.5)

where dx is the degree of vertex x, that x ∈ V (G).

Proof. We have |E(L(G))| = ∑
x∈V (G)

(
dx
2

)
and

∑
x∈V (G)

dx = 2m. Therefore,

|E(L(G))| =
∑

x∈V (G)

(
dx
2

)
=

1

2

∑
x∈V (G)

d2x −
1

2

∑
x∈V (G)

dx

=
1

2

∑
x∈V (G)

d2x −m.
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Theorem 2.1 The second edge GA index of
some familiar graphs Cn, Pn and Sn is:

1. GAe2(Cn) = |E(L(Cn))| = n

2. GAe2(Sn) = |E(L(Sn))| =
(
n−1
2

)
3. GAe2(Pn) =

∑n−2
i=1

2
√
n−i−1
n−1 .

Proof.
1. If e = fs ∈ E(L(Cn)) then

ns(e) = nf (e) =

{
n
2 n is even
n−1
2 n is odd

.

Also, L(Cn) = Cn then

GAe2(Cn) =
∑

e=fs∈E(L(Cn))

√
nf (e) · nf (e)

1
2 [nf (e) + nf (e)]

=
∑

1

e=fs∈E(L(Cn))

= |E(L(Cn))|= |E(Cn)|= n.

2. Now, if e = fs ∈ E(L(Sn)) then ns(e) =
nf (e) = 1 and L(Sn) = Kn−1 then

GAe2(Sn) =
∑

e=fs∈E(L(Sn))

√
nf (e) · ns(e)

1
2 [nf (e) + ns(e)]

=
∑

1

e=fs∈E(L(Sn))

= |E(L(Sn))|= |E(Kn−1)|

=

(
n− 1

2

)
.

3. Now, if e = fs ∈ E(L(Pn)) then ns(e) +
nf (e) = 1 and L(Pn) = Pn−1 then

GAe2(Pn) =
∑

e=fs∈E(L(Pn))

√
nf (e).ns(e)

1
2 [nf (e) + ns(e)]

=
n−2∑
i=1

2
√
n− i− 1

n− 1
.

Theorem 2.2 Let G a graph with n vertices, m
edges and |E(L(G))|= m′, then

GAe2 (G) ≤ m′ =
1

2

∑
x∈V (G)

d2x −m (2.6)

with equality if and only if G ∼= Sn or
G ∼= Cn for n ≥ 3.

Proof. We have:√
nf (e) · ns(e) ≤

nf (e) + ns(e)

2

for all edges e = fs ∈ E(L(G)), so

GAe2(G) =
∑

e=fs∈E(L(G))

√
nf (e) · ns(e)

1
2 [nf (e) + ns(e)]

≤
∑

e=fs∈E(L(G))

1

= |E(L(G))|= m′.

By Theorem 2.1, we get an equality.
Conversely, if:

GAe2(G) =
∑

e=fs∈E(L(G))

√
nf (e) · ns(e)

1
2 [nf (e) + ns(e)]

= m′ =
∑

e=fs∈E(L(G))

1

Then ns(e) = nf (e) holds for all edges
e = fs ∈ E(L(G)), i. e., if and only if G ∼= Sn or
G ∼= Cn for n ≥ 3.

Theorem 2.3 For any graph G with
|E(L(G))|= m′ > 1, then

GAe2(G) ≤
√

Szv(L(G)) +m′(m′ − 1) (2.7)

with equality if and only if, G ∼= Sn(n ≥ 3) or
G ∼= C3.

Proof.

[GAe2(G)]2 =
∑
fs

4nf (e).ns(e)

[nf (e) + ns(e)]2

+ 2
∑

fs ̸=f ′s′

2
√

nf (e) · ns(e)

nf (e) + ns(e)

·
2
√
nf ′(e′) · ns′(e′)

nf ′(e′) + ns′(e′)

≤
∑
fs

[nf (e) · ns(e)]

+ 2
∑

fs ̸=f ′s′

(1) · (1)

=
∑
fs

[nf (e) · ns(e)] + 2
m′(m′ − 1)

2

= Szv(L(G)) +m′(m′ − 1).

If G ∼= Sn (n ≥ 3) or G ∼= C3 then GAe2(G) =
Szv(L(G)) = m′, so equality is occurs.
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Theorem 2.4 Let G a graph with m edges and
|E(L(G))|= m′. Then

GAe2(G) ≥ 2m′√m− 1

m
(2.8)

with equality if and only if G ∼= S3.

Proof. Without loos of generality we may choose
the vertices of the edge e = fs ∈ E(L(G)) so that

nf (e) ≥ ns(e). Then, we get
nf (e)
ns(e)

= x and√
nf (e) · ns(e)

1
2 [nf (e) + ns(e)]

=
2
√
x

x+ 1
.

The variable x assumes values in 1 ≤ x ≤ m −
1. In that interval the function, f(x) =

2
√
x

x+ 1
monotonically decreases. Because,

f ′(x) =

1√
x
(x+ 1)− 2

√
x

(x+ 1)2

=
1− x

(x+ 1)2
√
x
≤ ◦.

Therefore, 2
√
x

x+1 ≥ 2
√
m−1

(m−1)+1 = 2
√
m−1
m then

GAe2(G) =
∑

e=fs∈E(L(G))

√
nf (e) · ns(e)

1
2 [nf (e) + ns(e)]

=
∑

|E(L(G))|

2
√
x

x+ 1

≥
∑

|E(L(G))|=m′

2
√
m− 1

m

=
2m′√m− 1

m

with equality if and only if G ∼= S3.

3 Comparison to GAe and GAe2

Indices for Octan Isomer

In this section, comparison between GA2 and
GAe2 indices for octane isomers have been done.
In Table 1 as seen, the GAe, GAe2 and GA2 in-
dices of the octane isomers. The correlation be-
tween GAe and GAe2 is illustrated in Fig. 1.

By consideration of Fig. 1, some relations be-
tween two versions of geometric-arithmetic In-
dices can be investigated. There is existence a

correlation between GAe and GAe2. The data
points 15, 13, 5, 9, 8, 7, 2, and 1 form an al-
most perfect straight line with decreasing slope.
If we show the number of tertiary and quater-
nary carbon atoms by n3 and n4, we may im-
mediately check that for these isomers (n3, n4)
is equal to (0, 2), (1, 1), (0, 1), (2, 0), (1, 0), and
(0, 0), respectively. It is important that both
GAe and GAe2 are decreasing functions of the ex-
tent of branching of the molecular skeleton. The
molecules 15, 13, 5, 9, and 2 are all branched at
the very end of their carbon-atom chains and the
molecular graph 1 is a path graph with 8 vertices
(P8).

The before mentioned described relations be-
tween GAe and GAe2, that hold not only for each
octanes, but for all chemical trees, shows that
these indices depend in the similar way on one
structural feature, but have a various dependence
on some other details of molecular structure. This
hopes that GAe and GAe2 will two be simultane-
ously usable in QSPR and QSAR researches. By

Figure 1: The edge geometric-arithmetic index
(GAe) of the octane isomers vs. their second edge
version of geometric-arithmetic index (GAe2). The
numbering is same as in Table 1.

Figure 2: The graph of TUC4C6C8[p, q] nan-
otorus.
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Table 1: The GAe, GAe2 and GA2 indices of the octane isomers for details see text and Fig. 1.

# Octanes GAe GAe2 GA2

1 n-Octane 5.88562 5.18621 5.99142
2 2-Methyl heptane 6.88220 6.07356 5.78683
3 3-Methyl heptane 6.74823 5.97858 5.68461
4 4-Methyl heptane 6.80481 5.98878 5.65286
5 2,2-Dimethyl hexane 8.85485 7.99310 5.48002
6 3,3-Dimethyl hexane 8.72088 7.90068 5.34605
7 2,3-Dimethyl hexane 7.72058 6.82612 5.44827
8 2,4-Dimethyl hexane 7.78520 6.86593 5.48002
9 2,5-Dimethyl hexane 7.87878 6.96091 5.58224
10 3,4-Dimethyl hexane 7.55675 6.77094 5.37780
11 2,3,4-Trimethyl pentane 7.65686 7.71348 5.24368
12 2,2,3-Trimethyl pentane 9.62232 8.78548 5.17321
13 2,2,4-Trimethyl pentane 9.91857 8.88046 5.27543
14 2,3,3-Trimethyl pentane 9.51680 8.78803 5.14146
15 2,2,3,3-Tetramethyl butane 11.65686 10.8 4.96863
16 3-Ethyl-2-methyl pentane 7.59716 6.85001 5.34605
17 3-Ethyl-3-methyl pentane 8.36923 7.92799 5.24383
18 3-Ethyl hexane 6.65466 5.96267 5.55064

Figure 3: The graph of L(TUC4C6C8[3, 3]) nan-
otorus.

Equality (1.4) and Table 1, we get the following
result.

Corollary 3.1 Comparison to the second of the
edge version of Geometric-arithmetic indices of
the octane isomers are:

1. GAe2(n−Octane ∼= P8) < GA2(n−Octane)

2. GAe2(other moleculars)> GA2(other moleculars)

4 Computation GAe and GAe2

Indices for TUC4C6C8[p, q]
Nanotorus

In Fig. 2, the graph of TUC4C6C8[5, 4] nan-
otorus is indicated. Also this graph is a cubic
graph and 3-regular graph. Also, in Table 2
the type of edges, their numbers and amount of
ξi of TUC4C6C8[p, q] nanotorus is shown where
ξi =

(
2
√

dui · dvi
)
/(dui + dvi) at correlation GA

index. According to the Table 2, Remark 1.2 and

Table 2: The type of edges, their numbers and
amount of ξi of TUC4C6C8[p, q] nanotorus

Number of edges ξi Type of edges

9pq 1 (3, 3)

|E(TUC4C6C8 [p, q])| = 9pq, we have:

|E(L(K))|= 1

2
[(3 + 3− 2)(9pq)] = 18pq.

In the Fig. 3, the line graph of TUC4C6C8[3, 3]
nanotorus is shown. Then, we have the following
theorem.

Theorem 4.1 The edge GA and GA2 indices of
K = TUC4C6C8[p, q] nanotorus is

GAe(K) = GAe2(K) = 18pq.
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Proof. Since L(TUC4C6C8[p, q]) is 4-regular
graph then by according to Remark 1.1 and Fig.
3, we have: GAe(K) = |E(L(K))|= 18pq.

Now, for all edges e = fs ∈ E(L(K)), we have:

ns(e) = nf (e) = |V (L(K))|
2 , and by according to

Remark 1.2, then:

GAe2(G) =
∑

e=fs∈E(L(G))

√
nf (e).ns(e)

1
2 [nf (e) + ns(e)]

= |E(L(K))|= 18pq.

Then GAe(K) = GAe2(K) = 18pq.

5 Conclusion

By using the graph theory techniques, we get
the bound for the second version of the edge
geometric-arithmetic index and expressed exact
values were exacted. We compare the second
version of the edge geometric-arithmetic indices
for some graphs, TUC4C6C8[p, q] nanotorus and
molecular octane isomers.
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