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Abstract

In this article, we investigate the measurement of performance in DMUs in which input and/or output
values are given as imprecise data. By imprecise data, we mean that in some cases, we only know
that the actual values are inside certain intervals, and in other cases, data are specified only as ordinal
preference information. In this article, we present two distinct perspectives for determining the upper
and lower bounds of the efficiency the DMU under evaluation can have with imprecise data: (1) The
optimistic perspective, which uses DEA-efficient production frontier, and seeks the best score among
various values of the efficiency score; the measured efficiency in this perspective is called the best
relative efficiency or the optimistic efficiency. (2) The pessimistic perspective, which uses inefficiency
frontier, also called input frontier, and seeks the lowest score among various values of the efficiency
score; the measured efficiency in this perspective is called the worst relative efficiency or the pessimistic
efficiency. For this reason and contrary to some DEA-related studies, we do not restrict our attention
only to precise data. We will investigate a more general case of dealing with imprecise data, providing
a method for obtaining the upper and lower bounds of efficiency. Two numerical examples will be
presented to illustrate the application of the proposed DEA approach.

Keywords : Data envelopment analysis; Imprecise data; Optimistic efficiency interval; Pessimistic
efficiency interval; Overall efficiency interval; Ranking.

—————————————————————————————————–

1 Introduction

D
ata envelopment analysis (DEA) is exten-
sively used to evaluate and estimate the ef-

ficiency of decision-making units (DMUs). DEA
was first proposed by Charnes et al. [1]. It has
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been widely used for evaluating the relative ef-
ficiency of many decision-making entities in the
public and private sectors. In recent years, nu-
merous studies have been conducted on the ap-
plication of DEA in educational and industrial
centers [2, 3, 4].

DEA calculates an efficiency score for each
DMU relative to a set of DMUs. DEA efficiency
score (in input-oriented mode) defines the maxi-
mum possible proportional reduction in input us-
age with constant output level for each DMU.
This increases the efficiency of a DMU up to the
most efficient DMUs in the DMUs set. In other
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words, DEA chooses a set of the most favorable
weights for each DMU under evaluation. Accord-
ingly, the method proposed by Charnes et al. [1]
measures the efficiency of DMUs from the opti-
mistic viewpoint. The measured efficiency of this
method is called the best relative efficiency or the
optimistic efficiency where its value is less than or
equal to one. If the optimistic efficiency of a DMU
is equal to one, it is DEA-efficient or optimistic
efficient; otherwise, it is DEAnon-efficient or op-
timistic non-efficient. It is believed that the per-
formance of optimistic efficient DMUs is higher
than that of optimistic non-efficient DMUs.

On the other hand, the approach proposed
by Parkan and Wang [5] measures the efficiency
of DMUs from the pessimistic viewpoint [6, 7].
In this approach, a set of the most unfavorable
weights is selected for each DMU under evalua-
tion. The measured efficiency of the pessimistic
perspective is called the worst relative efficiency
or the pessimistic efficiency where its value is
greater than or equal to one. If the pessimistic
efficiency of a DMU is equal to one, that DMU
is called pessimistic inefficient or DEA-inefficient;
otherwise it is called pessimistic non-inefficient
or DEAnon-inefficient. It is commonly believed
that the performance of the pessimistic ineffi-
cient DMUs is worse than the pessimistic non-
inefficient DMUs.

Optimistic and pessimistic efficiencies measure
two extremes of the performance of each DMU.
Any method that considers only one of the per-
spectives is bias. To determine the overall perfor-
mance of DMUs, both optimistic and pessimistic
viewpoints should be considered simultaneously.

Entani et al. [8] proposed a paired DEA model
with interval efficiencies measured from both op-
timistic and pessimistic perspectives. The paired
DEA model was initially developed for crisp data
and later was extended to interval and fuzzy data.
Theoretically, their models were able to render
both interval and fuzzy data. However, there
were some problems with the models. The models
only use one input and one output data to deter-
mine the lower bound of the efficiency interval for
each DMU regardless of the number of inputs and
outputs in the model. Consequently, their model
leads to data loss concerning input and output
data of the DMU under evaluation. In addition,

the paired DEA model uses variable production
frontiers to measure the efficiency intervals of dif-
ferent DMUs with interval data. Wang and Yang
[9] proposed a pair of bounded DEA model for
crisp data. The pair of bounded DEA model
uses all possible inputs and outputs. It mea-
sures the best and the worst relative efficiencies of
each DMU using a virtual DMU called anti-ideal
DMU. The anti-ideal DMU employs the maxi-
mum input value to produce the minimum out-
put. The efficiency of an anti-ideal DMU is zero
when all output values are zero. As a result, their
pair of bounded DEA model fails when deter-
mining the interval efficiency for each DMU. Re-
cently, Azizi and Wang [10] developed improved
bounded DEA models which are able to measure
the efficiencies of DMUs in all situations. Wang
et al. [11] proposed a pair of interval DEA model
for precise data. The interval DEA models use
the pessimistic efficiency of a virtual DMU called
ideal DMU- which employs the minimum input
to produce the maximum output- for determin-
ing the efficiency interval for each DMU. Accord-
ingly, the optimistic and pessimistic efficiencies
of each DMU are measured. Accordingly, Azizi
and Jahed [12] noted that the interval DEA mod-
els of Wang et al. [11] are unable to determine
the lower bound of the efficiency interval for each
DMUwhen the input value is zero. To resolve this
problem, Azizi and Jahed [12] developed an im-
proved interval DEA model to measure the over-
all performances of DMUs in all conditions. Azizi
and Fathi Ajirlu [13] used the optimistic efficiency
of the ideal DMU and the pessimistic efficiency of
the anti-ideal DMU to determine the lower bound
of the efficiency interval for crisp data. Their
DEA models were unable to determine the lower
bound of the efficiency interval when there were
zeros in each input and output. Foroughi and
Aouni [14] proposed a mixed integer linear pro-
gramming model to determine the lower bound
of the efficiency interval for each DMU. The pro-
posed model is unable to identify all pessimistic
inefficient DMUs.

Wang and Luo [15] combined the Technique
for Order Preference by Similarity to Ideal So-
lution (TOPSIS), which is one of the topics of
multi-attribute decision making, with DEA. To
calculate the best and the worst relative efficien-
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cies, they defined two virtual DMUs called ideal
DMU and anti-ideal DMU to develop two DEA
models. They combined these two distinct effi-
ciencies and obtained a relative closeness index
as a basis for ranking DMUs. Their proposed
DEA models have two major disadvantages: (1)
In most cases, their DEA models use constant
weights for all DMUs, and (2) when there are ze-
ros in each input and output, their DEA models
are infeasible. Wang et al. [16] proposed a ge-
ometric average efficiency measure to assess the
overall performance of each DMU. The geometric
average efficiency combines both optimistic and
pessimistic efficiencies of each DMU. Therefore,
it is more comprehensive than either of the mea-
sures. Recently, Wang and Lan [17] and Chin et
al. [18] extended this approach. Wang and Chin
[19] proposed a new overall performance measure
for ranking DMUs. The proposed DEA approach
considers both optimistic and pessimistic efficien-
cies of the DMUs simultaneously. The overall
performance measure not only considers the mag-
nitude of the two different efficiencies, but also
considers their directions. Therefore, it is as-
sumed to be more comprehensive than the ge-
ometric average efficiency measure proposed by
Wang et al. [16]. Amirteimoori [20] introduced
an efficiency measure using the ideal and anti-
ideal indicators formed on the basis of the efficient
and inefficient frontiers of the DEA. These indi-
cators maximize of the weighted L1 distance from
a particular DMU relative to the inefficient and
efficient frontiers of the DEA. Amirteimoori et al.
[21] also improved the cost efficiency interval of a
DMU by adjusting the observed inputs and out-
puts. Based on returns to scale terms, Wang and
Lan [22] examined the most productive scale size
of a DMU from both optimistic and pessimistic
perspectives.

According to literature, much effort is needed
to measure the overall performances of DMUs,
because it should be measured in a more general
case in the presence of imprecise data. It is note-
worthy that the papers concerning the simultane-
ous application of both optimistic and pessimistic
viewpoints were reviewed. Entani et al. [8] ex-
amined the DEA structure in the presence of in-
terval data from both optimistic and pessimistic
perspectives. The drawbacks of DEA models are

described in Section 3. The main objective of
the present paper is to measure the overall per-
formances of DMUs using DEA and simultane-
ous application of crisp, ordinal and interval data.
The upper bound of the overall efficiency interval
is obtained from the optimistic viewpoint based
on the best position of each DMU using a set of
the most favorable weights. The lower bound is
obtained from the pessimistic viewpoint based on
the most unfavorable position of each DMU using
a set of the most unfavorable weights. The overall
efficiency interval shows all possible evaluations
through different perspectives. Accordingly, the
decision maker is provided with the efficiency in-
terval of all possible values of efficiencies reflect-
ing the different views. Two numerical examples
illustrate the application of the proposed method.
Since the ultimate efficiency score for each DMU
is characterized by an interval, a simple but prac-
tical ranking approach is needed to rank and
compare DMUs efficiencies. Previously, several
approaches have been developed to rank inter-
val numbers. But all of them have some disad-
vantages. In particular, when the interval num-
bers have equal centers but different widths, all
of them are incapable of distinguishing between
these numbers. We use the minimax regret ap-
proach, developed by Wang et al. [23], for com-
paring and ranking the efficiency intervals of the
DMUs.
This paper is organized as follows. Section 2 in-
troduces the basic DEA models used for deter-
mining the best and the worst relative efficiencies
of DMUs. Section 3 analyzes the DEA models
proposed by Entani et al. [8], then the adjusted
pessimistic efficiency interval is reviewed. Section
4 illustrates an empirical example of scoring the
performances of a set of 20 branches of a commer-
cial bank in Iran. The conclusion is presented in
Section 5.
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2 Interval DEA models for mea-
surement of the best and the
worst relative efficiencies

2.1 Interval DEA models for measure-
ment of the best relative efficien-
cies of DMUs

In DEA analysis, it is usually assumed that there
are n production units that consume m different
inputs and produce s different outputs. Specifi-
cally, the jth production unit consumes xij units
of input i (i = 1, . . . ,m) and produces yrj units
of output r (r = 1, . . . , s). In interval DEA,
it is assumed that some exact values of input
xij and output yrj are not known. It is only
known that they are in the range of the upper
and lower bounds specified by intervals [xLij , x

U
ij ]

and [yLrj , y
U
rj ], and each DMU has a positive lower

bound input and a positive lower bound output.
To deal with such an uncertain situation, Wang

et al. [23] presented the following pair of linear
programming (LP) models that measure the best
relative efficiencies of DMUs:

max θUo =
s∑

r=1

ury
U
ro

s.t.
s∑

r=1

ury
U
rj −

m∑
i=1

vix
L
ij ≤ 0, j = 1, . . . , n,

m∑
i=1

vix
L
io = 1,

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.
(2.1)

max θLo =

s∑
r=1

ury
L
ro

s.t.

s∑
r=1

ury
U
rj −

m∑
i=1

vix
L
ij ≤ 0, j = 1, . . . , n,

m∑
i=1

vix
U
io = 1,

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.
(2.2)

where DMUo is the DMU under evaluation, vi
(i = 1, . . . ,m) and ur (r = 1, . . . , s) are deci-
sion variables, and ε is the non-Archimedean in-
finitesimal [24]. θUo is the best relative efficiency
under the most favorable conditions and θLo is

the best relative efficiency under the most un-
favorable conditions for DMUo. They form the
optimistic efficiency interval [θLo , θ

U
o ]. If there is

a set of positive weights u∗r (r = 1, . . . , s) and
v∗i (i = 1, . . . ,m) that make θU∗

o = 1, then
DMUo is called DEA-efficient or optimistic effi-
cient; otherwise, it is called DEA-non-efficient or
optimistic non-efficient. All DEA-efficient DMUs
collectively form an efficiency frontier.

2.2 Interval DEA models for measure-
ment of the worst relative efficien-
cies of DMUs

The input-oriented framework, which is based on
the set of input requirement and its inefficiency
frontier, tries to increase input values as much
as possible, while keeping the output at most at
its current level. This emphasizes the fact that
output is kept constant and input values are in-
creased proportionally, until the inefficient pro-
duction frontier is obtained. DEA estimator for
inefficient production possibility set is called the
pessimistic efficiency or the worst relative effi-
ciency. For a particular DMU, such as DMUo,
relative efficiencies can be calculated form the fol-
lowing pessimistic DEA models [25]:

min ϕL
o =

s∑
r=1

ury
L
ro

s.t.
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ury
L
rj −

m∑
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vix
U
ij ≥ 0, j = 1, . . . , n,

m∑
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vix
U
io = 1,

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.
(2.3)

min ϕU
o =

s∑
r=1

ury
U
ro

s.t.
s∑
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ury
L
rj −

m∑
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vix
U
ij ≥ 0, j = 1, . . . , n,

m∑
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vix
L
io = 1,

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.
(2.4)

In models (2.3) and (2.4), ϕL
o is the worst rela-

tive efficiency under the most unfavorable condi-



H. Azizi et al. /IJIM Vol. 10, No. 2 (2018) 115-130 119

Table 1: Data for five DMUs with one input and one output.

DMU Input Output

A [1, 3] [2, 3]
B [4, 5] [6, 7]
C [9, 11] [7, 9]
D [6, 8] [1, 3]
E [5, 7] [4, 5]

tions and ϕU
o is the worst relative efficiency under

the most favorable conditions for DMUo. They
give the pessimistic efficiency interval [ϕL

o , ϕ
U
o ] for

DMUo. When there is a set of positive weights u∗r
(r = 1, . . . , s) and v∗i (i = 1, . . . ,m) that satisfy
ϕL∗
o = 1, we say that DMUo is DEA-inefficient

or pessimistic inefficient; otherwise, we say that
DMUo is DEA-non-inefficient or pessimistic non-
inefficient. All DEA-inefficient DMUs collectively
form an inefficiency frontier.
In order to illustrate the difference between op-

A

B

C 

D

E 

Input 

Output 
Efficiency frontier 

Inefficiency frontier 

Figure 1: Efficiency and inefficiency frontiers for
the five DMUs under variable return to scale.

timistic efficient, optimistic non-efficient, pes-
simistic inefficient, and pessimistic non-inefficient
DMUs (i.e., the difference between the efficiency
frontier and the inefficiency frontier), we use an
example of a dataset with one input and one out-
put, as shown in Table 1. The efficiency and in-
efficiency frontiers for this example are shown in
Figure 1. As it is clear from the figure, three
DMUs are on the efficient frontier, which we call
DEA-efficient or optimistic efficient DMUs, and
the rest of the DMUs are called DEA-non-efficient
or optimistic non-efficient in relation to the effi-
cient frontier. Also, there are two DMUs on the
inefficient frontier, which we call DEA-inefficient

or pessimistic inefficient, while we call the rest
of the DMUs DEA-non-inefficient or pessimistic
non-inefficient in relation to the inefficient fron-
tier. Here, there is also some overlap, or common
units, between optimistic efficient and pessimistic
inefficient units.

3 The overall efficiency interval-
Integration of the optimistic
and pessimistic efficiencies

3.1 A review of Entani et al.’s [8] DEA
models

To develop an overall efficiency interval for each
DMU, Entani et al. [8] proposed the following
mathematical programming model to determine
the upper bound of the overall efficiency interval
of DMUo:

max ΘU
o = max

yij ,xij

∑s
r=1 uryro∑m
i=1 vixio

max
j

{∑s
r=1 uryrj∑m
i=1 vixij

}
s.t. ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . ,m.

(3.5)

where xij ∈ [xLij , x
U
ij ] and yrj ∈ [yLrj , y

U
rj ]. To ob-

tain the optimum value of model (3.5), it was
simplified to model (3.6) by Entani et al. [8]:

max ΘU
o =

∑s
r=1 ury

U
ro∑m

i=1 vix
L
io

s.t. max

{
max
j ̸=o

{∑s
r=1 ury

L
rj∑m

i=1 vix
U
ij

}
,

∑s
r=1 ury

U
ro∑m

i=1 vix
L
io

}
= 1,

ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . ,m.

(3.6)

The upper bound of the overall efficiency interval
for DMUo can be achieved using the following LP
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problem:

max ΘU
o =

s∑
r=1

ury
U
ro

s.t.
s∑

r=1

ury
L
rj −

m∑
i=1

vix
U
ij ≤ 0, j = 1, . . . , n; j ̸= o,

s∑
r=1

ury
U
ro −

m∑
i=1

vix
L
io ≤ 0,

m∑
i=1

vix
L
io = 1,

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.
(3.7)

In models (3.6) and (3.7), the lower bounds of
input intervals xLio and the upper bounds of out-
put intervals yUro are used for DMUo, and up-
per bounds of input intervals xUij and the lower

bounds of output intervals yLrj are used for other
DMUs. Model (3.7) is equivalent to the up-
per bound DEA model of Despotis and Smirlis
[26], and reports many DMUs that are not DEA-
efficient as DEA-efficient. One of the drawbacks
of model (3.7) is that it uses different constraint
sets for evaluating the efficiencies of different
DMUs. The main drawback of using different
sets of constraints for efficiencies measurement
of DMUs is the lack of possibility of compari-
son between efficiencies, since different produc-
tion frontiers have been used in the process of
efficiency measurement. We use LP model (2.1)
for obtaining the upper bound of the overall effi-
ciency interval for each DMU. This model is dif-
ferent from the existing DEA models for interval
data in that the LP model (2.1) uses a fixed and
unified production frontier for measuring the effi-
ciency of each DMU. To obtain the lower bound
of the overall efficiency interval for DMUo, Entani
et al. [8] proposed the following mathematical
programming model for DMUo:

min φL
o = min

yij ,xij

∑s
r=1 uryro∑m
i=1 vixio

max
j

{
∑s

r=1 uryrj∑m
i=1 vixij

}

s.t. ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . ,m.

(3.8)

To obtain the optimum value of model (3.8), it
was simplified to model (3.9) by Entani et al. [8]:

min φL
o =

∑s
r=1 ury

L
ro∑m

i=1 vix
U
io

s.t. max

{
max
j ̸=o

{∑s
r=1 ury

U
rj∑m

i=1 vix
L
ij

}
,

∑s
r=1 ury

L
ro∑m

i=1 vix
U
io

}
= 1,

ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . ,m.

(3.9)

The upper bounds of the input intervals, xUio
and the lower bounds of the output intervals,
yLro in model (3.9) are used for DMUo. The
lower bounds of the input intervals, xLij and the

upper bounds of the output intervals, yUrj are
used for other DMUs. Model (3.9) cannot be
transformed into an equivalent LP model. To
achieve the optimal value of model (3.9), assum-
ing

∑s
r=1 ury

U
rj/

∑m
i=1 vix

L
ij = 1 for each DEA-

efficient unit, Entani et al. [8] divided. Model
(3.9) into e1 sub-optimization problems j =
J1, . . . , Je1 , in which e1 is the number of DEA-
efficient units, and J1, . . . , Je1 are DEA-efficient
units:

min φL
oj =

∑s
r=1 ury

L
ro∑m

i=1 vix
U
io

s.t.

∑s
r=1 ury

U
rj∑m

i=1 vix
L
ij

= 1,

ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . ,m.

(3.10)

The sub-optimization problem (3.10) can be con-
verted to e1 LP models as follows:

min φL
oj =

s∑
r=1

ury
L
ro

s.t.

s∑
r=1

ury
U
rj −

m∑
i=1

vix
L
ij = 0,

m∑
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vix
U
io = 1

ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . ,m.

(3.11)

Entani et al [8] claim that the minimum value out
of the optimal values of (3.11) is the optimal value
of model (3.9). Assuming that φL∗

oJ1
, . . . , φL∗

oJe1
are
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the optimal values of the objectives functions in
LPs of the sub-optimization problem (3.11), we
can write the lower bound of the overall efficiency
interval of DMUo mathematically as follows:

φL∗
o = min

j=J1,...,Je1

{φL∗
oj } (3.12)

Accordingly, [φL∗
o ,ΘU∗

o ] is the overall efficiency in-
terval of DMUo, where ΘU∗

o is the optimal value
of model (3.7).

In the sub-optimization problem (3.11), each
LP model has only two linear constraints. There-
fore, regardless of the number of inputs and out-
puts in the problem under consideration, only two
decision variables can be non-zero, one for the in-
put weight and the other for the output weight.
As such, Entani et al.’s [8] DEA models mea-
sure the pessimistic efficiency of each DMU by
taking into account only one input and one out-
put. Compared with the sub-optimization prob-
lem (3.11), model (2.3) includes (n + 1) linear
constraints and, consequently, can make the most
use of input and output information. Addition-
ally, model (2.3) is able to accurately identify the
pessimistic inefficient units and the inefficiency
frontier. To clarify this point, consider the fol-
lowing numerical example.

Example 3.1 Consider the example discussed
by Cooper et al. [27]. We have five DMUs that
use two inputs, one crisp and the other interval,
and produce two outputs, one crisp and the other
ordinal. The data set is shown in Table 2.

For conversion of ordinal preference information
into interval data, we used the approach proposed
by Wang et al. [23]. For this example, the prefer-
ence intensity parameter and the ratio parameter
about the strong ordinal preference information
were determined (or estimated) as χ2 = 1.2 and
σ2 = 0.2, respectively [28, 29]. Using the tech-
nique described in Wang et al. [23], we can ob-
tain an interval estimate for the second output of
each DMU, which is shown in the last column of
Table 2.
First we obtain the optimistic and pessimistic ef-
ficiencies of the five DMUs using interval DEA
models (2.1)-(2.4). These are shown in Table 3.
From Table 3, it is clear that only one DMU,

i.e. DMU1, is DEA-efficient according to the op-
timistic DEA model (2.1). This DEA-efficient
unit determines the efficiency frontier. It is usu-
ally believed that this DEA-efficient unit should
have a better performance than the other four
units that are identified as DEA-non-efficient.
From the pessimistic efficiency perspective, two
DMUs, i.e. DMU4 and DMU5, are identified
as DEA-inefficient. Collectively, they define an
inefficiency frontier. It is believed that these
two DEA-non-efficient units have a poorer perfor-
mance than the three units that are identified as
DEA-non-inefficient. The evaluations above have
been performed from different perspectives and,
as such, may have different results. Any conclu-
sion based on only one of these two perspectives
will undoubtedly be unrealistic and unconvinc-
ing. In order to provide an overall assessment of
the performance of each DMU, Entani et al. [8]
considered both optimistic and pessimistic per-
spectives simultaneously. The results of Entani
et al.’s [8] interval DEA models are shown in the
last column of Table 3. As it can be seen from
Table 3, due to the use of different production
frontiers for measuring the efficiencies of different
DMUs, model (3.7), which is used by Entani et
al. [8] for obtaining the upper bound of the over-
all efficiency interval, evaluates all five DMUs as
DEA-efficient. Also, the sub-optimization prob-
lem (3.11), which is used by Entani et al. [8]
for obtaining the lower bound of the overall effi-
ciency interval, identifies only DMU4, which has
the smallest lower-bound efficiency among the
five DMUs, as a DEA-inefficient unit. But it
cannot identify DMU5 which is DEA-inefficient.
Consequently, the efficiency and inefficiency fron-
tiers cannot be determined using Entani et al.’s
[8] interval DEA models.

For example, since five DMUs were identified
as DEA-efficient in the approach proposed by En-
tani et al. [8], they used 5 LP models for deter-
mining the lower bound of the overall efficiency
interval for each DMU (In sum, 25 LP models
must be solved for determination of the lower
bound of the overall efficiency interval for five
DMUs.. Consider DMU3 as an instance. To de-
termine the value of the lower bound of the overall
efficiency interval for this DMU, the following five
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Table 2: Imprecise data and ordinal data converted for five DMUs.

DMU Inputs Outputs Converted ordinal data
x1j (exact) x2j (interval) y1j (exact) y2j (ordinal⋆)

1 100 [0.6, 0.7] 200 4 [0.3456, 0.8333]
2 150 [0.8, 0.9] 1000 2 [0.2400, 0.5787]
3 150 [1, 1] 1200 5 [0.4147, 1.0000]
4 200 [0.7, 0.8] 900 1 [0.2000, 0.4823]
5 200 [1, 1] 600 3 [0.2880, 0.6944]
⋆ Ranking, such that 5 ≡ highest rank, . . . , 1 ≡ lowest rank (y23 ≻ y21 ≻ · · · ≻ y24)

Table 3: Imprecise data and ordinal data converted for five DMUs.

DMU Optimistic Pessimistic Overall efficiency interval
efficiency interval efficiency interval according to Entani et al.’s [8]

[θL∗
j , θU∗

j ] [ϕL∗
j , ϕU∗

j ] DEA models (models (3.7) and (3.11)

1 [1.0000, 1.0000] [1.9749, 4.9184] [0.3555, 1.0000]
2 [0.3333, 0.5209] [1.0473, 2.0833] [0.1920, 1.0000]
3 [0.4000, 0.8000] [1.5133, 2.0000] [0.2986, 1.0000]
4 [0.3375, 0.4961] [1.0000, 1.5000] [0.1200, 1.0000]
5 [0.2074, 0.5000] [1.0000, 1.0000] [0.1500, 1.0000]

LP models must be solved:

(LP1): φL∗
31 = min 1200u1 + 0.4147u2

s.t.


150v1 + v2 = 1,
2000u1 + 0.8333u2 − 100v1 − 0.6v2 = 0,
u1, u2, v1, v2 ≥ 0.

(LP2): φL∗
32 = min 1200u1 + 0.4147u2

s.t.


150v1 + v2 = 1,
1000u1 + 0.5787u2 − 150v1 − 0.8v2 = 0,
u1, u2, v1, v2 ≥ 0.

(LP3): φL∗
33 = min 1200u1 + 0.4147u2

s.t.


150v1 + v2 = 1,
1200u1 + u2 − 150v1 − v2 = 0,
u1, u2, v1, v2 ≥ 0.

(LP4): φL∗
34 = min 1200u1 + 0.4147u2

s.t.


150v1 + v2 = 1,
900u1 + 0.4823u2 − 200v1 − 0.7v2 = 0,
u1, u2, v1, v2 ≥ 0.

(LP5): φL∗
35 = min 1200u1 + 0.4147u2

s.t.


150v1 + v2 = 1,
600u1 + 0.6944u2 − 200v1 − v2 = 0,
u1, u2, v1, v2 ≥ 0.

The solutions of these five LP models are as fol-
lows:

φL∗
31 = 0.2986, u∗1 = 0, u∗2 = 0.7200, v∗1 =

0 and v∗2 = 1,
φL∗
32 = 0.5733, u∗1 = 0, u∗2 = 1.3824, v∗1 =

0 and v∗2 = 1,
φL∗
33 = 0.4147, u∗1 = 0, u∗2 = 1, v∗1 = 0 and v∗2 =

1,
φL∗
34 = 0.6019, u∗1 = 0, u∗2 = 1.4514, v∗1 =

0 and v∗2 = 1,
φL∗
35 = 0.5972, u∗1 = 0, u∗2 = 1.4401, v∗1 =

0 and v∗2 = 1.
Finally, the lower bound of the overall efficiency
interval of DMU3 is obtained as follows:

φL∗
3 = min{0.2986, 0.5733, 0.4147,

0.6019, 0.5972} = 0.2986

The lower bounds of the overall efficiency in-
tervals for the other four DMUs are calculated
similarly. Also, based on the five sets of input
and output weights obtained above, it is evi-
dent that only one input (either input 1 or in-
put 2) and one output (either output 1 or out-
put 2) are involved in the calculation of the lower
bound of the overall efficiency interval. For in-
stance, consider the fourth set of weights, i.e.
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u∗1 = 0, u∗2 = 1.4514, v∗1 = 0, v∗2 = 1. We sub-
stituted this set of weights in the constraints of
model (9) and obtained the following efficiencies
for the DMUs:

φL∗
1 = 2.0158, φL∗

2 = 1.0499, φL∗
3 =

1.4514, φL∗
4 = 0.3629, φL∗

5 = 1.0079.
Except for the efficiency of DMU4, all
other efficiency values are greater than
one. Such results evidently violate the con-

dition max
{
max
j ̸=o

{
∑s

r=1 ury
L
rj/

∑m
i=1 vix

U
ij},∑s

r=1 ury
U
ro/

∑m
i=1 vix

L
io

}
= 1. Therefore, the

approach proposed by Entani et al. [8] for ob-
taining the lower bound of the overall efficiency
interval is illogical and unacceptable.

In the next section, we will develop novel DEA
models for determination of the lower bound of
the overall efficiency interval in order to overcome
these drawbacks.

The pessimistic efficiency score is the opposite
of the optimistic efficiency score. It is a score that
each DMU obtains in its most unfavorable situa-
tion (or the most favorable situation) using a set
of the most unfavorable weights. Theoretically,
the best and the worst relative efficiencies should
be calculated in a common range and should form
an interval for each DMU. For example, they can
be measured in the interval [β, 1], where β > 0 is
a parameter. In the next section, we will find a
suitable value for β.

3.2 Adjusting the worst relative effi-
ciencies

Theoretically, the best and the worst relative ef-
ficiencies should form an interval. For this pur-
pose, the worst relative efficiencies determined by
models (2.3) and (2.4) should be adjusted [30, 31].
Suppose that β (0 < β ≤ 1) is the adjustment co-
efficient, then the adjusted worst relative efficien-
cies can be written as βϕ∗

j = β[ϕL∗
j , ϕU∗

j ] = ϕ̂∗
j =

[ϕ̂L∗
j , ϕ̂U∗

j ] (j = 1, . . . , n) satisfying ϕ̂∗
j = βϕ∗

j =

β[ϕL∗
j , ϕU∗

j ] ≤ θ∗j = [θL∗j , θU∗
j ] (j = 1, . . . , n)

or β ≤ min
j=1,...,n

{θL∗j /ϕU∗
j }. Assuming ϕU∗

max =

max
j=1,...,n

{ϕU∗
j } and θL∗min = min

j=1,...,n
{θL∗j }, then

min
j=1,...,n

{θL∗j /ϕU∗
j } ≥ min

j=1,...,n
{θL∗j }/ max

j=1,...,n
{ϕU∗

j }.

Substituting β = θL∗min/ϕ
U∗
max, it is ensured that

β ≤ min
j=1,...,n

{θL∗j /ϕU∗
j }. Since β is not zero, the

worst performance of DMUs in the interval [β, 1]
can be measured by the following models:

min ΨL
o =

∑s
r=1 ury

L
ro∑m

i=1 vix
U
io

s.t.

∑s
r=1 ury

L
rj∑m

i=1 vix
U
ij

≥ β, j = 1, . . . , n,

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.

(3.13)

min ΨU
o =
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U
ro∑m

i=1 vix
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io
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r=1 ury

L
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i=1 vix
U
ij

≥ β, j = 1, . . . , n,

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.

(3.14)

Models (3.13) and (3.14) can be transformed into
the following two LP models:

min ΨL
o =

s∑
r=1

ury
L
ro

s.t.
s∑

r=1

ury
L
rj −

m∑
i=1

vi(βx
U
ij) ≥ 0, j = 1, . . . , n,

m∑
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U
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ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.
(3.15)

min ΨU
o =

s∑
r=1

ury
U
ro

s.t.

s∑
r=1
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L
rj −

m∑
i=1

vi(βx
U
ij) ≥ 0, j = 1, . . . , n,

m∑
i=1

vix
L
io = 1

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . ,m.
(3.16)

Suppose that ΨL∗
o and ΨU∗

o are the optimal val-
ues of models (3.15) and (3.16), respectively.
Then they form a pessimistic efficiency interval,
[ΨL∗

o ,ΨU∗
o ]. The worst performances of the n

DMUs is obtained by repeatedly solving models
(3.15) and (3.16) for each DMU. The pessimistic
efficiency interval is shown by [ΨL∗

j ,ΨU∗
j ] (j =

1, . . . , n). To obtain more reliable results, both
optimistic and pessimistic perspectives should be
applied simultaneously to score a problem. For
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this reason, the optimistic and pessimistic effi-
ciency intervals of DMUs are merged to obtain a
new interval called the overall efficiency interval.
Both upper and lower bounds (extreme values) of
the overall efficiency interval are considered from
two different viewpoints. As a result, an over-
all efficiency interval of [ΨL∗

j ,ΨU∗
j ] (j = 1, . . . , n)

is defined for each DMUj . The upper bound of
the overall efficiency interval is obtained from the
optimistic viewpoint based on the best position
of each DMU using a set of the most favorable
weights. The lower bound is obtained from the
pessimistic viewpoint based on the most unfavor-
able position of each DMU using a set of the most
unfavorable weights. The overall efficiency inter-
val shows all possible evaluations of different per-
spectives. Accordingly, the decision maker is pro-
vided with the overall efficiency interval of all pos-
sible efficiencies reflecting different perspectives.

The following definitions are concerned for the
overall efficiency interval, [ΨL∗

o , θU∗
o ].

Definition 3.1 DMUo is called DEA-efficient or
optimistic efficient, if θU∗

o = 1, otherwise it is
called DEA-non-efficient.

Definition 3.2 DMUo is called DEA-inefficient
or pessimistic inefficient, if ΨL∗

o = β, otherwise
it is called DEA-non-inefficient.

Definition 3.3 DMUo is called DEA-unspecified
if and only if it is neither DEA-efficient nor
DEA-inefficient.

Regarding DEA-unspecified units, we could say
that they are always circumscribed between the
efficient and inefficient frontiers (see DMUE in
Figure 1) [8].

For a comparison of our proposed overall ef-
ficiency interval with the overall efficiency inter-
val obtained from Entani et al.’s [8] DEA mod-
els, consider the numerical example presented in
Section 3.1. First we determine the value of β
using Table 3 and we obtain β = θL∗min/ϕ

U∗
max =

0.2074/4.9184 = 0.0422.
Then we run interval DEA models (3.15) and
(3.16) for each DMU to obtain the adjusted pes-
simistic efficiency interval for the five DMUs.
By integrating the optimistic efficiency interval
and the adjusted pessimistic efficiency interval

for the five DMUs, we obtain the overall perfor-
mance score, i.e. the overall efficiency interval,
of each DMU. Noting the obtained overall effi-
ciency intervals in Table 4, it can be clearly seen
that the proposed DEA approach identifies both
pessimistic inefficient DMUs accurately (DMU4

and DMU5 are identified as pessimistic inefficient
DMUs). These evaluation results are completely
compatible with the results of the pessimistic
DEA model (2.3). In this example, DMU2 and
DMU3 are identified as DEA-unspecified units.
Furthermore, for comparison and ranking of the
overall efficiency intervals of the five DMUs, we
used the minimax regret approach for calculating
the maximum loss of efficiency for each DMU.
The last column of Table 4 shows the ranking of
the five DMUs according to the overall efficiency
interval, from which it can be seen that DMU1

has the best overall performance.
It should be noted that Entani et al. [8] have
developed an approach for finding overall effi-
ciency intervals for crisp data, interval data, and
fuzzy data. However, they have not described the
method of computation of the overall efficiency
interval for ordinal data. Besides, they have not
considered the overall efficiency interval for a mix-
ture of crisp data, interval data, and ordinal data.

4 An empirical example

In this section, the DEA approach with both ef-
ficient and inefficient frontiers addressed in this
paper is used to evaluate the performances of the
commercial bank branches. In this example, the
value of the non-Archimedean infinitesimal is as-
sumed to be ε = 10−10.

Consider, the performance measurement of 20
branches of a set of commercial bank (DMUs)
in Iran. Each branch is examined in terms of
three inputs including payable interest, person-
nel, and non-performing loans and five outputs
including the total sum of four main deposits,
other deposits, loans granted, received interest,
and fee. The data set used in this analysis was
adopted from Jahanshahloo et al. [32]. Tables 5
and 6 show the interval inputs and outputs for
DMUs. Table 7 shows the overall efficiency in-
tervals scores, optimistic efficiency intervals, pes-
simistic efficiency intervals, and adjusted pes-
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Table 4: Imprecise data and ordinal data converted for five DMUs.

DMU Adjusted pessimistic efficiency interval [ΨL∗
j ,ΨU∗

j ] Overall efficiency interval [ΨL∗
j , θU∗

j ] Rank

1 [0.0833, 0.2076] [0.0833, 1.0000] 1
2 [0.0442, 0.0879] [0.0442, 0.5209] 3
3 [0.0639, 0.0844] [0.0639, 0.8000] 2
4 [0.0422, 0.0633] [0.0422, 0.4961] 5
5 [0.0422, 0.0422] [0.0422, 0.5000] 4

Table 5: Input data for 20 bank branches.

DMUj xL
1j xU

1j xL
2j xU

2j xL
3j xU

3j

1 5007.37 9613.37 36.29 36.86 87243 87243
2 2926.81 5961.55 18.8 20.16 9945 12120
3 8732.7 17752.5 25.74 27.17 47575 50013
4 945.93 1966.39 20.81 22.54 19292 19753
5 8487.07 17521.66 14.16 14.8 3428 3911
6 13759.35 27359.36 19.46 19.46 13929 15657
7 587.69 1205.47 27.29 27.48 27827 29005
8 4646.39 9559.61 24.52 25.07 9070 9983
9 1554.29 3427.89 20.47 21.59 412036 413902
10 17528.31 36297.54 14.84 15.05 8638 10229
11 2444.34 4955.78 20.42 20.54 500 937
12 7303.27 14178.11 22.87 23.19 16148 21353
13 9852.15 19742.89 18.47 21.83 17163 17290
14 4540.75 9312.24 22.83 23.96 17918 17964
15 3039.58 6304.01 39.32 39.86 51582 55136
16 6585.81 13453.58 25.57 26.52 20975 23992
17 4209.18 8603.79 27.59 27.95 41960 43103
18 1015.52 2037.82 13.63 13.93 18641 19354
19 5800.38 11875.39 27.12 27.26 19500 19569
20 1445.68 2922.15 28.96 28.96 31700 32061

simistic efficiency intervals for these DMUs based
on models (2.1)-(2.4), (3.15) and (3.16). The op-
timistic assessment of the bank branches revealed
that 11 DMUs were in the best position and ob-
tained the maximum efficiency score of 100%.
These 11 DMUs are classified as optimistic ef-
ficient DMUs with the best performance (best
productive DMUs are DEA-efficient, otherwise
they are DEA-non-efficient). However, the pes-
simistic assessment of the bank branches showed
that 8 DMUs were in the worst position and ob-
tained the smallest efficiency score. Accordingly,
these 8 DMUs are classified as pessimistic inef-
ficient DMUs with the worst performance (the
worst productive DMUs are DEA-inefficient, oth-
erwise they are DEA-non-inefficient). These 8
DMUs are candidates for bankruptcy. Invest-
ment risk assessment is considered to be an im-

portant issue for financial institutions or investors
investing in businesses or bank branches. Thus,
the financial institutions or individual investors
should certainly assess the performance of bank
branches in the banking industry before invest-
ment. Now, using the set of the upper bounds of
the pessimistic efficiency interval and the lower
bounds of the optimistic interval, the lower bound
of the overall efficiency interval of DMUs can
be determined. The calculated lower bound is
β = θL∗min/ϕ

U∗
max = 0.1841/3.9815 = 0.0462. The

last column of Table 7 shows DMUs ranks in
terms of the overall efficiency interval. It is note-
worthy that the DMUs 7, 9, and 10 are optimistic
efficient under the optimistic assessment used in
model (2.1). However, they are pessimistic inef-
ficient under the pessimistic assessment used in
model (2.3). Therefore, they are not classified as
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Table 6: Output data for 20 bank branches.

DMU yL1j yU1j yL2j yU2j yL3j yU3j yL4j yU4j yL5j yU5j

1 2696995 3126798 263643 382545 1675519 1853365 108634.76 125740.28 965.97 6957.33
2 340377 440355 95978 117659 377309 390203 32396.65 37836.56 304.67 749.4
3 1027546 1061260 37911 503089 1233548 1822028 96842.33 108080.01 2285.03 3174
4 1145235 1213541 229646 268460 468520 542101 32362.8 39273.37 207.98 510.93
5 390902 395241 4924 12136 129751 142873 12662.71 14165.44 63.32 92.3
6 988115 1087392 74133 111324 507502 574355 53591.3 72257.28 480.16 869.52
7 144906 165818 180530 180617 288513 323721 40507.97 45847.48 176.58 370.81
8 408163 416416 405396 486431 1044221 1071812 56260.09 73948.09 4654.71 5882.53
9 335070 410427 337971 449336 1584722 1802942 176436.81 189006.12 560.26 2506.67
10 700842 768593 14378 15192 2290745 2573512 662725.21 791463.08 58.89 86.86
11 641680 696338 114183 241081 1579961 2285079 17527.58 20773.91 1070.81 2283.08
12 453170 481943 27196 29553 245726 275717 35757.83 42790.14 375.07 559.85
13 553167 574989 21298 23043 425886 431815 45652.24 50255.75 438.43 836.82
14 309670 342598 20168 26172 124188 126930 8143.79 11948.04 936.62 1468.45
15 286149 317186 149183 270708 787959 810088 106798.63 111962.3 1203.79 4335.24
16 321435 347848 66169 80453 360880 379488 89971.47 165524.22 200.36 399.8
17 618105 835839 244250 404579 9136507 9136507 33036.79 41826.51 2781.24 4555.42
18 248125 320974 3063 6330 26687 29173 9525.6 10877.78 240.04 274.7
19 640890 679916 490508 684372 2946797 3985900 66097.16 95329.87 961.56 1914.25
20 119948 120208 14943 17495 297674 308012 21991.53 27934.19 282.73 471.22

Table 7: Interval efficiencies of the 20 bank branches.

DMU Optimistic Pessimistic Pessimistic Overall Overall efficiency Rank
efficiency int. efficiency int. efficiency int. efficiency int. interval according to
[θL∗

j , θU∗
j ] [ϕL∗

j , ϕU∗
j ] [ΨL∗

j ,ΨU∗
j ] [ΨL∗

j , θU∗
j ] [8] DEA models

1 [0.8561, 1.0000] [2.2649, 3.3214] [0.1049, 0.1537] [0.1049, 1.0000] [0.0024, 1.0000] 1
2 [0.3603, 0.5105] [1.8516, 2.7034] [0.0855, 0.1249] [0.0855, 0.5105] [0.0055, 1.0000] 3
3 [0.5226, 0.9802] [1.7464, 3.9815] [0.0807, 0.1840] [0.0807, 0.9802] [0.0016, 1.0000] 6
4 [0.8891, 1.0000] [1.4753, 2.4900] [0.0682, 0.1152] [0.0682, 1.0000] [0.0023, 1.0000] 9
5 [0.6331, 0.6806] [1.0000, 1.1809] [0.0462, 0.0546] [0.0462, 0.6806] [0.0009, 0.7690] 16
6 [0.8835, 1.0000] [1.6075, 3.2642] [0.0743, 0.1508] [0.0743, 1.0000] [0.0067, 1.0000] 8
7 [0.6576, 1.0000] [1.0000, 1.2160] [0.0462, 0.0562] [0.0462, 1.0000] [0.0013, 1.0000] 13
8 [0.8320, 1.0000] [1.6572, 2.8677] [0.0767, 0.1326] [0.0767, 1.0000] [0.0229, 1.0000] 7
9 [0.7396, 1.0000] [1.0000, 1.0761] [0.0462, 0.0497] [0.0462, 1.0000] [0.0003, 1.0000] 14
10 [0.8839, 1.0000] [1.0000, 1.3898] [0.0462, 0.0643] [0.0462, 1.0000] [0.0010, 1.0000] 15
11 [0.8984, 1.0000] [1.7788, 2.7646] [0.0823, 0.1279] [0.0823, 1.0000] [0.0160, 1.0000] 4
12 [0.3288, 0.3991] [1.2019, 1.6901] [0.0555, 0.0781] [0.0555, 0.3991] [0.0025, 0.4999] 12
13 [0.4438, 0.5366] [1.2225, 2.2980] [0.0565, 0.1062] [0.0565, 0.5366] [0.0026, 0.7058] 11
14 [0.2690, 0.3586] [1.0000, 1.1341] [0.0462, 0.0524] [0.0462, 0.3586] [0.0015, 0.7285] 19
15 [0.4067, 1.0000] [1.3402, 1.8771] [0.0619, 0.0867] [0.0619, 1.0000] [0.0031, 1.0000] 10
16 [0.2227, 0.5530] [1.0000, 1.5968] [0.0462, 0.0738] [0.0462, 0.5530] [0.0018, 1.0000] 17
17 [0.9871, 1.0000] [1.7289, 2.2712] [0.0807, 0.1058] [0.0807, 1.0000] [0.0084, 1.0000] 5
18 [0.2651, 0.3534] [1.0000, 1.1172] [0.0462, 0.0516] [0.0462, 0.3534] [0.0003, 0.9548] 20
19 [0.7934, 1.0000] [2.1424, 3.8900] [0.0992, 0.1801] [0.0992, 1.0000] [0.0108, 1.0000] 2
20 [0.1841, 0.4003] [1.0000, 1.0022] [0.0462, 0.0463] [0.0462, 0.4003] [0.0010, 0.9789] 18

the best DMUs. The ranking results confirm that
they are not among the first 11 DMUs. Thus, the
results of the present study provide more useful

information for the managers of bank branches.
This is why the application of DEA in the pres-
ence of imprecise data is necessary.
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It should be noted that only 80 LPs should be
solved to obtain the overall efficiency interval of
20 branches using the approach proposed in this
paper. To determine β, we need to be solved
20 LPs to calculate the lower bound of the opti-
mistic efficiency intervals of the 20 branches (us-
ing model (2.2)). On the other hand, 20 LPs
should be solved to calculate the upper bound
of the pessimistic efficiency intervals of the 20
branches (using model (2.4)). Of the other 40
LPs, 20 LPs are used to calculate the upper
bound of the optimistic efficiency intervals of the
20 bank branches using model (2.1) (constituting
the upper bound of the overall efficiency inter-
vals). To calculate the lower bound of the ad-
justed pessimistic efficiency intervals of the 20
bank branches (constituting the lower bound of
the overall efficiency intervals), 20 LPs are solved
using model (3.15). However, the DEA models
proposed by Entani et al. [8] need to solve 300
LPs to obtain the overall efficiency interval of 20
branches (See Table 7). Of the 300 LPs, 20 LPs
are used to calculate the upper bound of the over-
all efficiency intervals of the 20 branches using
model (3.7). Of this, 14 DMUs are evaluated as
DEA-efficient and 20×14 LPs are used to calcu-
late the lower bound of the overall efficiency inter-
vals of the 20 branches using the sub-optimization
problem (3.11). More importantly, the lower-
bound DEA model of Entani et al. [8] identifies
only one DMU, i.e. DMU9, as the pessimistic
inefficient DMU with the minimum lower bound
of the overall efficiency interval among the 20
DMUs. However, it is unable to detect the other
seven pessimistic inefficient DMUs. The round-
ing error of DMU18 is identified as a pessimistic
inefficient DMU while the pessimistic efficiencies
of DMU9 and DMU18 are 0.000296442840994248
and 0.00030171562671364, respectively. This ex-
ample confirms the applicability and discriminat-
ing power of the approach proposed in this paper.

In addition to the above advantages, the other
advantages of the proposed approach are as fol-
lows compared with Entani et al.’s [8] approach:

• In our proposed approach, the upper
bounds of the overall efficiency intervals are mea-
sured according to the same constraints for dif-
ferent DMUs. However, the method proposed by
Entani et al. [8] measures the upper bounds of

the overall efficiency intervals under different con-
straints leading to incomparable efficiencies for
different DMUs.

• One of the important features of measuring
the pessimistic efficiency of DMUs is identifica-
tion of pessimistic inefficient DMUs which, from
the pessimistic point of view, have the role of the
worst units among other DMUs and delineate the
inefficiency frontier. Thus, the evaluators may
know which DMU is pessimistic inefficient and
which is not. The lower-bound DEA model of
Entani et al. [8] is an exception. Their model
identifies only one DMU with the minimum lower
bound of the efficiency interval. Accordingly, it
is unable to correctly identify all pessimistic in-
efficient DMUs. Basically, the lower-bound DEA
model of Entani et al. [8] is unable to determine
the inefficiency frontier. Therefore, much evalua-
tion information is lost. On the other hand, each
LP model in the sub-optimization problem (3.11)
is subject to only two linear constraints. There is
only one non-zero input and output weight and
the weights of other inputs and outputs are zero.
In other words, only one input and one output of
DMUo are used to calculate the lower bound of
the overall efficiency interval and the other data
are ignored. Obviously, this is irrational and un-
acceptable.

• The calculations in our approach are much
less than those of Entani et al.’s [8] approach,
in particular, when the number of DMUs under
evaluation is high. The proposed approach re-
duces the computational effort. In our proposed
approach, only 4n LPs need to be solved to cal-
culate the overall efficiency intervals of n DMUs.
However, the approach proposed by Entani et al.
[8] needs to solve (e1 + 1)n LPs, where e1 rep-
resents the number of optimistic efficient DMUs.
Of (e1 + 1)n LPs, n LPs are solved to calculate
the upper bound of the overall efficiency inter-
vals (using model (3.7)) while e1n LPs are solved
to obtain the lower bound of the overall effi-
ciency intervals (using the sub-optimization prob-
lem (3.11)).

5 Conclusions

The assessment of the efficiency of DMUs is
a complex but important decision-making issue
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that involves multiple quantitative and qualita-
tive selection criteria. The present article pro-
posed a new approach to deal with interval data,
ordinal preference data, and their mixtures in
DEA. The proposed method allows the most ef-
ficient use of the conventional DEA with im-
precise data. The proposed approach measures
the efficiency of each DMU from both optimistic
and pessimistic perspectives leading to upper and
lower bounds for efficiency called the overall effi-
ciency interval. The overall efficiency interval cal-
culates the imprecise efficiency interval for each
DMU. Using the overall efficiency interval, we can
further prioritize DMUs performances. In com-
parison with the overall efficiency interval formed
by Entani et al. [8], the overall efficiency interval
formed by our approach employs fixed and unified
production frontiers (i.e., the efficient and ineffi-
cient frontiers) as a benchmark for measuring the
efficiency of all DMUs. This leads to a more ra-
tional, reliable, and applicable overall efficiency
interval. The overall efficiency interval not only
describes the true situation in more detail, but
reduces the pressure on all evaluated DMUs and
evaluators psychologically. Two numerical exam-
ples were examined to demonstrate the simplicity
and utility of the proposed approach in measuring
the efficiency of DMUs.
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